
March 28, 1999
RT0300
Computer Science 31 pages

Research Report

Information Retrieval and Ranking on the Web:
 Benchmarking Studies I

Georges DUPRET and Mei KOBAYASHI

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Information Retrieval and Ranking on the Web:

Benchmarking Studies I

Georges E. Dupret, gedupret@hotmail.com

Institute of Policy and Planning Sciences, University of Tsukuba

1-1-1 Tennoudai, Tsukuba-shi, Ibaraki 305 Japan

and

Mei Kobayashi, mei@trl.ibm.co.jp

IBM Research, Tokyo Research Laboratory, IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502 Japan

March 28, 1999

Abstract

The exponential growth of information available on the World Wide Web has been doc-

umented in numerous studies. The studies also indicate that Internet users are turning to

search engines and search services in increasing numbers to �nd the information they are

seeking, but they are not necessarily satis�ed with their performance. Speci�c problems

which have been cited in user surveys include the speed of transmission and retrieval of

information and the format for presenting the results from searches. In this report, we de-

scribe some of the components of a new Web-based search and retrieval system prototype,

which is part of a larger information outlining and visualization system for Web documents.

Our system is based on a modi�ed version of latent semantic indexing, the output from

which is used to rank the relevance of Web pages for an input query. We report the speeds

of computation of the singular values and ranking when Householder bidiagonalization and

Givens rotations are used to compute the singular values of a matrix representation of

document-query space. In particular, our discussions will emphasize mathematical algo-

rithms, e�cient dynamic memory allocation procedures, and relevance ranking; linguistic

techniques will be discussed only as necessary for the sake of completeness.

keywords: information retrieval, Internet, latent semantic indexing, relevance ranking, search

engine, World Wide Web, WWW, W3.

1

1 Introduction

The exponential growth of information available on the World Wide Web has been documented

in numerous studies. Furthermore, these studies indicate that Internet users are turning to

search engines and search services in increasing numbers to �nd the information they are seeking,

but they are not necessarily satis�ed with the performance of current search services. The speed

of transmission and retrieval of information and the format for presenting results from searches

are often cited as factors contributing to user dissatisfaction. In this paper, we describe some of

the components of a new Web-based search and retrieval system prototype (outlined in Figure

1) which is part of a larger information outlining and visualization system for Web documents

proposed in [Kobayashi et al. 1999]. Our system retrieves and ranks a user-speci�ed number of

relevant pages for an input query. We report the speed of computation associated with retrieval

and ranking of some sample sets of Web pages for some test input queries.

This paper is organized as follows. In the remainder of this section, we present the mo-

tivation for and signi�cance of our prototype system. In the second section, we review latent

semantic indexing (LSI), an IR procedure which is based on a mathematical (matrix) model

for document-query space [Deerwester et al. 1988], [Deerwester et al. 1990] before going on to

describe our variation and extension of LSI. In the third section, we discuss dynamic data

structures used in our large, sparse matrix and vector computations for IR. Our data structure

is attractive for LSI for several reasons, such as its ability to accomodate di�erent query input

formats, ease in executing updates (i.e., additions and deletions of documents and query terms),

and speeding-up of searching and ranking of relevant documents. Our programs include a small

library of matrix and vector routines which exploit the structures to reduce computation and

data access and retrieval times. In the fourth section, we discuss our implementation of a

very simple version of LSI. The successful application of LSI to Web-based searches is contin-

gent on the fast and accurate computation of the singular values of a matrix representation of

document-query space. We studied the speed of computation and ranking when Householder

bidiagonalization and Givens rotations are used to compute the singular value decomposition

(i.e., the singular values and their associated singular vectors) of a matrix representation of

document-query space. Results from our experiments are compared with those reported in

[King, Kobayashi 1999], which use (1) inverse iteration and (2) the Lanczos method followed

by Sturm sequencing. Our implementation of the singular value decomposition is much faster

for small matrices, however, for larger matrices, the overhead associated with dynamic data

structures is more than compensated for by the faster speed in computation. Our discussions

emphasize e�cient mathematical algorithms and dynamic data structures so that linguistic

techniques are discussed only as necessary.

1.1 Motivation and Background

One of the keys to becoming the most popular and successful search engine is the development

of new algorithms speci�cally designed for fast retrieval of valuable information on the Web.

\Speed" (i.e., search engine search and retrieval time plus communication delays) has consis-

2

pre−process

Web page/keyword data

to create input matrix

convert input to sparse matrix

with dynamic memory allocation

Householder

bi−diagonalization

& Givens rotations

Lanczos

tri−diagonalization

& Sturm sequencing

Subspace iteration

post−processing

− ranking

− clustering

Figure 1: Overview of a Web document search and retrieval feature in an information outlining

system

3

speed

precision recall

Figure 2: Three-way trade-o� in search engine performance: (1) speed of retrieval, (2) precision,

and (3) recall.

tently been cited as \the most commonly experienced problem with the Web" in the bi-annual

WWW surveys conducted at the Graphics, Visualization, and Usability Center of Georgia Insti-

tute of Technology (GVU) 1 [GVU]. The tremedous growth in the number of Internet users and

publicly accessible Web sites is making the problem with speed even more di�cult to resolve.

Although precise measurements of these numbers are di�cult to make and verify, almost all

studies report an exponential growth in both users and Web sites [Kobayashi, Takeda 1998].

Scientists are faced with a very delicate and di�cult problem in developing Web search en-

gines (illustrated in Figure 2): a three way trade-o� between the speed of information retrieval,

precision and recall becomes increasingly di�cult to balance as the number of documents avail-

able through the Internet and number of users escalate. In the context of IR, precision is de�ned

as the ratio of relevant documents to the number of retrieved documents, i.e.,

precision =
number of relevant documents

number of retrieved documents
;

and recall is de�ned as the proportion of relevant documents that are retrieved, i.e.,

recall =
number of relevant, retrieved documents

total number of relevant documents
:

Speed, precision and recall are not the only factors contributing to user dissatisfaction with

the Internet and Web. For example, Users have also cited dissatisfaction with input formats

for queries, formats for presenting retrieved results, and the quality of retrieved information

[Lawrence, Giles 1998]. A detailed discussion of ratings, with many references on search engines

and their features is given in [Kobayashi, Takeda 1998]. Undoubtedly, the problems we have

cited (and more !) are serving as an impetus for the tremendous amount of research on Web-

based technologies.

1The GVU user survey appears to be one of the more reliable sources on user data. Its reports have been

endorsed by the World Wide Web Consortium (W3C) and INRIA. It has recently come to be supported by a

corporate council.

4

In this report, we describe some solutions to the problem associated with speed of re-

trieval (dynamic data structures for storing and accessing large, sparse matrices and vectors

for computations and an implementation of LSI). The work described in this report and in

[King, Kobayashi 1999] serves as the basis for a Web-based information retrieval component in

a larger Web information outlining system. Information outlining systems retrieve, then format

the retrieved results in a more attractive and meaningful manner, for example, as a graph, or

a color-coded map [Morohashi et al. 1995], [Takeda, Nomiyama 1997]. The visual interface al-

lows users to \gain a better global understanding of the contents of digital libraries and navigate

more easily through : : : information".

2 Latent Semantic Indexing

The study of IR from data bases has such a long history, particularly for text-based documents,

that it is impossible to give a complete review. In this section, we give references to some works

which are closely related to ours. Details of numerical algorithms and comparison of retrieval

benchmarks (when appropriate and fair) will be given in Section 4. A broader review with

selected references to many of the topics covered in this report is [Kobayashi, Takeda 1998].

Although latent semantic indexing (LSI) was originally developed as a document retrieval

method for very large, isolated data bases, with modi�cations and enhancements, it shows

promise for application to Web document databases. The original LSI algorithm automatically

indexes and retrieves documents by mathematically modeling user queries and documents by

vectors, and their associations by matrices [Deerwester et al. 1990]2. The method has since

been enhanced with the addition of di�erential term weighting and iterative retrieval meth-

ods [Dumais 1991]. The inventors of LSI claim that their algorithm overcomes de�ciencies of

earlier retrieval algorithms, such as hierarchical classi�cation analysis (for term and document

clustering) and factor analysis:

\hierarchical clusterings are far too limited to capture the rich semantics of most

document sets. (They) permit no cross classi�cations, and in general have very few

free parameters. ... Empirically, clustering improves the computational e�ciency

of search; whether or not it improves retrieval success is unclear : : :"

{ [Deerwester et al. 1990].

The view is shared by other experts, e.g., [Jardin, van Rijsbergen 1971], [Salton, McGill 1983],

[Voorhees 1995]. Three of the more serious problems associated with factor analytic approaches

are:

� high computational expense,

2The inventors have been issued a patent for the basic algorithm, however Bellcore (their employer at the

time of �ling) is the owner [Deerwester et al. 1988].

5

� di�culty/impossibility of implementation of all but low-dimensional representations, and

� \the need for tedious data gathering techniques, requiring collection of thousands of simi-

larity judgements from humans" [Borko, Bernick 1963], [Ossorio 1966].

According to the inventors of LSI, the three strengths of the algorithm are:

� it involves a high-dimensional representation, which allows one to better represent a wide

range of semantic relations;

� both terms and text objects are explicitly represented in the same space; and

� objects can be retrieved directly from query terms

[Deerwester et al. 1990]. In the remainder of this section, we present the LSI algorithm and dis-

cuss some mathematical techniques, methods to improve computational e�ciency, and memory

requirement issues which arise during its implementation.

2.1 The LSI Algorithm

In LSI, the relationship between query terms and documents in a data base are represented by

an m-by-n matrix A, with ij-th entry aij , i.e.,

A = [aij]:

The entries aij consist of information on whether term i occurs in document j and may also

include weighting information to take into account factors, such as:

� the length of the document;

� the importance (or relevance) of the query term in the document; and

� the frequency of appearance of the query term in the document.

A = [aij] is usually a very large, sparse matrix, because the number of (keyword) terms in any

single document is usually a very small fraction of union of the (keyword) terms in all of the

documents.

2.1.1 Weighting the Query-Document Matrix

In most implementations of LSI, both a local weighting term Lij and global weighting term

G(i) are applied to aij [Letsche, Berry 1997]. Examples of local weighting functions which are

simple and inexpensive to implement in an LSI scheme are: binary weighting, term-frequency

weighting, and log-entropy weighting. Examples of global weighting functions which are simple

and inexpensive to implement in an LSI scheme are: normal, GfIdf, Idf, and entropy weighting

[Dumais 1991]. Also reported in [Dumais 1991] are observations that log-entropy weighting

schemes appear to lead to particularly good results in LSI experiments.

6

When weighting is used in LSI, the local and global weighting functions L(i; j) and G(i) are

applied to each (non-zero) element aij of A to generate a new matrix

~A = [~aij]; (1)

with entries

~aij = L(i; j) �G(i) � aij : (2)

The value of ~aij can be further adjusted to take into account the frequency of occurrence of a

query term by using, for example, a small multiplicative term �1 ; 0 � �1 � 1 for a frequency of

1 to 3, a medium size multiplicative term �2 ; 0 � �1 � �2 � 1 for a frequency of 4 to 6, and a

mutliplicative factor of unity for a frequency of 7 or greater.

2.1.2 The Singular Value Decomposition

The next step of the LSI algorithm, after the creation and weighting of matrix A, is the

computation of the singular value decomposition (SVD)

A = U�V T (3)

(illustrated in Figure 3). To simplify notation, hereafter, we will refer to the document-query

matrix as A, whether or not a weighting procedure, such as the one described above in equations

(1) { (2) has been employed. Proof of the existence of the SVD for any matrix A, is given in

numerous texts, including [Golub, Van Loan 1996] (Chapter 2, section 2.5.2, page 70):

Theorem: (Singular Value Decomposition, existence of): If A is a real, m-by-n matrix, then

there exist orthogonal matrices

U = [u1; u2; : : : ; um] 2 <
m�m ;

and

V = [v1; v2; : : : ; vn] 2 <
n�n ;

such that

UTAV = diag(�1; �2; : : : ; �p) 2 <
m�n ;

where p = minfm;ng, and �1 � �2 � : : : � �p � 0.

The columns of U and V are called the left and right singular vectors, and � is a diagonal

matrix with monotonically decreasing diagonal elements �i, which are known as the singular

7

A U

 Term
 Vectors

V
T

Document
 Vectors

m x n m x m m x n n x n

Figure 3: The singular value decomposition (SVD) of a matrix A.

values of the matrix A, i.e., � is of the form

2
666666666664

�1 0 0 � � � 0

0 �2 0 � � �
...

. . .
. . .

. . .
...

. . .
. . . 0

0 � � � 0 �p

0

0 0

3
777777777775
;

where p � n and the matrix of zeroes on the top RHS is p-by-(n�p), the matrix of zeroes on the

bottom LHS is (m�p)-by-p, and the matrix of zeroes on the bottom RHS is (m�p)-by-(n�p).

The classical paper on the SVD [Golub, Kahan 1969] is written as a mathematical research

paper. Less formal, textbook type presentations for a more general audience are widely available

in texts, including [Coleman, Van Loan 1988], [Golub, Van Loan 1996],

[Jennings, McKeown 1979], [Press et al. 1982] and [Watkins 1991]. Studies of linear algebra

techniques and their applications to IR include [Berry et al. 1995b], [Berry, Fierro 1996], and

[Letsche, Berry 1997]. A comprehensive review and tutorial on using the SVD for IR is

[Berry et al. 1995a], and an interesting review paper on the history of the SVD is [Stewart 1992].

The LSI algorithm reduces the noise in matrix A by contructing a modi�ed matrix Ak, from

the k largest singular values and their corresponding vectors, i.e.,

Ak = Uk�kV
T
k ;

where �k is a diagonal matrix with monotonically decreasing diagonal elements �i. The matrices

Uk and Vk are the matrices whose columns are the left and right singular vectors of the k largest

singular values of A (as shown in Figure 4). Ak is the closest rank-k approximation to A, in

the least squares sense, as shown below in a theorem [Eckart, Young 1939].

8

A U

 Term
 Vectors

V
T

Document
 Vectors

m x n m x m m x n n x n

Figure 4: Construction of Ak, the closest rank-k approximation to A, through modi�cation of

the singular value decomposition of A.

Theorem (Eckhart and Young): Let the singular value decomposition of A be given by equation

(3) with r = rank(A) � p = min(m;n), and de�ne

Ak = Uk�kV
T
k ;

then

min
rank(B)=k

kA�Bk2F = kA�Akk
2
F = �2k+1 + � � �+ �2p :

The proof is available in several texts, including [Golub, Van Loan 1996] and [Watkins 1991].

An important consideration in using the SVD is the sensitivity of singular values of a matrix

A to small perturbation in each of the individual entries aij. Perturbation theory for the SVD

is well documented, see, e.g., [Golub, Van Loan 1996] (Chapter 8, Section 8.6.1). We quote

some the theorems from [Golub, Van Loan 1996] which are relevant for the SVD in LSI.

Theorem: If A 2 <m�n, then for k = 1; 2; : : : ;minfm;ng,

�k(A) = max
dim(S)=dim(T)=k

min
x2S;y2T

yTAx

kxk2kyk2

= max
dim(S)=k

min
x2S

kAxk2
kxk2

:

Note that S � <n and T � <m are subspaces.

Theorem: If A and A+ E are n-by-n symmetric matrices, then

j�k(A+E)� �k(A)j � kEk2 ;

for k = 1; 2; 3; : : : ; n.

9

Corollary: If A and A+ E are in <m�n, with m � n, then

j�k(A+ E)� �k(A)j � �1(E) = kEk2 ;

for k = 1; 2; 3; : : : ; n.

Proof: Apply the theorem just above to "
0 AT

A 0

#

and "
0 (A+E)T

(A+E) 0

#
:

Although the perturbation theorems for the SVD give us upper bounds on the changes in the

singular values, it is not known how the results will ultimately a�ect the quality of results

retrieved from searches using LSI. The quality can only be determined through implementation

studies.

2.1.3 Query Projection and Matching

Processing the query in LSI-based IR takes place in two steps: query projection followed by

matching [Letsche, Berry 1997]. In the query projection step, input queries are mapped to

pseudo-documents in the reduced query-document space by the matrix Uk, then weighted by

the corresponding singular values �i from the reduced rank, singular matrix �k. The process

can be described mathematically as

q �! q̂ = qTUk�
�1
k ;

where q represents the original query vector and q̂ the pseudo-document. In the second step,

similarities between the pseudo-document q̂ and documents in the reduced term document

space V T
k are computed using any one of many similarity measures, such as those discussed in

[Kobayashi, Takeda 1998].

2.2 Implementation of LSI

Successful implementation of LSI depends on the proper use of linear algebra algorithms and

techniques, particularly in the implementation of the SVD. There are many di�erent ways to

compute the SVD of a matrix. Evaluation of an algorithm depends on the speci�cs of the

intended application and the available computing environment. In addition to straightforward

considerations, such as the availability of computing and memory resources, attention should

be given to data structures since they can facilitate or encumber the updating of information

in the document-query matrix. Updating the matrix involves additions and deletions of rows

and columns as well as updating speci�c matrix entries.

10

In Web-based IR, the document-query matrix is often enormous and very sparse, so pre-

processing of the matrix is necessary to speed up computations. Pre-processing may change the

degree of its sparsity and the size of the matrix to be considered for the SVD. For example, if

all of the entries of one column (or row) of the matrix are zero or very, very small, the column

(or row) might be eliminated during pre-processing since the document (or query term) is likely

to have very little correlation with query terms (or documents). Also, if all of the entries of one

column (or row) of a matrix are unity or close to unity, then the query term is a word found in

a typical stoplist or the document is a Web page which is used for keyword spamming.

Stoplists are lists of words which occur very frequently and which give little information,

if any, about the contents of a document. For example, the two most frequently occurring

words, the and of, comprise 10% of words in an average English document; the next four most

common words, and, to, a and in, comprise another 10%; and eighteen words (including the

six above) account for about 30% of the words in an average document. Astute use of stoplists

can reduce the size of a document by 30% to 50%. More detailed discussion on stoplists and

other pre-processing algorithms associated with signature �les can be found in Chapter 5 in

[Korfhage 1997], Chapter 2 of [van Rijsbergen 1979], and [Fox 1992].

Spamming is a new phenomenon which appeared with the introduction of search engines,

automatic indexers, and �lters on the Web [Flynn 1996], [Liberatore 1998]. Its primary in-

tent is to outsmart automated software systems for a variety of purposes. Spamming has

been used as an advertising tool by entrepreneurs, cult recruiters, Web page authors seek-

ing fame, and technically well-versed, but o�-balanced individuals with a warped mental-

ity similar to those of computer virus creators. A famous example of hidden text spam-

ming was the embedding of words in a black background by the Heaven's Gate Cult, a tech-

nique which has come to be known as font color spamming [Liberatore 1998]. (Although

the cult no longer exists, the Heaven's Gate home page is archived at the sunspot.net site:

http://www.sunspot.net/news/special/heavensgatesite) We note that the term spamming has

a broader meaning, related to the receiving of excessive amount of email or information. An

excellent, broad overview of the subject is given in [Cranor, LaMacchia 1998]. In the context we

are considering, the more specialized terms spam-indexing, spam-dexing, or keyword spamming

are more precise.

The degree of sparsity and size of the post-processed (or post-�ltered) matrix may a�ect the

choice of the SVD algorithm. Another consideration in selecting the computational algorithm

are output requirements, such as the number of singular values and singular vectors which must

be computed and their degree of accuracy. Some algorithms require that all of the singular

values be computed. For other algorithms, the computation amounts to constructing (either

implicitly or explicitly) the symmetric, positive de�nite matrix B, where

B = AT � A or B = A �AT :

Since rank (AT �A) = rank (A �AT) , B is set to be the matrix with fewer rows and columns.

The eigenvalues �i of B are the square of the singular values �i of A, that is,

�i = �2i :

11

If only the largest few or only the smallest few eigenvalues (and possibly the corresponding

singular vectors) need to be determined, then it may be more e�cient to use this second type of

algorithm. The recently revised classic text on the symmetric eigenvalue problem [Parlett 1998]

is recommended for readers interested in details of this approach.

In LSI, the number k of singular values and their corresponding singular vectors which

need to be explicitly computed is usually quite small, i.e., at most a few hundred. Optimizing

the choice of k through experiments and analysis of the data, can signi�cantly reduce overall

computational costs. The trade-o� between computational expense, volume of retrieved infor-

mation, and noise can be summarized as follows. When Ak has a large rank (corresponding to

a large k, with signi�cantly high associated computational costs), it increases the amount of

information used during retrieval, however, if the dimension of Ak is equal to or almost as large

as that of A, then most of the noise in A will be passed on to Ak, and the noise will contribute

to poor results in retrieval.

We discuss the nuts and bolts of computing the SVD using several di�erent algorithms

in section 4. In particular, we discuss: Householder reections followed by Givens rotations,

the power method, the power method with Aitken's acceleration, subspace iteration (also called

simultaneous iteration and orthogonal iteration), the basic Lanczos algorithm, Lanczos with full

reorthogonalization, Lanczos with selective orthogonalization with and without modi�cations.

3 Dynamic Data Structures

Dynamic data structures are useful for reducing memory requirements for storage of and com-

putations involving large, sparse matrices and vectors. Some computational and bookkeeping

(i.e. memory) overhead is associated with these methods, so these methods only o�er signi�cant

advantages when very large, sparse matrices are under consideration. That is, these methods

will cost more in memory and computation time than straightforward methods when a matrix

is small or dense. Since document-keyword matrices in IR are usually huge and very sparse,

dynamic data structures can yield signi�cant savings in memory and computational resources.

However, details in implementing these structures must be carefully tuned to optimize results.

In this section, we describe some dynamic data structures, but �rst, we review the most straight-

forward method for allocating memory for matrix operations which can be used for any matrix,

including those which are dense.

3.1 Standard Memory Allocation

When a (possibly dense) matrix is stored in the most straightforward format found in textbooks,

the time required to search and access its entries is of order one, but the memory requirement

is relatively large, i.e., M � N , where M is the number of rows in the matrix, and N is the

number of columns. This mode of storage is not recommended for very large, sparse matrices,

because the memory requirement may be prohibitive, and for most computational algorithms,

12

actual keys

(i (1) , j (1))

 universe of keys
(dimension M x N)

(i(K) , j(K))

.
 .
 .

Figure 5: Hash tables

the associated speed is likely to be extremely slow, because of many unnecessary operations

(e.g., addition, multiplication) with matrix entries which are zero.

3.2 Hashing

Hashing can signi�cantly reduce the memory overhead associated with storage of and operations

with large, sparse matrices. Hashing works as follows: Given an M �N matrix with s non-zero

entries, where s � MN , determine a function, commonly known as a hash function h, which

maps the universe of keys (of dimension MN) to a smaller space of dimension K (see Figure

5). To retrieve the value and indices of a non-zero entry of a matrix, compute its hash index

using the hash function and retrieve the entry from the smaller space K. A very simple and

commonly used hash function for anM �N matrix operates as follows: Given a non-zero entry

in the (i; j) position, compute [(i � N) + j](mod q), where q is an integer greater than 1.

Unless q is extremely large, usually a problem known as collision arises (even when a matrix is

extremely sparse). Collision is said to occur when two or more keys in the original universe of

keys are mapped to the same key in the subspace of dimension K.

A variety of approaches can be used to resolve the collision problem. One well-known

method, known as collision resolution by chaining, uses linked lists. A linked list consists of a

sequence of blocks, where each block stores the value of a unique, non-zero entry of the matrix

along with its indices and a pointer which gives the location of the next block of the list (see

Figure 6):

13

a (i , j)a (0 , 0) a (l , k)

0

0

pointer pointer pointer

i

j

l

k

 . . .

Figure 6: Collision resolution by chaining

(i (1) , j (1))

(i (k) , j (k))

 universe of keys
(m x n) indices in original
 matrix

 actual
 non−zero entries

(i(p) , j (p))

a(k)a(k)a(i(p),j(p)) i(p),j(p)a(k)a(k)a(i(k),j(k)) i(k),j(k)

a(k)a(k)(a(i(1),j(1)) i(1),j(1)

.
a(k)a(k)

..

Figure 7: Storing Non-zero Elements

14

� storage: Each hash index is the origin of a linked list. In the absence of collision, each

linked list has one or zero entries. But if collision occurs (i.e., information about a non-

zero matrix entry is sent to a key already containing some entry) the new entry is added

as an entry to the end of the appropriate linked list (see Figure 7).

� retrieval: To retrieve information about a matrix entry, its hash index is computed, and

all of the entries in the corresponding linked list are examined to determine whether the

entry is present. If the entry does not appear in the list, it is assigned the default value

zero.

� e�ciency: When the dimension of hash indices is K, and the mean number of entries

per linked list is t, the average search time for an entry is of order (1 +K)=t.

A good hash function should distribute the information about the non-zero entries of a matrix

as uniformly as possible in the smaller space of dimension K to minimize the average search

time. The simple example given above, which uses a modulus function, is easy to implement

and leads to fairly good results, in most cases.

3.3 Hashing: Our Implementations

In our data structures, the column index serves as a hash index. We create a vector of length

N (where N is the number of columns), which consists of N pointers to N vectors. The n-th

vector (n = 1; 2; : : : ; N) consists of information on the non-zero entries of the n-th column of

the matrix. Information on non-zero entries in a particular column are stored in consecutive

memory locations and information on the columns are, in turn, stored consecutively with respect

to their index order (see Figure 8).

In LSI, each column corresponds to a document, and each row index to the index of a

keyword so that e�cient storage of the matrix is simple, because we can input the columns

one-by-one with pre-sorted rows indices. In most general applications of hashing, entries are

input one at a time, and linked lists do not necessarily preserve any kind of ordering of the

matrix indices. In our LSI application, search times are expected to be shorter because the lists

are ordered and matrix entries are placed in consecutive memory locations whenever possible.

During the execution of our program, if a function call changes the memory requirements of a

matrix (e.g., for copying operations, multiplication or entry search), then additional memory is

allocated automatically or dynamically to meet the requirements.

More speci�cally, in our implementations, pointers to the addresses of columns are stored in

consecutive blocks of memory. The address of each column points to a so-called column object

composed of: (1) a consecutive block of memory with indices corresponding to the nonzero

entries in the same column of the (very large and sparse LSI) matrix, and (2) a consecutive

memory block with pairs of integers, i.e., the value of the non-zero entries in the column and

the corresponding row index. Columns can be erased easily, added or swapped, because these

operations involve changes to the pointers; the matrix entries, themselves, are not physically

moved within the memory space.

15

 n N

i < j < k < l

i

j

k

l

.:.

a(i , n)

a(j , n)

a(k , n)

.:.

.:.

.:..:.

.:.

.:.

.:.

a(l , n)

Figure 8: Storing Non-zero Elements

Pointers to addresses of rows are also stored in consecutive memory blocks. Each of these

pointers addresses a module. A module contains: (1) an index corresponding to nonzero el-

ements of the row, and (2) a pointer to the value of the nonzero element. Note that values

of the nonzero elements have already been stored when our column access scheme (described

above) was set up. Matrix entries can be easily accessed via rows, however, matrix updating

via rows is more di�cult than via columns. Addition of new columns is a simple task, however,

deletion or swapping of columns requires substantial work, i.e., identifying the a�ected rows

then updating the values. In fact, the cost of updating may well exceed any advantage(s) of

having fast row access to matrix entries. Whether row accessing should be used depends on

the intended application since it will determine which operations will be performed using the

matrices.

We implemented our program so that we can access nonzero matrix entries by column or by

row. Suppose we search for an entry by column: First, columns are accessed through pointers

to their addresses. Next, the indices of nonzero entries in the column are scanned. And, �nally,

the value of the (nonzero) entry is returned. If the index of the desired element does not appear

in the list of nonzero entries, then the value of the entry is zero. Searching by row is carried

out in an analogous manner, but with one addtional step since modules have pointers to entries

rather than the entries themselves.

In addition to reducing memory requirements, sparse matrix representation can facilitate

fast computations with vectors and other matrices (both dense and sparse). Entries which

16

are non-zero are identi�ed and arithmetic operations are carried out only when nonzero values

coincide, i.e., unnecessary additions and multiplications involving zeros are not performed. The

computational savings are slightly o�set by the overhead of checking the indices of nonzero

entries. As the sparsity of the matrix increases, the savings (in both computations and index

checking) increase.

When our dynamic data structures are used to store matrices, vector-matrix multiplication

can be carried out e�ciently in two steps:

(1) determining the locations of non-zero entries aij of column j in the matrix (since the

non-zero matrix entries of each column are stored consecutively in the memory along with

their corresponding indices); and

(2) carrying out the multiplication of vi with each non-zero aij ; j = 1; 2; : : : ; N .

This two-step process minimizes the amount of time spent searching for and accessing the

appropriate non-zero entries in the vector and matrix. Unfortunately, accessing non-zero entries

by rows can be ine�cient. One simple way to overcome this problem is to construct a vector

rowi for each row, which contains information (i.e., pointers) to entries which are non-zero in

that particular row (see Figure 9). The memory overhead associated with the addition of this

feature is:

(1) a vector of length equivalent to the number of rows in the original matrix (each entry of

the vector has a pointer to a new vector) plus

(2) the new vectors with indices of each of the non-zero elements in the row and pointers to

the corresponding entry.

Our dynamic data structure is well-suited for Web-based LSI computations, because it is

easy to add a new column to the matrix. Addition of a column to the document-query matrix

in LSI corresponds to updating the matrix to introduce a new document.

4 Implementation Studies

In this section, we briey review three methods for computing the SVD of a matrix:

� Householder reections followed by Givens rotations,

� Power method/Inverse iteration, and

� Lanczos bidiagonalization followed by Sturm sequencing.

Scientitsts use these methods in many di�erent applications to determine the top few hundred

singular values and their associated singular vectors. Then, we present results from implemen-

tations studies in which the data are matrix representations of document-query space. For our

implementations ing or small to medium-size matrices, we used Householder reections followed

by Givens rotations. Results from experiments using some large, sparse matrices and Lanczos

methods are also given.

17

j

k

a(j , n)

a(k , n)

a(p , n)

i

k

 n N

.: .:

.:..:.

.:..:. .:.

.:.

.:.

k

pp

n

.:.

m

a(i , m)

a(k , m)

a(p , m)

m

Figure 9: Storing Non-zero Elements

4.1 Householder Reections and Givens Rotations

If A is quite small and no longer very sparse after post-processing, a viable approach is to use

Householder reections to bidiagonalize A, i.e., transform A to the form

2
666666666666666666664

�1 �1 0 � � � 0

0 �2 �2
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . �n�1

0 � � � � � � 0 �n

� � � � � � � �
...

. . .
...

� � � � � � � �

3
777777777777777777775

;

where � denotes an entry, which may zero or nonzero. Next, apply sequences of plane rotators

to zero the superdiagonal elements �i. Plane rotators (also called Givens rotators and Givens

transformations) are matrices which all non-diagonal entries are zero and diagonal entries are

one. Exceptions occur on the ith and jth rows and ith and jth columns, in which

(i; i) = (j; j) = cos � ;

(i; j) = �(j; i) = � sin � ;

18

where � denotes the angle of rotation. Written out explicitly, Givens rotators are matrices

which have the form

2
6666666666666666666666666666664

1

1
. . .

1

c � � � �s

1
...

. . .
...

1

s � � � c

1
. . .

1

3
7777777777777777777777777777775

;

where c denotes cos � and s denotes sin �. Note that when the rotator is a 2-by-2 matrix,

it reduces to the standard rotation matrix in a 2-dimensional plane. Details on Givens ro-

tations can be found in standard texts, such as p. 142 in [Watkins 1991] and Chapter 5 of

[Golub, Van Loan 1996].

When Givens rotations are used to zero an entry on the superdiagonal, it usually cre-

ates a new non-zero entry on the subdiagonal. For instance, zeroing the (1,2) entry causes

re-computation of the (2,1) entry. When another Givens rotation is used to zero the new sub-

diagonal (2,1) element, a new nonzero entry is (usually) created in the super-super diagonal

(1,3) entry. This process of using a sequence of Givens rotations to eventually remove each

superdiagonal entry of a bi-diagonal matrix is called \chasing" or \zero chasing" (see Figure

10) [Lawson, Hanson, 1974]. A sequence of Givens rotations or zero chasing must be performed

to zero each (i; i+ 1)th element of the bidiagonal matrix.

Using Householder transformations followed by Givens for computing the SVD will normally

destroy much of the sparsity in the matrix A, require signi�cantly more memory space and be

computationally slower. Furthermore, this approach is far too slow for Web-based IR. We

note that most of the older, over-the-counter software packages for computing the SVD were

designed for the purpose of solving least squares problems, so they use Householder plus Givens

approach, e.g., the book [Press et al. 1982] (software available on a diskette).

4.2 Power Method and Subspace Iteration

If A is no longer extremely large after pre-processing and is very sparse, a reasonable approach

for computing the SVD of A for LSI may be subspace iteration followed by modi�ed Gram-

Schmidt. Subspace iteration is based on the power method { an even simpler algorithm, which

19

a(1,2) as starting entry
 for ‘‘zero chasing"

= zero entry

= nonzero entry

= new nonzero entry

Figure 10: Example of \zero chasing" using Givens rotations on a 6-by-6 bidiagonal matrix.

is used in many scienti�c applications to determine the largest eigenvalue and the associated

eigenvector of a matrix A. In both the power and subspace iteration methods, we consider the

matrix products

B = AT � A and B = A �AT ;

then set the smaller of the matrices to be B. The eigenvalues �i of B are the square of the

singular values �i of A, i.e., �i = �2i . Eigenvalue determination for our problem is not as

di�cult as for general matrices. Since B is symmetric, positive semide�nite, its eigenvalues are

real, and all of its Jordan boxes are 1-by-1. In general eigenvalue �nding programs, a substantial

portion of extra code is devoted to tests for determining the (possible) existence of multiple

roots and the size of associated Jordan boxes. And it is very di�cult to write fail-safe, fast

code which proceeses multiple and very very close roots.

In the power method, we begin with an arbitrary vector v of unit length and hope that

the vector has a non-trivial component in the direction of the eigenvector associated with the

largest eigenvalue. Then we compute the limit of the Rayleigh quotient of the matrix B, de�ned

as

�1 = lim
m!1

vTBm+1v

vTBmv

(details can be found in elementary numerical analysis texts, such as [Conte, de Boor 1980]).

This computation can be reduced to matrix-vector and vector-vector multiplications to avoid

explicit matrix-matrix multiplications. More speci�cally, if B = AT �A, the vTBv is computed

as follows:

vTBv = vT (AT (Av)) :

20

Similarly, multiplication begins from the rightmost vector and matrix when B = A �AT 3. One

way to determine the second largest eigenvalue is to select a starting vector of unit length with

no component in the direction of the eigenvector v1, corresponding to the largest eigenvalue �1.

Subsequent eigenvalues �n, can be determined by using a starting vector with no component

in the directions of the (n� 1) largest eigenvectors v1; v2 : : : ; vn�1, corresponding to the (n�1)

largest eigenvalues �1; �2; : : : ; �n�1. As many eigenvalues as desired can be computed this

way, in theory, however, this \sequential" approach is not used in practice for determining

multiple eigenvalues. The standard practice is to compute the desired number of eigenvalues

simultaneously, using subspace or simultaneous iteration followed by modi�ed Gram-Schmidt

to ensure orthogonality of the recovered eigenvectors (details can be found in Section 5.2 in

[Watkins 1991], Chapter 9 in [Jennings, McKeown 1979] or [Golub, Van Loan 1996]). Use of

the modi�ed, rather than clasical, Gram-Schmidt is recommended since numerical roundo�

often leads to poor results when the classical method is used.

4.3 The Lanczos Algorithm

A good algorithm for computing some (but not all) of the singular values and the associated

singular vectors of a large, sparse matrix A is to apply Lanczos tridiagonalization to the square

matrix B = ATA. Note that B should be computed implicitly to minimize the use of memory.

Since B is symmetric, positive de�nite, Lanczos tridiagonalization will convert it to the form

2
666666666664

�1 �1 0 � � � 0

�1 �2 �2
. . .

...

0 �2
. . .

. . . 0
...

. . .
. . .

. . . �n�1

0 � � � 0 �n�1 �n

3
777777777775

without many of the di�culties associated with the Lanczos method for more general matrices.

A fast, reliable and parallelizable, eigenvalue routine, such as the Sturm sequence method can

be used to compute the eigenvalues of B. Unfortunately, the associated eigenvectors must be

computed sparately. Concise references to the algorithms are given in [Golub, Van Loan 1996],

[Jennings, McKeown 1979], [Parlett 1998], and [Watkins 1991]. Extensive, detailed coverage of

many variations of the Lanczos algorithm, depending on the properties of the input matrix

is a two volume set [Cullum, Willoughby 1985]. The theory is given in the �rst volume and

programming code in an outdated version of FORTRAN in the second volume.

Specialized software packages designed for computing the SVD of very large matrices using

the Lanczos algorithm are: the subroutine SSVDC in LINPACK (further information is given in

the users' guide [Dongarra et al. 1979], and a handbook [Coleman, Van Loan 1988]), LANSO

[LANSO], and LAPACK and ScaLAPACK [Anderson et al. 1995], [Blackford et al. 1997],

3If we just want vTBv, we would be better o� computing the value by taking the dot product Av �Av (which

would reduce the work by one matrix-vector multiplication), however, we would like to know the value of Bv.

21

[Demmel 1997]. SVDPACK and SVDPACKC are two Lanczos software packages which have

been used extensively for IR [Anderson et al. 1995], [Berry et al. 1993]. These packages are

speci�cally designed to minimize numerical operations and use of memory, however, installing

the package and understanding the user input and output interfaces may be di�cult for inex-

perienced users. Details of our implementations of some variations of the Lanczos algorithm

are given in [King, Kobayashi 1999].

4.4 Experimental Results

In our studies, we used matrices constructed from information in the Japanese newspaper Nikkei

(1994) and ran our tests on an IBM RS/6000 machine. Results from our numerical experiments

using Householder bidiagonalization and Givens rotations algorithms (described in Section 2)

and dynamic data structures (described in Section 3) are given in Table 1 and Figure 11.

Table 1: Householder Reections and Givens Rotations

matrix size computation time

350 300

3600 41900

4700 59900

5100 66900

6500 99700

23900 345100

32250 1064900

48600 2236700

84000 2399700

126750 4848500

We subsequently ran experiments using the same data, but with di�erent algorithms to

compute the SVD. Results from studies using Subspace Iteration were better than those of

Householder followed by Givens, but were considerably worse than those using Lanczos methods.

Results from a few di�erent runs using the basic version of the Lanczos algorithm are given

below in Table 2. The CPU times for computing only small numbers of singular values for small

matrices using Lanczos are not competitive with Householder folowed by Givens, because of

the dominance of data loading times and the large overhead associated with Lanczos for data

bookkeeping. Results from follow-up studies using the same data with the more specialized

Lanczos algorithms:

� full reorthogonalization (FRO) [Parlett 1998],

� selective orthogonalization (SO) [Demmel 1997],

� Scott's orthogonalization (SCO) [Parlett 1998], and

22

� selective orthogonalization II (SO2) [Demmel 1997]

are given in Figures 12{14. Details of the methods and our implementations are documented

in in [King, Kobayashi 1999].

Table 2: Lanczos Tridiagonalization and Sturm Sequencing

matrix size no. of eigenvalues computation time

350 5 200

350 10 300

23900 50 28700

23900 75 22800

23900 100 31200

126750 10 12700

126750 50 169900

126750 100 389800

126750 250 305200

4.5 Future Directions for Research

We can use our current SVD package as a springboard for many new directions for research.

The most (seemingly) straightforward would be to extend the program to handle matrices of

even larger order (10 million-by-10 million). Completion of the task requires more than just

straightforward enlargement of memory space and data structures. Fast matrix and vector

access and computation will require new algorithms and (possibly) di�erent data structures.

Implementation of solutions which recognize compromises, such as �nding most of the relevant

documents, rather than all may lead to signi�cant speed-up in IR. If the large-scale SVD com-

putation and IR problem are tackled, development and implementation of e�cient algorithms

for automatically adjusting the data structures and ranking of retrieved results with respect to

the Web page database size will be required for the convenience of general users.

In our work, we noticed that input and output of data might be awkward for inexperienced

users since the volume of data involved in access and retrieval is enormous. Development of

computationally inexpensive and more friendly user interfaces is an important area for inves-

tigation. Specialized tools developed by computer graphics experts for visualization are often

too computationally intense to be useful and are sometimes awkward for non-technical users

to manipulate. Investigation of speech-based user interfaces (both isolated or combined with

visual interfaces) may also lead to fruitful solutions.

Our SVD package was successfully ported to a Web-based IR system which handles both

Japanese and English text data. Investigation of SVD-based ranking and retrieval from mul-

tilingual (more than two languages) databases is important if our tool will be applied to a

world-wide network.

23

05101520253035404550

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

CPU time (in seconds)

m
at

rix
 s

iz
e

(n
o.

 o
f r

ow
s

x
no

. o
f c

ol
um

ns
)

F
ig

ur
e

11
: C

P
U

 ti
m

e
to

 c
om

pu
te

 S
V

D
 u

si
ng

 H
ou

se
ho

ld
er

 r
ef

le
ct

io
ns

 a
nd

 G
iv

en
s

ro
ta

tio
ns

"H
ou

se
ho

ld
er

+
G

iv
en

s"

24

0

20
0

40
0

60
0

80
0

10
00

12
00

10
20

30
40

50

CPU time (in seconds)

nu
m

be
r

of
 s

in
gu

la
r

tr
ip

le
ts

F
ig

ur
e

12
: L

an
cz

os
 A

lg
or

ith
m

 B
en

ch
m

ar
ks

 (
83

42
 x

 1
00

00
 m

at
rix

, 1
77

41
1

no
nz

er
o

en
tr

ie
s)

so sc
o

so
2

fr
o

25

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
20

30
40

50

CPU time (in seconds)

nu
m

be
r

of
 s

in
gu

la
r

tr
ip

le
ts

F
ig

ur
e

13
: L

an
cz

os
 A

lg
or

ith
m

 B
en

ch
m

ar
ks

 (
11

73
 x

 9
91

 m
at

rix
, 3

21
0

no
nz

er
o

en
tr

ie
s)

pm so sc
o

so
2

fr
o

26

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

50
10

0
15

0
20

0

CPU time (in seconds)

nu
m

be
r

of
 s

in
gu

la
r

tr
ip

le
ts

F
ig

ur
e

14
: L

an
cz

os
 A

lg
or

ith
m

 B
en

ch
m

ar
ks

 (
83

42
 x

 1
00

00
 m

at
rix

, 1
77

41
1

no
nz

er
o

en
tr

ie
s)

so
2

fr
o

27

Acknowledgments

This work was conducted while Georges E. Dupret was a graduate student intern at IBM

Research, Tokyo Research Laboratory. The authors acknowledge helpful conversations with

Hikaru Samukawa, Oliver King, Koichi Takeda, and members in the Solution Research Center

of IBM Tokyo Research Laboratory.

References

[Anderson et al. 1995] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz,

J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorenson, D., LA-

PACK Users' Guide, second ed., SIAM, Phildelphia, PA, 1995.

[Berry et al. 1993] Berry, M., et al., \ SVDPACKC: Ver. 1.0, Users' Guide", Technical Report,

Dept. Computer Science, Univ. of Tennessee, No. CS-93-194, Oct. 1993.

[Berry et al. 1995a] Berry, M., Dumais, S., O'Brien, G., \Using linear algebra for intelligent

information retrieval", SIAM Review, 37, 4, Dec. 1995, pp. 573{595.

[Berry et al. 1995b] Berry, M., Dumais, S., Shippy, A., \A case study of latent semantic index-

ing", Technical Report, Dept. Computer Science, Univ. of Tennessee, No. CS-95-271, Jan.

1995.

[Berry, Fierro 1996] Berry, M., Fierro, R., \Low-rank orthogonal decompositions for informa-

tion retrieval applications", Numerical Linear Algebra with Applications, 1, 1, 1996, pp.

1{27.

[Blackford et al. 1997] Blackford, L., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon,

I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,

R., ScaLAPACK Users' Guide, SIAM, Philadelphia, PA, 1997.

[Borko, Bernick 1963] Borko, H., Bernick, M., \Automatic document classi�cation", Journal

of the ACM, 10, 1963, pp. 151{162.

[Coleman, Van Loan 1988] Coleman, T., Van Loan, C., Handbook for Matrix Computations,

SIAM, Philadelphia, PA, 1988.

[Conte, de Boor 1980] Conte, S., de Boor, C., Elementary Numerical Analysis, third ed.,

McGraw-Hill, NY, 1980.

[Cranor, LaMacchia 1998] Cranor, L., LaMacchia, B., \Spam!", Communications of the ACM,

41, 8, Aug. 1998, pp. 74{83.

[Cullum, Willoughby 1985] Cullum, J., Willoughby, R., Lanczos Algorithms for Large Symmet-

ric Eigenvalue Computations, Vol. 1: Theory, Vol. 2: Programs, Birkh�auser, Boston, MA,

1985.

28

[Deerwester et al. 1988] Deerwester, S., Dumais, S., Furnas, G., Harshman, R., Landauer, T.,

Lochbaum, K., Streeter, L., \Computer information retrieval using latent semantic struc-

ture", U.S. Patent, No. 4839853, �led Sept. 15, 1988, issued June 13, 1989.

[Deerwester et al. 1990] Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.,

\Indexing by latent semantic analysis", Journal of the American Society for Information

Science, 41, 6, 1990, pp. 391{407.

[Demmel 1997] Demmel, J., Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[Dongarra et al. 1979] Dongarra, J. et al., LINPACK Users' Guide, SIAM, Philadelphia, PA,

1979.

[Dumais 1991] Dumais, S., \Improving the retrieval of information from external sources",

Behavior Research Methods, Instruments and Computers, 23, 2, 1991, pp. 229{236.

[Eckart, Young 1939] Eckart, C., Young, G., \A principal axis transformation for non-

Hermitian matrices", Bull. Amer. Math. Soc., 45, 1939, pp. 118{121.

[Flynn 1996] Flynn, L., \Desperately seeking surfers; Web programmers try to alter search

engines' results", New York Times, Nov. 11, 1996, C5.

[Fox 1992] Fox, C., \Lexical analysis and stoplists" in Frakes, W., Baeza-Yates, R. (eds.),

Information Retreival, Prentice-Hall, Englewood Cli�s, NJ, 1992, pp. 102{130.

[Golub, Kahan 1969] Golub, G., Kahan, W., \Calculating the singular values and pseudo-

inverse of a matrix", SIAM Journal on Numerical Analysis, Ser. B 2, 1969, pp. 205{224.

[Golub, Van Loan 1996] Golub, G., Van Loan, C., Matrix Computations, third ed., John Hop-

kins Univ. Press, Baltimore, MD, 1996.

[GVU] Graphics, Visualization, and Usability Center, Georgia Institute of Technology, \GVU's

WWW User Surveys": http://www.gvu.gatech.edu/user surveys/

[Jardin, van Rijsbergen 1971] Jardin, N., van Rijsbergen, C., \The use of hierarchic clustering

in information retrieval", Information Storage and Retrieval, 7, 1971, pp. 217{240.

[Jennings, McKeown 1979] Jennings, A., McKeown, J., Matrix Computation, second edition,

John Wiley and Sons, NY, 1979.

[King, Kobayashi 1999] King, O., Kobayashi, M., \Information retrieval and ranking on the

Web: benchmarking studies II", IBM TRL Research Report, RT-0298, 1999.

[Kobayashi et al. 1999] Kobayashi, M., Takeda, K., King, O., Dupret, G., \Multi-perspective

retrieval, ranking and visualization of Web data", submitted to ACM Digital Libraries

'99.

29

[Kobayashi, Takeda 1998] Kobayashi, M., Takeda, K., \Information retrieval on the Web:

mathematical aspects", submitted to ACM Computing Surveys, earlier version of paper

available as: IBM TRL Research Report, RT-0264, 1998.

[Korfhage 1997] Korfhage, R., Information Storage and Retrieval, John Wiley and Sons, NY,

1997.

[LANSO] LANSO, Dept. of Computer Science and the Industrial Liason O�ce, Univ. of Calif.,

Berkeley.

[Lawson, Hanson, 1974] Lawson, C., Hanson, R., Solving Least Squares Problems, Prenctice-

Hall, Englewood Cli�, NJ, 1974 (available again through SIAM, Philadelphia, 1995).

[Lawrence, Giles 1998] Lawrence, S., Giles, C., \Searching the World Wide Web", Science, 280,

April 3, 1998, pp. 98{100.

[Letsche, Berry 1997] Letsche, T., Berry, M., \Large-scale information retrieval with latent

semantic indexing", submitted to Information Sciences { Applications, 1997.

[Liberatore 1998] Liberatore, K., \Getting to the source: is it real or spam, Ma' am ?", Mac-

world Online, Aug. 15, 1998: http://macworld.zdnet.com/features/pov.4.4.html

[Morohashi et al. 1995] Morohashi, M., Takeda, K., Nomiyama, H., Maruyama, H., \Informa-

tion outlining: - �lling the gap between visualization and navigation in digital libraries",

Proc. of Int'l. Symp. on Digital Libraries, Tsukuba, Japan, Aug. 22{25, 1995,the Univer-

sity of Library and Information Science, pp. 151{158.

[Ossorio 1966] Ossorio, P., \Classi�cation space: a multivariate procedure for automatic docu-

ment indexing and retrieval", Multivariate Behavior Research, 1966, pp. 479{524.

[Parlett 1998] Parlett, B., The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, 1998.

[Parlett, Dhillon 1996] Parlett, B., Dhillon, I., \Fernando's solution to Wilkinson's problem:

an application of double factorization", Linear Algebra and its Applications, 267, 1997,

pp. 247{279.

[Parlett, Scott 1979] Parlett, B., Scott, D., \The Lanczos algorithm with selective orthogonal-

ization", Math. Comp., Vol. 33, 1979, pp. 217-238.

[Press et al. 1982] Press, W., Teukolsky, S., Vetterling, W., Flannery, B., Numerical Recipes in

C, 2nd ed., Cambridge Univ. Press, NY, 1982.

[Salton, McGill 1983] Salton, G., McGill, M., Introduction to Modern Information Retrieval,

McGraw-Hill, NY, 1983.

[Stewart 1992] Stewart, G., \On the early history of the singular value decomposition", Techni-

cal Report, Dept. of Computer Science, Univ. of Maryland, College Park, No. TR-92-31,

TR-2855, 1992,

30

anonymous ftp: thales.cs.umd.edu, directory pub/reports

Also in SIAM Review, 35, pp. 551{566.

[Takeda, Nomiyama 1997] Takeda, K., Nomiyama, H., \Information outlining and site outlin-

ing", Proc. of Int'l. Symp. on Research, Development and Practice in Digital Libraries

(Tsukuba, Japan, Nov. 18{21, 1997), the University of Library and Information Science,

pp. 99{106.

[van Rijsbergen 1979] van Rijsbergen, C., Information Retrieval, second ed., Butterworths,

Boston, 1979.

[Voorhees 1995] Voorhees, E., \The cluster hypothesis revisited", Proc. ACM Special Interest

Group on Information Retreival (SIGIR), ACM Press, NY, 1995, pp. 188{196.

[Watkins 1991] Watkins, D, Fundamentals of Matrix Computations, John Wiley and Sons, NY,

1991.

[Wilkinson 1965] Wilkinson, J., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford,

U.K., 1965.

31

