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ABSTRACT Three-dimensional (3D) (geometric) Computer
Aided Design (CAD) has become increasingly popular in
manufacturing industries. It is used to design, for example,
automobile exterior, chassis, or engine blocks. A majority of
these systems represent shapes by using parametric curves and
surfaces, such as Bezier and NURBS (Non-uniform Rational
B-Spline) curves and surfaces, as their main tools to define
shapes.

Despite their popularity, to the author’s knowledge, no data
embedding algorithm designed specifically for CAD systems
has been studied in the past. While algorithms did exist that
embedded data into 3D polygonal meshes, most CAD systems
employed curves and surfaces as their main shape-defining
primitive. Even if polygonal meshes are used in a CAD,
alterations of geometry and topology introduced by these data
embedding algorithms could not be tolerated.

This paper proposes a new data embedding algorithm for
NURBS curves and surfaces, which employed rational linear
reparameterization for encoding messages. The most
significant feature of the algorithms is exact preservation of
geometric shape of its targets, that are, NURBS curves and
NURBS tensor product surfaces. Furthermore, the algorithm
preserves data size of the model.

The paper also suggests additional methods to embed data
in parametric curves and surfaces, classified by shape- and
size-preservation properties of the methods.

Keywords Computer aided design (CAD), parametric curves
and surfaces, Non-Uniform Rational B-spline (NURBS),
geometric modeling, information security, digital watermark.

I. INTRODUCTION

Data embedding, or (digital) watermarking put structures
called watermarks into digital contents (e.g., images) in such a
way that the structures do not interfere with intended use (e.g.,
viewing) of the contents. The watermarks carry information
that can be used to manage the contents, in order, for example,
to add annotations, to detect tampering, or to authenticate
rightful purchasers. While data can be embedded in an analog
media, digital media provided an opportunity for a robust data
embedding with significant data capacity.

Previously, data embedding techniques for “traditional”
digital multimedia content data types, such as text, image,

video, and audio, have been the focus of study [Tanaka90,
Walton95, Zhao95, Bender96, Braudway96, O’Ruanaidh96,
Smith96, Cox97, Hartung97, Mintzer97, Yeung97a,
Yeung97b]. Recently, 3D model gained status as an important
member of multimedia data types, prompted by increasing
popularity of Virtual Reality Modeling Language (VRML)
[ISO97] and imminent standardization of MPEG-4 [ISO98].

We have proposed several methods to embed data in the
most important object type in a 3D model, that is, shapes of
objects, in particular, shapes defined by using 3D polygonal
meshes [Ohbuchi97, Ohbuchi98a, Ohbuchi98b]. In order to
embed data into shape, our algorithms modify geometry (i.e.,
vertex coordinate), topology (connectivity of vertices) or both.

We tried to make the method reasonably robust against
operations 3D models are routinely subjected to, e.g., an affine
transformation or resection of a part of the model. For those
algorithms that modify geometry, we employed affine
transformation invariant quantities, such as a ratio of volumes
of tetrahedrons created from a given triangular mesh. This
made the watermark robust against affine transformation, a
common manipulation for 3D models. Watermarks embedded
by using topological modifications, for example, connectivity
of vertices or connectivity of triangle strips, are not affected
by geometrical transformation. In addition to algorithms that
embeds information into shape, we have also proposed
methods to embed data in attributes associated with each
shape, such as per-vertex texture coordinates [Ohbuchi98b]
and vertex color.

Several works have since been published on data
embedding into shapes of 3D models. Kanai [Kanai98]
developed a watermarking algorithm for 3D models that
embeds data by using multiresolution wavelet decomposition
of the models. The watermark withstands affine
transformation, and is somewhat robust against random noise
added onto vertex coordinates. An example of fragile
watermarking (this term will be explained below) for 3D
model is described in [Yeo99], which is a 3D version of the
approach the authors have proposed previously for 2D image
watermarking. Benedens [Benedens99] described a
watermarking algorithm that employs a set of normal vectors
derived from geometric shape of a 3D model for embedding.

In relation to 3D models, Hartung, et al [Hartung98] have
developed a method to embed data in MPEG-4 facial
animation parameters (FAP) sequences by using a spread-
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spectrum technique. Remarkably, their watermarks could be
extracted from rendered movie sequence of 2D images. To
extract watermarks, they applied their facial feature tracking
system being developed to generate FAP sequences from
video sequences of real human faces.

For Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM), or Computer Aided Engineering
(CAE) applications, however, previous data embedding
algorithms are not suitable most of the time. (In the following
of this paper, we will use the acronym CAD loosely so that it
implies all of the CAD, CAM, and CAE.) There are several
reasons why these algorithms are not appropriate for CAD
applications.

First, a significant proportion of CAD applications employ
parametric curves and surfaces, such as Bezier or Non-
Uniform Rational B-Spline (NURBS) curves and surfaces, not
polygonal models, in order to define shapes. Models in these
applications typically define a shape as a set of topologically
connected surface patches, in which each patch is either a
rectangular or triangular patch of (parametric) curved surface.
In addition, curves may trim these patches so that arbitrary
boundary shapes can be produced. Obviously, previous data
embedding algorithms that targeted shapes defined by
polygonal meshes can not be applied to these parametric
curves and surfaces without significant modifications.

Second, even if a CAD system employed polygonal mesh
to define shapes in a model, changes in the mesh’s vertex
coordinates due to data embedding are not acceptable. For
example, a design of combustion engine cylinder deformed by
data embedding will not be accepted. CAD applications
demands data embedding technique that preserves exact
shapes of models. An alternative, data embedding by using
changes in topology, is also not acceptable to many, if not all,
of CAD applications. Finite element analysis, for example,
does rely on topology among model elements for computation.

In this paper, we propose data embedding methods for
parametric curves and surfaces, the mainstay geometric
elements of CAD applications. The contributions of this paper
can be summarized as follows.

• Present an algorithm that embeds data in NURBS curves
and surfaces by using reparameterization. The algorithm
preserves exact geometric shapes of given curves and
surfaces. In addition, data sizes of the curves and surfaces
remain unchanged after data embedding.

• Outlines various alternative approaches to embed data in
parametric curves and surfaces that are not limited to
NURBS curves and surfaces. These approaches are
classified by two properties, that are, preservation of exact
shapes and preservation of model data sizes.

Being one of the most powerful yet practical methods to
define curves and surfaces, NURBS are used in many CAD
systems, for example, to define an automobile exterior shape.
We expect there are many applications to the shape preserving
data embedding algorithm for NURBS objects (i.e., NURBS
curves and surfaces).

The following of this paper is organized as follows. In the
remaining part of this section, we briefly review the concept of

data embedding in general to develop terminology for later
discussions. In Section II, we will describe an algorithm that
embeds data in NURBS curves and surfaces while maintaining
their exact shapes and data sizes.  In Section III, we will
discuss implementation and experimental results by using this
algorithm. In Section IV, we will suggest possible alternatives
to data embedding in parametric curves and surfaces. We
conclude in Section V with summary and comments on future
work.

A. Data Embedding

We introduce terminology on data embedding in this
section. Following recommendations compiled in
[Pfitzmann96], we call the act of adding watermark (data)
embedding or watermarking, and retrieving the information
encoded in the watermark for perusal extraction. The object in
which the information is embedded is called cover-
<datatype>, the object with watermark is called stego-
<datatype>, and the information embedded is called
embedded-<datatype>. The suffix “<datatype>” varies with
data types, such as image, text, or 3D model. For example, an
embedded-text is embedded in a cover-NURBS surface to
result in a stego-NURBS surface with an embedded-text.

Traditionally, watermarks have been classified by their
visibility (or, more generally, perceptibility) and robustness.

A visible watermark is made intentionally visible to serve
their purposes, for example, to deter a third party from
unauthorized sales of contents. On the other hand, an invisible
watermark is imperceptible without processing by mechanical
means.

A robust watermark should resists both intentional and
unintentional modifications of the watermarked content. A
fragile watermark, on the other hand, must be altered by
intentional (and some unintentional) modifications so that it
could detect tampering of or damage to the content (for
example, [Yeo98]). Here, unintentional modifications are the
kind a content should expect during a course of its intended
use, while intentional modifications are the kind that are
applied with an intention of modifying or destroying the
watermark.

The classification above by perceptibility of watermark
assumed human beings as observers of image, movie, text, or
audio data. In case of watermarking of 3D models that are
intended for viewing (that are, most VRML models), the
observation is indirect since the model must be rendered
before being viewed by human beings. Rendering method
employed (e.g., wire frame vs. Gouraud shaded surface
rendering) could greatly affect perceptibility of watermarks in
models. In case of 3D models that are to be processed further
by 3D CAD systems. Viewing is more indirect so that only a
milled machine part (or whatever) produced by using the 3D
CAD model may actually be visible.

A watermark can also be classified by its use of cover data
for extraction. If an extraction algorithm requires original
cover data as well as the (possibly corrupted) stego-data, the
scheme is called private watermarking. Otherwise, the scheme
is called public watermarking. An embedding scheme by Cox
et al [Cox97] or Hartung [Hartung98] are examples of private
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watermarking.
A watermarking scheme may employ a random sequence

generator to make an embedded message secure from being
read by a third party. For example, in an image watermarking,
positions of pixels to be modified for watermarks can be
scrambled by a pseudo-random sequence generated from a
stego-key (or stego-keys) by using a public-key cryptographic
method [9]. Scrambling of modulation values can also erase
(reduce) statistical signature in order to make watermarking
less detectable. At the same time, scrambling and spreading of
modifications for data embedding could make the watermark
more robust against interference, in a similar manner as
spread-spectrum communication systems. Both public-key
cryptography and shared-key (or private-key) cryptographic
method can be used for this purpose.

Data embedding into CAD models defined by using
parametric curves and surfaces has many potential
applications. Requirements for a data embedding method vary
depending on its intended application. A few of potential
applications are;

• Annotation: Add annotations, such as date of the last
modification and name of the person who modified it to a
CAD model.

• Fingerprinting: A CAD model is “fingerprinted” with
the identities (e.g., digital signatures) of its
owner/designer and subcontractor by using a robust
watermark.  Circulation of unauthorized copies of the
CAD model could be traced to the subcontractor.

Note that data embedding alone is not enough to realize
these applications. For example, the last application requires
an infrastructure, an organization to issue verifiable digital
signatures and a trusted place to escrow original models (i.e.,
models without watermarks). Furthermore, digital signature
and fingerprinting require appropriate laws as well as social
acceptance.

II. Data Embedding in NURBS Curves and Surfaces
by Using Reparameterization

A private data embedding algorithm for NURBS curves and
surfaces that preserves exact geometric shape as well as data
size of models is presented in this section. As a private data
embedding scheme, the algorithm requires both the original
data and watermarked data for extraction (Figure 1).

The fundamental idea behind this shape-preserving
algorithm is that a NURBS curve or surface can be
reparameterized without changing its geometric shape. In the
following part of this section, following a definition of
NURBS curve, the concept of reparameterization and data
embedding method by using rational linear reparameterization
is explained.

A shape-preserving data embedding algorithm is required
by most CAD applications as discussed in the previous
section. For example, if a model is deformed even slightly as a
result of watermarking, a constructive solid geometry
operation using the model will yield an erroneous result.
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Figure.1 Flow of data in our data embedding algorithm for the
NURBS curves and surfaces. It is a private data embedding
scheme, which requires original cover-NURBS models for
extracting embedded messages.

In addition to preserving shape, an algorithm that preserves
data size is preferable most of the time, to contain
communication and storage costs. In case of NURBS curves
and surfaces, data size of models are determined mostly by the
number of control points (including weights) and knots. Note
that, in our paper, we consider a model data size is preserved if
the numbers of control points and knots are unchanged. Their
exact value, hence exact number of bits of a compressed
model an after ideal entropy coding, may change.

In the following, we will explain the algorithm by using
NURBS curve, but the same algorithm can be applied to
NURBS surface created as a tensor product of two NURBS
curves.

A. NURBS curve

This section defines a NURBS curve in order to explain
data embedding algorithm. Detailed explanations of NURBS
and other parametric curves and surfaces can be found in such
books as Farin [Farin97] or Piegl and Tiller [Piegl97]. This
paper follows notations of Piegl and Tiller.

A pth degree NURBS curve )(uC  defines a point that

traces a trajectory in 3D space as the scalar parameter value u
vary within the range ],[ ba .
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where a set of control points }{ iP  forms a control polygon and

}{ iw are the weights. Increased weight iw pulls the line closer

to the control point iP . )(, uN pi  is the ith B-spline basis

function of degree p  (order 1+p ), defined recursively as
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Non periodic and non-uniform knot vector, a nondecreasing
sequence of real numbers, is defined as
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Where buua ii ≤≤≤ +1  and 1,...,0 −= mi . Knots in a

NURBS curve are the points (in parameter space) where
rational polynomial curves are grafted together to form a
multi-segment curve.

B. REPARAMETERIZATION OF NURBS CURVE

A NURBS curve )}(),(),({)( uzuyuxu =C  defined on

],[ bau ∈  is reparameterized by a function )(sfu =  so that

the curve is computed as a function of a new parameter s
instead of the original parameter u . We require the function

)(sg  be increasing ( 0)( >′ xf  for all ],[ dcs ∈ , in which

)(cfa =  and )(dfb = ) so that the same point x  is not

traced more than once. Detailed descriptions of
reparameterization of NURBS curves and surfaces can be
found, for example, in Piegl and Tiller [Piegl97].

Reparameterization of a parametric curve can be performed
by using a large class of scalar function that satisfies the
condition stated above, including polynomial, B-spline, or
even trigonometric functions. Obviously, a NURBS curve
reparameterized by using an arbitrary function is in general
not a NURBS.

If a reparameterization function )(sfu =  is a polynomial

of degree greater than one, the resulting function )(sC  is a

NURBS but it will have a raised degree, requiring larger
numbers of knots and control points. Data size is not preserved
if such reparameterization is employed for data embedding;
description of )(sC  will require more space to store than the

original )(uC  although both represents exactly the same

geometric shape.
A NURBS curve reparameterized by using a polynomial or

a rational polynomial of degree one is a NURBS curve with
the same degree as the original. By manipulating the
reparameterization function, e.g., slope of a linear
reparameterization function, data can be encoded. In this
paper, we chose rational-linear function to reparameterize a
NURBS curve for data embedding. A rational linear function
has higher degrees-of-freedom than a linear function, and thus
allows us more control, for example, to better conform to
given constraints or to embed more information. There are
other possibilities than rational linear function. We will
discuss one such possibility in Section II-F.

Reparameterization by using a rational-linear (alias linear
fractional, bilinear, or Mobius) function has been studied by
Lee and Lucian in [Lee91]. We summarize their result below.
A rational-linear function )(ug  is defined as follows.

δγ
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where )(sf  is the inverse of )(ug .

We let
αγλδγµ −=+= ssuu )()( (6)

To ensure that )(ug  and )(sf  are well-behaved, we assume
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Then, the reparameterized curve )(sC  is obtained as follows:

• The control points }{ iP  remain the same.

• The new knots are the image under )(ug  of the original

knots, )( ii ugs = .

• The new weights }{ iw  (modulo a common nonzero

factor) are obtained by either (8) or (9);
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jis +  and  jiu +  are the new and old knots, respectively.

C. A NURBS curve as an embedding primitive

In this paper, we call a minimum unit of modification for
data embedding an embedding primitive. A rational linear
reparameterization can be applied to a NURBS curve to use it
as an embedding primitive.

Data can be embedded in the rational linear
reparameterization function )(ug  by manipulating

coefficients α , β , γ , and δ . Note, however, that the

degrees-of-freedom of )(ug  is actually three, not four, which

is obvious by rewriting the function as below.
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where γα=1k , γβ=2k and γδ=3k .

We find coefficients 1k , 2k , and 3k  that encode data, e.g.,

numbers. Coefficients 1k , 2k , and 3k  are computed by

specifying three points ),( 11 su , ),( 22 su , ),( 33 su  the function

)(ug  must pass through (Figure 2).  Substituting the three

points in (4) and solving for 1k , 2k , and 3k  yields the

following formula.
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While all three degrees of freedom may be manipulated to
encode data, here, we constrain the two endpoints so that

11 su =  and 33 su = . This way, the range of parameters

remains unchanged after the reparameterization. Such
constraint is often necessary since certain CAD systems
require that the parameterization be on a specified interval,
e.g., [0, 1]. We encode data in a remaining degree-of-freedom,
by setting the offset 22 usD −= . The larger the magnitude of

D , the more the curve of the function )(ugs =  deviates from

the straight line us = .
We have to pay attention to the amount of this offset for

several reasons. First, with a large value of D , changes in the
values of knots and weights can be quite large so that
existence of data embedding can be noticed easily. Second,
there is a notion of so-called “good parameterization”. If
parameterization of a curve is “good”, a set of points on a
curve is geometrically evenly spaced given a set of uniformly
spaced parameter values. A good parameterization may be
preferred, for example, if the curve (surface) is to be
tessellated into straight line-segments (triangles) for display or
numerically controlled milling. With a “bad” parameterization,
unless an adaptive tessellation algorithm is used, tessellated
line segments (triangles) will be uneven in size. Such uneven
tessellation could lead to loss of accuracy of a milled machine
part, for example. If the offset D  is small, parameterizations
of a curve before and after reparameterization should be
similar. That is, a curve with “good” parameterization will
also have a good parameterization after data embedding if the
offset D  is small.

)(ugs =

s

ubu =3au =1 2u

us =

cs =1

ds =3

2s

2s′

3s′

1s′

Figure 2. Determining a rational-linear function for
reparameterization, which has three-degrees-of-freedom.

In our proof of concept implementation, we employed a
simple method to encode a number into the offset D . The

algorithm modified L lower (but not the lowest) order bit of
the mantissa of the offset D  to embed L bit of information.

Extraction starts by comparing the value of knots between a
cover-model (original model) and a stego-model (watermarked
model).  At a predetermined element of the knot vector, the
difference 22 usD −=  is computed, and m bits at a known

position in its mantissa is extracted. In our implementation, we
used the knot in the middle of the sequence whose index

 2/mi =  to compute the offset.

It is preferable to randomly scramble a message as it is
embedded, so that the embedded bits won’t show telltale
pattern in the stego-data. In addition, all the curves and
surfaces in the model should be reparameterized by using a
random sequence so that curves and surface patches modified
for embedding can not be distinguished easily from those
without embedding. We have not included these two features
in our proof-of-concept implementation.

D. A TENSOR-PRODUCT NURBS SURFACE AS AN
EMBEDDING PRIMITIVE

Up to this point, the embedding algorithm is explained by
assuming NURBS curves as its embedding primitive. It is
trivial to extend the method to include a NURBS surface
created as tensor products of two NURBS curves as another
kind of embedding primitive.

A NURBS surface is defined as a tensor product of two
NURBS curves with parameter u and v. A NURBS surface

),( vuS of degree p and q, respectively for the direction u and

v, is a vector-valued bivariate piecewise rational function.
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where }{ , jiP is a 2D array of control points (or control net),

}{ , jiw  are the weights, and the )}({ , uN pi and )}({ , vN qj are the

nonrational B-spline basis as defined by formula (2) that is
generated on the knot vectors  U  and  V .
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where 1++= pnr  and 1++= qms .

As can be seen from (12), reparameterization of a NURBS
surface can be accomplished by applying reparameterization
as described in the previous section to each of the parameters
u and v. If a reparameterization is able to embed m bit in a
NURBS curve, a tensor product NURBS surface is able to
store 2m bit.

E. ORDERING MULTIPLE EMBEDDING PRIMITIVES

A rational linear reparameterization function discussed
above can only embed L bit of information per NURBS curve.
A tensor product surface as an embedding primitive, with its
two parameters, is able to embed 2L bit of information per
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primitive. Such amount of information, however, is
insufficient in most of the applications.

In order to embed a significant amount of information, e.g.,
tens to hundreds of bytes, multiple embedding primitives, that
are, NURBS curves and surfaces, must be ordered.

A CAD model consisting of multiple surface patches and
trim curves contains topology among these objects (Figure 3).
The topology can be used to cerate a one-dimensional ordering
among objects, for example, by creating spanning tree of
objects and traversing the tree in a depth-first order.
Furthermore, objects in a CAD model are often numbered
sequentially so that various properties (e.g., color, material,
etc.) can be associated with them. Such sequential
identification number can also be employed to order curve and
surface objects in CAD models.

A complex surface
Surface patches +

trim curves +
topology

Figure. 3 A surface is consisting of multiple surface patches
and trimming curves connected by topology.

Upon embedding, mapping from bit string in a message to
an ordered set of embedding primitives can be scrambled by
using a pseudo-random number sequence as mentioned before.
Such scrambling could make the message secure from third
parties, and if combined with repeated embedding, could make
the embedding more robust against various disturbances.

F. INCREASING INFORMATION DENSITY

The algorithm described in Section II does not have high
information density, that is, embedded bits per cover data. The
algorithm embeds L bit in each curve and 2L bit in a tensor
product surface. The amounts of embedded data depend on
number of parameters, instead of data size as measured by
number of control points and knots. There are several ways to
increase embedding information density.

If we use all three degrees of freedom in )(ug , three times

as many bits per curve or surface can be embedded. However,
this method may not be applicable if there is a constraint on
knot values, e.g., if the parameter domain is constrained to [a,
b]=[0, 1].

We can use a reparameterization function with higher

degrees-of-freedom in order to increase amount of data
embedded per curve.  Such reparameterization is possible
without changing degree of the NURBS curve if we employ a
linear rational B-spline (LRBS) function, as described in Fuhr
and Kallay [Fuhr92]. By using their method a C1 continuous
rational linear interpolator can be constructed that pass
through an arbitrary number of monotonically increasing data
points. A LRBS is specified by a set of monotonically
increasing data points and a corresponding set of derivatives
(>0) at each data point.

We can use the LRBS reparameterization in the following
way. Based on the message bits to be embedded, we set the
values of new knots is , 1,...,0 −= mi  while observing the

monotonicity requirement.  Then, construct a LRBS function
that interpolates data points ),( ii su , 1,...,0 −= mi . We could

then manipulate m values to embed mL bit of information in a
curve. In case of a surface patch, assuming the number of
knots m and n for parameters u and v, we can embed

nLmL + bit. If we assume that the first and last knot are
excluded from embedding since they are constrained, e.g., to
[a, b]=[0, 1], then we can embed Lm )2( −  bit of information

per curve. Similarly, a surface patch with number of knots m
and n could embed ))2()2(( LnLm −+−  bits assuming the

same constraint.
Regardless of the constraint on the values of knot at both

ends, reparameterization by using a LRBS could bring
significant improvement in data density if compared to
reparameterization by using a simple rational linear function.
Furthermore, the amount of data by using LRBS scales with
data size, that is, the number of knots.

III. Experiments and Results

We have implemented the shape- and size-preserving
data embedding algorithm for NURBS curves described in the
previous section. Current implementation of the algorithm
embedded L bit per NURBS curve by using a rational linear
reparameterization. We have not implemented the method that
employs LRBS. Ordering of multiple NURBS curves and
surfaces are done by assuming that each curve or surface is
explicitly and uniquely numbered. The code is written in C++
using OpenGL graphics API. It is written as a window-system
independent code by using GLUT toolkit and GLUI user-
interface toolkit, so that it runs on both X-window/UNIX
based systems and on Windows NT/95 systems without
modifications.

Figure 4 (a)-(d) show effects of reparameterization by
using a rational linear function with varying offset D. The
Straight line segments are the control polygon, in which
control points are marked by the circles. On the curve, the
domain of parameter [a, b] is uniformly divided into 9 sections
so that ten markers corresponding to 10 uniformly spaced
parameter values (including both the first and last knots with
values a and b.) are marked. Crosses mark the original curve
and the rectangles mark the reparameterized curve.
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(a) Offset D=0.01 (b) Offset D=0.05

(c) Offset D=0.1 (d) Offset D=0.5

Figure 4. Examples of reparameterizatoin of a NURBS curve with offsets (a) D=0.01, (b) D=0.05, (c) D=0.1, and (d) D=0.5.
With a small offets, e.g., D=0.01, parameterizations of the curves before and after rational linear reparameterization are nearly
identical. With the offset D=0.5, parameterization is not “good” so that ten equally spaced parameter values mapped to skewed
points. Crosses mark the original curve and the rectable marks the reparameterized curve, computed at ten equally spaced
parameter values.
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A curve reparameterized by a smaller offset value D=0.01
showed parameterization similar to the original curve.
However, a curve reparameterized with a large offset, e.g.,
D=0.5, clearly showed a very skewed parameterization, which
is not acceptable. In the experiment, we embedded 8 bit per
double precision (64 bit) floating point number representing
D , which uses 52 bit for mantissa. This is a significant and
useful embedded information density.

IV. Alternative Data Embedding Approaches for
Parametric Curves and Surfaces

In this section, we suggest various possible approaches to
embed data in parametric curves and surfaces that include
Bezier, rational Bezier, B-spline and other curves and
surfaces, as well as NURBS curves and surfaces.

We classify data embedding approaches outlined in this
section by using two properties of embedding methods,
preservation of model shape and preservation of model data
size. A shape-preserving method preserves exact shape of an
original model, while a shape-altering method alters it. A size
preserving method retains the original data size after
embedding, while a size-altering method changes it. These
classifications are orthogonal.

Shape-preserving data embedding is desired for most CAD
applications. If shape of a model was changed, for example, an
automobile door might fail to close properly. If the sole
purpose of the model is viewing, however, the shape of the
model need not be preserved exactly.

Size-preserving methods preserves data amount occupied
by parameters that define curves or surfaces, that are, control
points, knot vector elements, and others. By “data size
preserving”, we mean the numbers of these parameters to
remain unchanged. Their exact values, hence exact number of
bits of the model after ideal entropy coding, may change. Size-
preservation property is preferable since increased data size
may burden communication channels and/or storage devices.
A bloated model may make a third party suspicious of
embedded data in the model.

Please note, in the following, that a discussion on a type of
curve can also be applied to a surface generated as tensor
products of curves of that type.

A. SHAPE-PRESERVING, SIZE PRESERVING METHODS

Most CAD applications demand exact preservation of
shape as well as data size. A shape- and size-preserving data
embedding is possible for certain classes of curves that has
enough redundancy, e.g., NURBS curves. One such method
that employs rational linear reparameterization has been
explained in Section II.

B. SHAPE PRESERVING, SIZE ALTERING METHODS

Data embedding that preserves shape, but alters model data
size can be achieved by injecting redundancy into
representations of parametric curves and surfaces. Such
redundancy injection can be achieved by using such
techniques as knots insertion, degree elevation, and
reparameterization that accompanies degree elevation.

• Knots Insertion: For those parametric curves with
multiple spans, e.g., nonrational B-spline curves and
NURBS curves, new knots can be inserted into the curve.
The values of the inserted knot, mere presence of the new
knot, or location of the new knot in the knots vector could
encode information to be embedded.

• Degree Elevation: For nonrational curves, such as Bezier
and B-spline curves, degree elevating a curve introduces
new control points. The increase in degree itself can be
used to encode information; for example, an increase in
degree by 2 could encode a number 2. While the location
of the new control points can not be controlled, their mere
presence/absence could also encode information.

• Reparameterization Accompanying Degree Elevation:
Reparameterization by using a polynomial or rational
polynomial of degree greater one can be applied to
rational curves, such as rational Bezier and NURBS
curves. If applied, such reparameterization will raise
degree of the curve, introducing new control points as
well as knots. Value of reparameterized knots can encode
information, in a similar manner as the algorithm
explained in Section II. A significant amount of
information can be embedded into the curve if a function
that interpolates through multiple data points such as
LRBS is used to reparameterize, as suggested in
Section II-F.

While these methods do preserve original geometry of the
curve, increase in data size due to embedding can be
significant.

C. SHAPE-ALTERING, SIZE-PRESERVING METHODS

If exact shape preservation is not an issue, additional
approaches exist in order to embed information into
parametric curves and surfaces.

• Control Points and/or Weights Modulation: Control
points for a curve is a one-dimensional ordered set of 3D
or 4D points. (If a set of weights is considered as an
integral part of a set of control points, using homogeneous
coordinate, each control point is a 4D point.)  Similarly,
control points for a tensor product surface is a regular
two-dimensional (2D) array of 3D or 4D points. These
values can be modulated as if they are simply ordered sets
of floating point values.

If geometric transformation is expected, transformation
invariant quantities can be employed to encode
information, as demonstrated in [Ohbhchi97,
Ohbuchi98a]. An example of a transformation invariant
quantity is a ratio of volumes of two tetrahedrons, which
is affine transformation invariant. Modulations of control
point coordinates or weights do change geometric shape
of the model being embedding with information.

If control points and weights are modulated together,
shape deformation can be reduced. Modulation of control
points is applicable to a large class of parametric curves
and surfaces, including Bezier, rational Bezier, B-spline,
and NURBS curves and surfaces.
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• Knot Vector Modulation: Values of knots in the current
knot vector, which is an ordered 1D sequence of scalar
values, can be modified to encode information. This
method is applicable to parametric curves with knots, e.g.,
B-spline and NURBS curves and surfaces.

Note that the modulation of values, such as control point
coordinates, weights, and knot values may be performed either
in their original domain or in a transformed domain. For
example, an embedding method may compute a 2D discrete
cosine transform (DCT) of 2D array of control points of a
surface, modulate DCT coefficients to embed information, and
transform the coefficients back into the original domain by
using an inverse of the DCT. This embedding method may be
integrated, for example, with a shape altering (i.e., lossy)
compression algorithm for curved surfaces that employed
DCT [Masuda98]. Note that the kind of transformation is not
limited to DCT. Walsh-Hadamard transformation or wavelet
transformations by using many different kinds of
analysis/synthesis function pairs, for example, are viable
candidates.

V. SUMMARY AND FUTURE WORK

This paper presented an algorithm that embeds data in
rational parametric curves and surfaces, in particular, NURBS
curves and surfaces, by using reparameterization. We
employed rational linear reparameterization, since it enables
data embedding that preserves exact geometric shape of the
NURBS curves and surfaces as well data-size.

This paper also suggested alternative approaches to
embed data in parametric curves and surfaces that are not
limited to NURBS. These approaches are classified by using
their shape preservation and size preservation properties.
Knots insertion and degree elevation are among possible
alternative data embedding methods that preserve shape but
alter data size.

In the future, we would like to incorporate linear rational B-
spline reparameterization into our implementation so that the
data density is improved. We also would like to implement
alternative data embedding approaches suggested in
Section IV.
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