
January 18, 1999 
RT0286 
Computer Science   14 pages 
 

Research Report 
 
An Approximation Algorithm for the 2D Free-Form Bin 
Packing Problem 
 
H. Okano 
 
IBM Research, Tokyo Research Laboratory 
IBM Japan, Ltd. 
1623-14 Shimotsuruma, Yamato 
Kanagawa 242-8502, Japan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 
 
Limited Distribution Notice 
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has 
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of 
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer 
communications and specific requests. After outside publication, requests should be filled only by reprints or copies 
of the article legally obtained (for example, by payment of royalities). 



Abstract

This paper proposes an e�cient and practical approximation algorithm for the two-dimensional

free-form bin packing (2D-FBP) problem, which is also called the free-form cutting stock, cutting

and packing, or nesting problem. In the 2D-FBP problem, given a set of 2D free-form bins, which

in practice may be plate materials, and a set of 2D free-form items, which in practice may be plate

parts to be cut out of the materials, you are asked to lay out items inside one or more bins in such

a way that the number of bins used is minimized. The proposed algorithm handles the problem as a

variant of the one-dimensional bin-packing problem; that is, items and bins are approximated as sets

of scanlines, and scanlines are packed. The details of the algorithm are given, and its application to a

nesting problem in a shipbuilding company is reported.

Keywords

bin-packing problem, cutting stock problem, cutting and packing problem, nesting problem

1. Introduction

In the two-dimensional free-form bin packing (2D-FBP) problem, which is also called the

free-form cutting stock, cutting and packing, or nesting problem, given a set of 2D free-form

items, which in practice may be plate parts, and a set of 2D free-form bins, which in practice

may be plate materials from which parts are to be cut, you are asked to lay out items inside

one or more bins in such a way that the number of bins used is minimized and the yield (area

of items over area of bounding rectangles of layouts) is maximized. The 2D-FBP problem is

seen in a number of industries in which parts with free-form (irregular) shapes are cut from

free-form or rectangular materials. For example, in the shipbuilding industry, plate parts with

free-form shapes for use in the inner frameworks of ships are cut from rectangular steel plates,

and in the apparel industry, parts of clothes are cut from fabric or leather materials.

Since the 2D-FBP problem belongs to the class of NP-hard combinatorial optimization prob-

lems, which means that there is no hope of �nding polynomial-time exact algorithms unless

P = NP , approximation algorithms play an important role in practical applications. In the

literature, approximation algorithms for the 2D-FBP problem generally consist of procedures

for approximating input items and bins, and for placing items into bins one by one and ob-

taining a solution. Some algorithms also include a subsequent recombination process. In

the approximation of input items, representations of items are generally classi�ed into four

types: bounding orthogonal rectangles, collections of orthogonal rectangles, simple polygons,

and bitmaps (grids). A drawback of these types of representations is that, because they are

two-dimensional, the subsequent placement procedure becomes complicated.

1



This paper proposes a new method for approximating input items and bins by scanlines, and

for representing them by sets of intervals and grids, respectively. A procedure for placing items

is also proposed. The proposed algorithm packs scanlines, instead of faces, and is shown to be

e�cient and practical through an intensive numerical study.

In Section 2, algorithms for the one- and two-dimensional bin-packing problems are reviewed.

In Section 3, a new approximation algorithm for the 2D-FBP problem, consisting of an algo-

rithm for approximating input items and bins and a placement algorithm, is proposed. Section 4

describes a numerical study using real instances obtained from a shipbuilding company. Finally,

the paper is summarized in Section 5.

2. Preliminary

2.1. 1D bin-packing algorithms

In the one-dimensional bin-packing problem, given a set of items, a rational size [0; 1] for

each item, and a set of unit-capacity bins, you are asked to �nd a partition of the set of items

into disjoint subsets such that items can be placed in the minimum number of bins; that is,

the sum of the sizes of items in each subset should be no more than 1, and the number of bins

used should be minimized. This problem is known to be NP-hard [1].

One algorithm for the one-dimensional bin-packing problem is the �rst-�t algorithm. This

algorithm, starting with a sequence of empty unit-capacity bins, places each item in succession

into the �rst bin it will �t. The asymptotic worst-case performance ratio of the �rst-�t algorithm

has been proved to be 1:7 [2]. When the input items are sorted in decreasing order of size before

applying the �rst-�t algorithm, it is called the �rst-�t decreasing algorithm, and the bound is

improved to 1:22 : : : [2]. The algorithm for 2D-FBP proposed in Section 3 is basically a variant

of the �rst-�t decreasing algorithm, modi�ed for the two-dimensional case.

2.2. 2D bin-packing algorithms

In two-dimensional bin-packing problems, given a set of items and a set of bins whose shapes

are two-dimensional, you are asked to lay out items inside bins in such a way that the number of

used bins is minimized and the yield (area of items over area of bounding rectangles of layouts)

is maximized. Problems of this type are obviously harder than one-dimensional bin packing,

and thus NP-hard. They are also called two-dimensional cutting stock problems; in this case

bins are called stock sheets, and items (products) are to be cut from the sheets. The shapes

2



of items and the constraints to be considered in placing them inside bins vary according to the

problem. For example, when items and bins are both rectangular, and items must be cut from

bins only by orthogonal guillotine cuts, it is called the guillotine-cutting stock problem. This

problem, for example, can be formulated as set covering in which a set of cutting layouts is

�rst generated and a subset of the layouts are selected by integer programming to cover all the

items to be produced [3].

When the shapes of the items and bins are not constrained, that is, when they may be

irregular, the problem is called the two-dimensional free-form bin packing (2D-FBP) problem,

or simply the nesting problem. Algorithms for the problem generally consist of procedures for

approximating input bins and items, and for placing items into bins. One of the �rst attempts

for 2D-FBP approximated input items as rectangles [4]. A heuristic search proposed by Albano

and Sapuppo handles input items as polygons [5]. Recent studies by Daniels and Milenkovic [6,7]

also handles polygons. Qu and Sanders approximated input items as collections of orthogonal

rectangles [8]. The above approaches do not allow items to contain holes; however, in practical

applications, small items are sometimes required be placed inside holes in large items. Some

recent approaches, in which items and bins are both approximated as bitmaps (grids), satisfy

this requirement. For the placement algorithms, some researchers have tried Genetic Algorithm

(GA)-based approaches using vast amounts of computing power. For example, a nesting system

by Yamauchi and Tezuka [9] and an algorithm by Ratanapan and Dagli [10] are both GA-based.

For related work, see a survey paper by Cheng, C., Feiring, and Cheng, T. [11].

The algorithm described in the next section approximates input items and bins by scanlines,

and handles items as sets of intervals. One typical application of the algorithm is a problem

involving nesting of plate parts for shipbuilding, where the shapes of input items (parts) are

free-form, and the shapes of input bins (material plates) are all rectangular. A good property

of this problem is that the directions of items to be placed in bins can be predetermined, and

the number of such placement directions for each item may be practically restricted to two.

This is because each input item typically contains two or more long straight lines (Fig. 1), and

a good result is obtained when one of these lines is parallel to the x axis of a rectangular bin,

where the x axis is the longer side of the bin. The proposed algorithm, taking advantage of

this property, determines two placement directions for each item, and approximates an item by

scanlines in these directions.

3



Fig. 1. An input item Fig. 2. Scanlines in two placement directions

3. Approximation and Placement Algorithms

3.1. Approximation and representation of items

For each input item Pi, one or two directions are �rst determined. These directions, called

the placement directions, are used to place the item in a rectangular bin so that one of the

directions is parallel to the x axis of the bin. In determining the placement directions, a convex

hull of each item is calculated, and one or two of the longest edges in the hull are selected.

Lines that contain the selected edges are called baselines, and placement directions parallel to

the baselines are determined. Each item is then sliced along the placement direction into strips

of the same width (Fig. 2). The sliced lines are called scanlines, and the width of strips is

called the scan width.

An item Pi, sliced parallel to one of the placement directions, is further represented by a

run-length code. Let the number of scanlines be ri, and let the width of Pi in the current

placement direction be li. Arrays Rij [ ] (j = 1; 2; : : : ; ri) for run-length coding of Pi along the

j-th scanline are constructed as follows: Starting from the leftmost position of Pi, the length

of the �rst portion of the scanline, which lies outside Pi, is set to Rij[1]; this portion is called

a 0-interval, and is denoted as 0 in Fig. 3. The length of the next portion of the scanline,

which lies inside Pi, is set to Rij[2]; this portion is called a 1-interval, and is denoted as 1 in

Fig. 3, and so on. The lengths of 0- and 1-intervals are set to Rij [ ], one by one, ending with a

0-interval even if the length of the last 0-interval is zero. Finally, sij is set so that sij � 2 + 1

is equal to the number of elements in Rij . Arrays Rij are called run-length arrays. When Pi's

f0; 1g-intervals are obtained, for example, as in Fig. 4, the number of scanlines ri is 4, the

width of item li is 100, and arrays Rij [ ] and their sizes sij are set as follows:

4



Fig. 3. Intervals in run-length

coding along a scanline

1

2

3

4

0 100

Fig. 4. An example of f0,1g-intervals

Ri;4[ ] = f15; 15; 70g; si;4 = 1;

Ri;3[ ] = f20; 35; 45g; si;3 = 1;

Ri;2[ ] = f25; 30; 20; 15; 10g; si;2 = 2;

Ri;1[ ] = f0; 100; 0g; si;1 = 1:

Note that, for simplicity, li, ri, Rij , and sij are written without subscripts to specify place-

ment directions, although they are generated for each placement direction (baseline) in actual

implementations.

3.2. Approximation and representation of bins

Input bins may either be free-form (irregular) or rectangular. When a bin is irregularly

shaped, a direction in which the width is greatest is selected as the x axis of the bin. When a

bin is rectangular, one of the longer sides of the bin is selected as the x axis.

Each input binM is sliced parallel to the x axis into strips of the scan width, that is, with the

same distance between scanlines as that used in approximating input items. (A bin is denoted

without subscript, for simplicity, although there may be more than one input bin.) Let the

number of scanlines be b, and the width of the bin be a. Then M is represented as b bitmap

arrays of size a:

B1[1; 2; : : : : : : ; a],

B2[1; 2; : : : : : : ; a],

: : :

Bb[1; 2; : : : : : : ; a].

Each element of the bitmap arrays has a value of zero (0) if the position is not occupied by an

item, and a value of 1 if the position is occupied by an item. When the bin has a free-form

5



Fig. 5. Similarity between two items Fig. 6. Placing items in a bitmap

shape, bitmap arrays of its bounding rectangle are �rst generated, and positions in the array

that lie outside of the bin are set to 1.

3.3. Preprocess

Input items Pi are sorted in decreasing order of area. The area of each item can be easily

estimated by summing up the lengths of its scanlines; that is, the lengths of 1-intervals in Rij[ ]

for j = 1; 2; : : : ; ri. Furthermore, the similarities of items are checked, and the list is modi�ed

so that similar items are placed in consecutive positions in the list. The similarity between two

items can be easily checked by summing up the lengths of 1-intervals that overlap each other

(Fig. 5). Items are re-indexed in increasing numerical order in the list, and the resulting list is

called an items list.

Input bins are also sorted in decreasing order of area, and re-indexed in increasing numerical

order in the list. The resulting list is called a bins list.

3.4. Basic placement algorithm

The basic placement algorithm is as follows:

1. If any items remain in the sorted items list, take the �rst item, and continue placing from

Step 2; otherwise, stop the process.

2. Select the bitmap of the �rst bin in the input bins list.

3. Try to place the item, with various alternative placements, at the bottom left position of

the bitmap, and evaluate the layout.

4. If the item cannot be placed in the bitmap because there is insu�cient space, select that

of the next bin in the list, and go to Step 3.

5. Select the most preferable layout with respect to the cases of placement, and place the

item accordingly.

6. Go to Step 1.

6



Fig. 7. To minimize the rightmost unused area

In Step 3, for each placement direction of the item, two placements are examined, one with

the baseline facing up, and the other with the baseline facing down. If reversal of items is

allowed, two corresponding extra cases may be added. After placement of an item, 1's are

placed in a bitmap as shown in Fig. 6.

Figures 13 and 14 in Appendix show the procedures, place left and place bottom, for placing

an item Pi into a bin M for one case of placement direction in Step 3. They correspond to

two strategies of the basic placement algorithm: leftmost and bottom-most. Thanks to the

run-length coding of items, both procedures can e�ciently �nd empty space in a current bin

into which a given item may �t.

Place left is called for each placement direction in Step 3, and the resulting layouts are

evaluated in Step 5. Place bottom is called in the group placement algorithm introduced in the

next subsection. In Step 5, the most preferable layout among those obtained for all placements

is selected. In this step, an objective function is calculated for each layout, and the layout

with the smallest value is selected. The objective function, which estimates the waste area of

a layout, is de�ned to minimize the rightmost unused area (Fig. 7).

The basic placement algorithm is essentially the same as the �rst-�t decreasing algorithm,

whose one-dimensional version was described in Section 2.1. The worst-case time complexity of

a call for place left or place bottom is O(ab), which is the bitmap (grid) size of the current bin.

The actual time complexity, however, is smaller than that if the current bin contains empty

areas.

3.5. Group placement algorithm

When aligned columns of items as seen in Fig. 8 cannot be obtained by using the basic

placement algorithm introduced in the previous subsection, one can improve the solution by

placing a group of a few items in the list at the same time examining all combinations of

7



placements for each item. The group of items are selected from top of the sorted items list in

such a way that items in the group are similar. Note that, in the preprocess, the items list is

generated that groups of similar items are consecutive in the list.

When a group consists of items pi and pi+1, for example, all combinations of placements are

examined as follows:

place left (i; 1; 1), place left (i+ 1; 1; 1),

place left (i; 1; 2), place left (i+ 1; 1; 1),

place left (i; 2; 1), place left (i+ 1; 1; 1),
...

place left (i; 2; 2), place left (i+ 1; 2; 2).

The improved placement algorithm, called the group placement algorithm, is as follows:

1. If any groups of items remain in the sorted items list, take the �rst group, and continue

placing from Step 2; otherwise, stop the process.

2. Try to place items in the group, with all the combinations of placements, by using the

basic placement algorithm with the leftmost strategy. (Replace the sorted items list in the

description of the basic placement algorithm in the previous subsection with the group of

items.)

3. Try to place items in the group in the same way as in Step 2. This time change the strategy

of the �rst item to bottom-most.

4. Select the most preferable layout with respect to the combination of placements.

5. Go to Step 1.

Note that two layouts are examined for each combination of placements; one by calling

place left for all items in the group (Step 2), and the other by calling place bottom for the

�rst item and calling place left for subsequent items (Step 3). E�ects of the group placement

algorithm and the use of the bottom-most strategy will be shown in Section 4.

The group placement algorithm places groups of items one by one and terminates when all the

groups have been processed; that is, it is a deterministic greedy heuristic. A numerical study

in the next section will show that solutions obtained by the algorithm are su�ciently practical

for instances in a shipbuilding company. If the solutions are not good enough, however, a local

search or a meta-heuristic-based recombination can be applied to them.

The worst-case time complexity of the proposed placement algorithm is the same as that of

the basic placement algorithm, because the number of combinations in each group of items is

constant.

8



The proposed two algorithms, the basic placement and the group placement algorithms, can

be naturally extended to the three-dimensional case, in which items and bins can be sliced into

layers and each layer can be approximated by scanlines.

4. Numerical study

A numerical study was carried out by using real instances obtained from shipbuilding com-

pany. In the company, plate parts for building inner frameworks of ships are grouped by

thickness and speci�cation, and a nesting problem for each group is solved manually. Solving

the nesting problem involves �nding appropriate sizes of material plates (bins) among given

standard sizes. In this numerical study, it was assumed that groups of plates (items) and ap-

propriate sizes of material plates (bins) are given for each instance. CPU times were measured

on an IBM RS/6000 model 7015-R30 with a PowerPC 601 112-MHz CPU.

Figure 8 shows the layout for instance A obtained by the group placement algorithm in

which group sizes are up to four. Figures 9 and 10 show the layouts for the same instance

obtained by the group placement algorithm without using the bottom-most strategy (Step 3

of the group placement algorithm) and by the basic placement algorithm, respectively. The

yield and the CPU time are shown in each �gure. The plate sizes shown in the �gures are of

the bounding rectangles of layouts. Figure 8 shows aligned columns of parts generated by the

group placement algorithm, and Fig. 9 shows that the bottom-most strategy is necessary to

obtain aligned columns for this instance. Figures 11 and 12 show the layouts for instances B

and C obtained by the basic placement algorithm. These �gures show that the basic placement

algorithm has a su�cient performance when aligned columns as seen in Fig. 8 are not needed.

Solutions of su�ciently high quality for practical use were obtained for the tested instances

when appropriate sizes of bins were speci�ed. The obtained layouts have qualities comparable

with those of layouts created by human experts, and the required CPU times are much faster

than those required for manual nesting. Because the implementations of other algorithms are

not known to the author, the results are not compared; however, the proposed algorithm seems

fast enough. The reason for this that it is a deterministic greedy heuristic, whereas meta-

heuristic-based algorithms, such as GA-based nesting systems [9,10], require large numbers of

iterations.

9



Fig. 8. Layout obtained for instance A by

group placement algorithm

Fig. 9. Layout obtained for instance A by

limited group placement algorithm

Fig. 10. Layout obtained for instance A

by basic placement algorithm

Fig. 11. Layout obtained for instance B

by basic placement algorithm

Fig. 12. Layout obtained for instance C

by basic placement algorithm

5. Conclusion

A new approximation algorithm was proposed for the two-dimensional free-form bin packing

(2D-FBP) problem. The algorithm approximates input items and bins by scanlines, and handles

the 2D-FBP problem as a variant of the one-dimensional bin-packing problem. The algorithm

consists of a basic placement algorithm similar to the �rst-�t decreasing algorithm, which is

known to be e�cient for the one-dimensional case, and a group placement algorithm, in which

combinations of placements are greedily examined. In this process, all the possible combinations

of placements for a few consecutive items in the input items list are examined and the best

placement is selected.

A numerical study was carried out, using real instances obtained from a shipbuilding company,

10



and it was shown that the proposed algorithm can �nd layouts of ship parts comparable with

those obtained by human experts, and the CPU times required by the algorithm are much

faster than those required for manual nesting.

For future study, it is planned to improve the algorithm to represent both items and bins as

sets of intervals, and compare its running time complexity with known theoretical results. Note

that it is easy to modify the current program (scan and place1 shown in Appendix) to handle

sets of intervals for both items and bins.

It is also noted that the approach used in the proposed algorithm can also be applied to the

three-dimensional bin-packing problem, which appears, for example, in data preparation for

3D rapid prototyping machines.

Appendix

Figures 13 through 16 are pseudocode of the proposed basic placement algorithm. The

parameter i speci�es an item Pi to be placed, and parameters key and dir specify a placement.

Key may be 1 or 2 if Pi has two baselines, and dir may be 1 or 2 that means the baseline

should be facing up or down. In the pseudocode, for simplicity, key and dir is not referenced,

and a placement with the baseline facing down is assumed.

Place left �nds the leftmost space in the current bin M into which the given item Pi may

�t, and places 1's in the bitmap of M . Place bottom �nds the bottom-most space in M into

which Pi may �t, and places 1's in the bitmap. To �nd empty spaces into which items may �t,

they call scan subroutine, and to place 1's in the bitmap, they call place1 subroutine.

The notations used in �gures are as follows:

Pi An item to be placed,

li Width of item Pi,

ri Number of scanlines in Pi for the selected placement,

Rij[sij � 2 + 1] Run-length array of Pi where j = 1; : : : ; ri,

sij Number of f0,1g-intervals in Rij ,

M Current bin,

a Width of bin M ,

b Number of scanlines in M ,

Bm[a] Bitmap arrays of M , where m = 1; : : : ; b.

11



1: function place left(i; key; dir : integer) (* Place an item Pi in a current bin M *)

2: : boolean; (* with the speci�ed placement. *)

3: var j, x, y, pos : integer

4: next : array [1::b� ri + 1] of integer (* Array of x positions in M . *)

5: begin

6: for j := 1 to b� ri + 1 do next[j] := 1; (* Initialize next[ ]. *)

7: while true do (* Main loop. *)

8: begin

9: x := a; (* Set x a large value (width of M). *)

10: for j := 1 to b� ri + 1 do (* Find the smallest value in next[ ], *)

11: if x > next[j] then (* which is the leftmost position *)

12: begin x := next[j]; y := j; end; (* of empty area. *)

13: if x > a� li + 1 then (* If there is no space where Pi will �t, *)

14: begin place left :=false; goto 22 end; (* return false. *)

15: pos := scan(i; x; y); (* Check if Pi �ts at position (x; y). *)

16: if pos = 0 then (* If Pi �ts at (x; y), *)

17: begin place1(i; x; y); (* place it there, *)

18: place left :=true; (* and return true. *)

19: goto 22 end;

20: next[y] := pos; (* Save the position. *)

21: end;

22: end;

Fig. 13. Pseudocode for placing an item at the leftmost position in a bin

1: function place bottom(i; key; dir : integer) (* Place an item Pi in a current bin M *)

2: : boolean; (* with the speci�ed placement. *)

3: var x, y, pos : integer

4: begin

5: for y := 1 to b� ri + 1 do (* Scan M from the bottom to the top. *)

6: begin

7: x := 1;

8: while true do (* Scan M from the left to the right. *)

9: begin

10: pos := scan(i; x; y); (* Check if Pi �ts at position (x; y). *)

11: if pos = 0 then (* If Pi �ts at (x; y), *)

12: begin place1(i; x; y); (* place it there, *)

13: place bottom :=true; (* and return true. *)

14: goto 19 end;

15: x := pos; (* The next x position. *)

16: end;

17: end;

18: place bottom :=false; (* There is no space where Pi will �t. *)

19: end;

Fig. 14. Pseudocode for placing an item at the bottom-most position in a bin

12



1: function scan(i, x, y : integer) : integer; (* Check if Pi �ts at (x; y) in M . *)

2: var j, k, o, p, pos, sum : integer;

3: begin

4: for j := 1 to ri do (* Scan Pi from the bottom to the top. *)

5: begin

6: pos := x; (* Positions from the left end of M *)

7: sum := 0; (* and Pi, respectively. *)

8: for k := 0 to sij � 1 do (* Scan Pi from the left to the right. *)

9: begin

10: pos := pos+Rij [k � 2 + 1]; (* Move to the right *)

11: sum := sum+Rij [k � 2 + 1]; (* by the length of one 0-interval. *)

12: for o := 1 to Rij [k � 2 + 2] do (* Repeat by the length of one 1-interval. *)

13: begin

14: if not By+j�1[pos] = 0 then (* If Pi does not �t at (x; y), �nd the *)

15: begin (* next position where Pi may �t. *)

16: for p := pos to a� li + 1 do

17: if By+j�1[p] = 0 then goto 18

18: scan := p� sum; (* Return the promising x position *)

19: goto 27 (* to use later in the caller. *)

20: end;

21: pos := pos+ 1; (* Move to the right by one dot. *)

22: end;

23: sum := sum+Rij [k � 2 + 2]; (* Move to the right *)

24: end; (* by the length of one 1-interval. *)

25: end;

26: scan := 0; (* If Pi �ts at (x; y), return zero. *)

27: end;

Fig. 15. Pseudo code for searching for a space into which the item will �t

1: procedure place1(i, x, y : integer) (* Set Pi at (x; y) in M . *)

2: var j, k, o, pos : integer;

3: begin

4: for j := 1 to ri do (* Scan Pi from the bottom to the top. *)

5: begin

6: pos := x; (* A position from the left end of M . *)

7: for k := 0 to sij � 1 do (* Scan Pi from the left to the right. *)

8: begin (* Move to the right *)

9: pos := pos+ Rij [k � 2 + 1]; (* by the length of one 0-interval. *)

10: for o := 1 to Rij [k � 2 + 2] do (* Repeat by the length of one 1-interval. *)

11: begin

12: By+j�1[pos] := 1; (* Place 1 in the bitmap *)

13: pos := pos+ 1; (* Move to the right by one dot. *)

14: end;

15: end;

16: end;

17: end;

Fig. 16. Pseudocode for placing 1's in the bitmap

13



References

[1] M.R. Garey and D.S. Johnson, \Computers and intractability - a guide to the theory of NP-completeness," W.H.

Freeman and Company, New York, NY, 1979.

[2] E.G. Co�man,Jr., M.R. Garey, and D.S. Johnson, \Approximation algorithms for bin packing: a survey," in D.S.

Hochbaum (ed.), Approximation algorithms for NP-hard problems. PWS Publishing Company, pp. 46-93, 1997.

[3] P.Y. Wang, \Two algorithms for constrained two-dimensional cutting stock problems," Operations Research, 31, 3,

pp. 573-586, 1983.

[4] M.J. Haims, \On the optimum two-dimensional allocation problem," Ph.D. Dissertation, Department of Electrical

Engineering, New York University, 1966.

[5] A. Albano and G. Sapuppo, \Optimal allocation of two-dimensional irregular shapes using heuristic search methods,"

IEEE Trans. Systems Man Cybernetics, SMC-10, 5, pp. 242-248, 1980.

[6] K. Daniels and V.J. Milenkovic, \Column-based strip packing using ordered and compliant containment," In Proc.

1st ACM Workshop on Applied Computational Geometry, pp. 33-38, 1996.

[7] V.J. Milenkovic, \Rotational polygon containment and minimum enclosure," In Proc. 14th ACM Symp. Computa-

tional Geometry, pp. 1-8, 1998.

[8] W. Qu and J.L. Sanders, \A nesting algorithm for irregular parts and factors a�ecting trim losses," Int. J. Prod.

Res., 25, 3, pp. 381-397, 1987.

[9] S. Yamauchi and K. Tezuka, \Automatic Nesting System by Use of Genetic Algorithm," J. Soc. of Naval Arch. of

Japan, 178, 5-21, pp. 707-712, 1995. (in Japanese)

[10] K. Ratanapan and C.H. Dagli, \An Object-Based Evolutionary Algorithm: The Nesting Solution," In Proc. 1998

IEEE Conf. Evolutionary Computation, pp. 581-586, 1998.

[11] C.H. Cheng, B.R. Feiring, and T.C.E. Cheng, \The cutting stock problem { a survey," Int. J. Prod. Eno., 26, pp.

291-305, 1994.

14


