
October 29, 1999
RT0321
Computer Science 17 pages

Research Report

Local Search Algorithms for the Bin Packing Problem and Their
Relationships to Various Construction Heuristics

T. Osogami, H. Okano

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Local Search Algorithms for the Bin Packing Prob-

lem and Their Relationships to Various Construction

Heuristics
Takayuki Osogami� Hiroyuki Okanoy

IBM Japan, Tokyo Research Laboratoryz

Abstract. The tradeo� between the speed and quality of the solutions obtained by various construction
and local search algorithms for the elementary bin packing problem (BPP) are analyzed to obtain useful
information for designing algorithms for real-world problems that can be modeled as the BPP. On the
basis of intensive computational experiments, we observe that the framework of a solution (i.e., a part of a
solution consisting of large items or items with tight constraints) should be constructed in the early stages
of a local search. New local search algorithms are proposed as an existential support for the observation.
Keywords: elementary bin packing problem, bin packing problem with conicts, local search, construc-
tion heuristic, real-world problem, prioritized improvement

1 Introduction

Variants of the bin packing problem (BPP) can be seen various types of real-world problems, such as ve-

hicle routing problems (VRPs) in logistics, and 2D or 3D packing problems in manufacturing. Typically,

they are NP-hard combinatorial optimization problems, and it is diÆcult to obtain good greedy-type

(construction) heuristics; instead, dedicated construction heuristics and local search algorithms are often

used. In contrast, simple construction heuristics are known to be good for the one-dimensional BPP. The

odds are that by using some information on the BPP about why some heuristics perform well, we can

design good heuristics for real-world BPPs. In this paper, through intensive computational experiments,

we �rst present such useful information on the BPP, and then verify its applicability to a real-world

BPP. On the basis of the experiments, we propose new construction and local search algorithms for the

BPP, which perform better than any previously known heuristics for the BPP.

1.1 The Bin Packing Problem

The BPP is known as an NP-hard combinatorial optimization problem, and is de�ned as follows (Garey

and Johnson (1979)): given a �nite set U = f u1, u2, ... , ung of items and a rational size s(u) 2 [0,1]

for each item u 2 U , �nd a partition of U into disjoint subsets U1, U2, . . . , Uk such that the sum of

the item sizes in each Ui is no more than 1 and k is as small as possible. Without loss of generality, the

BPP is considered to be the problem of packing a �nite set of items of integer sizes s(ui) 2 [0, C] into

bins of capacity C to minimize the number of bins.

Many of the previous studies of the BPP have concerned the development of construction heuristics

and theoretical analyses of their performances (Co�man et al. (1997)). Well-known construction heuris-

tics include �rst �t (FF) and �rst �t decreasing (FFD). FF is an online algorithm that places each item

�E-mail: osogami@jp.ibm.com
yE-mail: okanoh@jp.ibm.com
z1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan

1

in a given order into the �rst (lowest indexed) bin into which it will �t. FFD is an o�ine algorithm that

places each item in decreasing order of size into the �rst bin into which it will �t. Usually the asymptotic

performance ratio R1A is used for analysis of the worst-case performance of the approximation algorithms

for the BPP (Co�man et al. (1997)). Given a list of items L and an algorithm A, and letting A(L)

be the number of bins when A is applied to L and OPT (L) be the optimal number of bins for L, the

asymptotic performance ratio R1A is de�ned as follows:

R1A � inffr � 1 : for some N > 0; RA(L) � r for all L with OPT (L) � Ng;

where RA(L) � A(L)=OPT (L). The asymptotic performance ratio of FF and that of FFD are known

to be R1FF = 17
10

and R1FFD = 11
9
(Johnson (1973)), and furthermore a polynomial-time o�ine algorithm

with R1A = 1 (Karmarker and Karp (1982)) is known.

1.2 Real-World BPPs

As mentioned above, approximation algorithms with good performances for the BPP have been proposed.

However, our goal is to develop eÆcient approximation algorithms for real-world problems that can be

modeled as the BPP. As one approach, we are studying a method based on heuristics for the BPP. In

the following, real-world problems that can be modeled as the BPP are called real-world BPPs, and the

original BPP is called the elementary BPP. Falkenauer (1994) takes a similar approach and categorizes

the elementary BPP as a grouping problem. He proposed a genetic algorithm (GA) that can be applied

to general grouping problems, and applied it to the elementary BPP.

Two examples of real-world BPPs include VRPs and 2D or 3D packing problems. In a certain

kind of VRP, minimization of the number of trucks is required when assigning delivery points to trucks

and generating routes that start at a depot, visit delivery points, and return to the original depot. If

the number of trucks is the same, solutions with shorter total route lengths are preferred. This type

of problem can be modeled as the BPP by considering trucks and visiting points as bins and items,

respectively. In this case, the objective function includes the total length of routes as well as the number

of trucks, and it is necessary to satisfy various constraints, such as combinations of items that can be

loaded onto the same truck. The routes of trucks can be obtained by an approximation algorithm for

the traveling salesman problem (TSP).

In certain kinds of 2D or 3D packing problems (Okano (1998), Osogami (1998)), various real-world

constraints, including the directions of the items and the clearances between items, have to be considered.

In this case, it is sometimes practical to determine groups of items that should be placed in the same

bins before obtaining an optimal packing pattern for each bin, which requires a huge computation time.

1.3 Local Search Algorithms for the BPP

Because it is typically diÆcult to develop good construction heuristics for these real-world BPPs, unlike

the elementary BPP, it is practical to improve constructed solutions by using local search algorithms.

Previous local search algorithms for the elementary BPP include the simulated annealing (SA) algorithm

by K�ampke (1988), the genetic algorithm (GA) by Falkenauer (1994), and the GA by Reeves (1996).

K�ampke's method �xes the number of bins to the target and balances the contents of bins by moving

items from one bin to another or by swapping items in di�erent bins. Falkenauer's GA performs genetic

operations on the sequences of bins in which items are packed and performs further local search algorithm

in crossovers and mutations. Reeves's GA performs genetic operations on the sequences of items and

obtains a packing pattern from the sequence of items by means of construction heuristics, including FF

and FFD.

Feasibility checks and calculations of the objective function in real-world BPPs are often more complex

than those in the elementary BPP. For example, in the abovementioned VRP, the lengths of trucks' routes

are obtained by an approximation algorithm for the TSP. Although eÆcient approximation algorithms,

which experimentally run in O(N logN) time on uniform data sets, where N is the number of the cities,

are known for the TSP with L2 metric (Bentley (1992)), the time complexity cannot be ignored when

they are used to evaluate neighborhoods iteratively in local search algorithms. Therefore, the tradeo�

between the speed and quality of the solutions must be considered in local search algorithms for real-

world BPPs. Note that studies on the same tradeo� focusing on a single local search, such as 2-opting

for the TSP (Okano et al. (1999)), aim to select the best construction heuristic. On the other hand, this

paper aims to obtain useful information for designing both construction and local search algorithms for

real-world BPPs through simple experiments on the elementary BPP.

1.4 Framework of This Paper

In this paper, comparing various combinations of construction and local search algorithms, we �rst

identify the conditions for local search algorithms to �nd good solutions in the elementary BPP, then

show combinations of construction and local search algorithms that have such conditions and also have

a good tradeo� between the speed and quality of the solutions. Various algorithms are also applied to a

real-world BPP to examine whether the conditions for the elementary BPP hold true also in real-world

BPPs. We use the BPP with conicts (Jansen (1998)) as an example of real-world BPPs, where a graph

G = (V;E) shows constraints and adjacent items (i; j) 2 E have to be assigned to di�erent bins.

Section 2 illustrates various construction and local search algorithms for the elementary BPP that will

be used in the computational experiments in Section 3, where the qualities of solutions and the numbers

of searches performed by various local search algorithms are compared. We also discuss the conditions

for the construction and local search algorithms to reach good solutions and give local search algorithms

that �nd good solutions and have a good tradeo� between the speed and quality of the solutions. In

Section 4, the performances of various local search algorithms are compared for the BPP with conicts.

Section 5 concludes the paper.

2 Local Search Algorithms for the BPP

This section illustrates various construction and local search algorithms that are used in the later com-

putational experiments. Local search is a type of algorithm that starts at an initial solution constructed

by a certain construction heuristic, iteratively moves to a better solution among the de�ned neighbor-

hood solutions, and obtains a locally optimal solution. A local search algorithm can be de�ned by the

following: a solution space, a neighborhood, an objective function, and a search method. These will be

de�ned in Subsections 2.1{2.5. The complexity of optimality checking is mentioned in Subsection 2.6,

and various construction heuristics are given in Subsection 2.7.

2.1 Solution Space

A solution space can be de�ned to be the set of feasible solutions or the set of all solutions. Falkenauer

(1994) and Reeves (1996) adopted the former and K�ampke (1988) the latter. If the solution space of the

set of feasible solutions is so small that it is diÆcult to de�ne an appropriate neighborhood, it is better

to include some infeasible solutions in the solution space. In this case, a certain method is required to

guarantee that the �nal solution will be feasible. In this paper, the solution space is de�ned to be the

set of feasible solutions.

2.2 Objective Function

It is natural to de�ne the objective function for the BPP to be the number of bins required to pack

all items, but it is diÆcult to de�ne an appropriate neighborhood with this objective function. That

is, in most cases, there is no neighborhood operation that reduces the number of bins, and local search

algorithms do not work well. Therefore, K�ampke's objective function is to balance the contents of bins,

�xing the number of bins to the target. This method is good when the solution space includes infeasible

solutions, but it does not work when the solution space is the set of feasible solutions. Accordingly,

Falkenauer and Delchambre (1992) have proposed the following objective function to be maximized:

f =

PN

i=1F
k
i

N
; (1)

where N is the number of bins used and Fi is the total size of items in bin i. When k = 1, the right

hand side of the equation is the total size of all items, which is constant, divided by N , so the objective

function is equivalent to the minimization of the number of bins. When k > 1, the greater the variance

of the total size of the items in each bin, the larger the value of the function f , if the number of bins

used is constant. Nearly �lled bins and nearly empty bins become more preferred as k increases, where

nearly �lled and nearly empty mean that the level of occupancy of a bin is nearly 100% and nearly 0%,

respectively. When k > 2, a solution with a larger number of bins can be better than a solution with a

smaller number of bins (Falkenauer (1998b)). For this reason, Falkenauer concluded that k = 2 is the

best. Reeves also used this objective function with k = 2.

A drawback of Equation (1) is that it does not guarantee that a solution with a smaller number of

bins is always better than a solution with a larger number of bins when the solution contains more than

two bins that are not occupied to half of their capacity (Falkenauer (1998b)). In this paper, the objective

function is generalized to:

f =

PN

i=1F
k
i

N�
: (2)

Clearly, when � = 1, Equation (2) is equivalent to Equation (1). In this paper, a suÆciently large �

is selected so that solutions with larger numbers of bins always produce smaller values of the objective

function. We use k = 2, since di�erent values of k did not a�ect the performances of algorithms

throughout the experiments if k > 1.

2.3 Neighborhood

K�ampke's neighborhood operation randomly selects two bins, including the most occupied bin, selects

one item from each bin at random, and exchanges the two selected items. If the oor of the item at the

top of a bin is located higher than the ceiling of the item at the top of another bin, the former item is

moved into the latter bin to make the two bins balanced. On the other hand, the local search that is

applied in the crossovers and the mutations of Falkenauer's GA exchanges items that are not packed and

those in a certain bin. For example, the mutation randomly selects a few bins, unpacks all items in the

selected bins, and exchanges up to three items that are unpacked and up to two items in a certain bin.

The exchanges of items are repeated until no exchange of items can improve the objective function, and

�nally the items that are not packed are placed by FFD.

In this paper, p-q-exchange, which is a modi�cation of K�ampke's neighborhood operation, is used. In

a p-q-exchange, up to p items and up to q items are exchanged between two arbitrary bins. Racer (1994)

and Yagiura et al. (1997) have used 1-1-exchange for the generalized assignment problem, and Chiang

(1998) has used p-p-exchange for the assembly line balancing problem.

2.4 Search Method

A search method determines which of the better solutions in the neighborhood a local search algorithm

should move to. The two most frequently used search methods are the best improvement (BI) and the

�rst improvement (FI).

The BI evaluates all the solutions in the neighborhood and moves to the best one. The local search

algorithms performed in the crossovers and the mutations in Falkenauer's GA uses the BI. On the other

hand, the FI moves to the �rst solution that is found to be better than the current solution. The order

of the search has to be de�ned in the FI, and a random order is often used, as in K�ampke's SA.

In this paper, the BI and some variants of the FI are compared. The BI applies the p-q-exchange that

best improves the objective function among all the combinations of items, while the FI with random

searching order, which is called simply the FI in the following, applies the p-q-exchange between the

two bins �rst found to be improvable that best improves the objective function. In Subsection 2.5, we

propose another search method.

2.5 A New Search Method

We propose a search method that searches in a prede�ned searching order and moves to the �rst solution

that is found to be better than the current solution. This method is called the prioritized improvement

(PI) in the following. In particular, two kinds of PIs are considered for the elementary BPP. One

prioritized improvementmethod (PI1) searches bins with smaller total sizes of items earlier. The intuitive

concept behind the PI1 is that bins with smaller total sizes of items should easily become empty and

they should be more able to accept other items. In this sense, the PI1 performs similarly to the BI. The

other prioritized improvement (PI2) searches bins with greater average sizes of items earlier. Because

items with greater sizes are diÆcult to pack, the PI2 �rst tries to make nearly �lled bins using items

with greater sizes; then, it improves other bins composed of items with smaller sizes. Such nearly �lled

bins should be relatively more diÆcult to improve than others; that is, the PI2 tries to make nearly �lled

bins using items that are diÆcult to pack in the early stages of the algorithm.

To be more precise, a PI sorts bins in a prioritized order and searches as follows:

Search order of a PI

Step. 1 for n = 3 to N � 2� 1 do (N : number of bins)

Step. 2 for i = maxfn�N; 1g to dn=2� 1e do

Step. 3 j = n� i

Step. 4 search all the neighborhoods between bins i and j.

2.6 Complexity of Optimality Checking

The size of the neighborhood a�ects the complexity of the search, which is the complexity of determining

whether the current solution is locally optimal. The complexity of the optimality checking of the local

search algorithm de�ned above is O(n2) with 1-1-exchange, O(n
3

N
) with 1-2-exchange, O(n

4

N2) with 2-2-

exchange, and O(np+q

Np+q�2) with p-q-exchange, where n is the number of items and N is the number of

bins used in the current solution.

However, local search algorithms with the BI need not search all the combinations of bins once the

neighborhood is searched. A neighborhood operation is considered to be an operation between two bins,

and the neighborhood operations among the other bins are independent of the neighborhood operations

between the two. Accordingly, the neighborhood operations between the bins that are independent of

the bins between which the previous neighborhood operations are performed need not be searched again,

since they never contain any improving neighborhood. Consequently, the BI's complexity for searching

a neighborhood is O(n
2

N
) with 1-1-exchange, O(n

3

N2) with 1-2-exchange, O(n
4

N3) with 2-2-exchange, and

O(np+q

Np+q�1) with p-q-exchange. Similarly, in the FI and PIs, it is not necessary to re-search the neigh-

borhood between the bins that had been searched previously if these bins are independent of the bins

between which the previous neighborhood operations were performed.

2.7 Construction Heuristics

Next �t (NF), as well as FF and FFD, is used as a construction heuristic for initial solutions. In NF,

the last used bin is considered to be open and the others are closed. Each item is placed in a given order

into the open bin if possible; otherwise, the open bin is closed and the item is placed into a new open

bin.

Furthermore, two variants of those three construction heuristics are considered. One variant restricts

the number of items in each bin, which is called CkCH, where k is the upper bound of the number of

items in each bin and CH is the name of the original construction heuristic. For example, C3FFD places

items in the same way as FFD, except that it does not place items into a bin that already contains three

items. When k = 1, CkCH is independent of the original construction heuristic CH, since it produces

the solution in which all bins contain exactly one item, so C1CH is called C1 in the following. The

other type of modi�cation reduces the capacity of all bins, which is called RdCH, where d is the reduced

capacity and CH is the name of the original construction heuristic. For example, R5FFD places items in

the same way as FFD, except that the capacity of bins is reduced by 5 (we will use 150 for the capacity

of bins in experiments). Clearly, CkCH and RdCH are equivalent to the original construction heuristic

CH when k is large enough or d = 0, respectively.

3 Application of Local Search Algorithms to the Elementary

BPP

In this section, the local search algorithms described in Section 2 are applied to the elementary BPP,

and the qualities of the obtained solutions and the numbers of the performed searches are compared.

The settings of the experiments are illustrated in Subsection 3.1. In Subsection 3.2, the results of the

various computational experiments are shown and the conditions for local search algorithms to �nd good

solutions are discussed.

3.1 Settings of Experiments

The computational experiments in this section use instances called the uniform class, which are a part

of the test instances of OR-Libraryy. OR-Library has other instances called the triplet class, but there

yhttp://mscmga.ms.ic.ac.uk/info.html

is little di�erence among the solutions obtained by various local search algorithms for this class, and

therefore the uniform class is used here. The instances of the uniform class consist of items of integer

sizes that are uniformly distributed between 20 and 100 and bins of capacity 150. There are four classes,

corresponding to the numbers of items, which are 120, 250, 500, and 1000. Each class has 20 instances,

and the average results for these 20 instances are used in the following discussion. Because these instances

are claimed to be easy (Gent (1998, 1999), Falkenauer (1998a)), we use other two classes that have 5000

or 10000 items, which were generated in the same way as the uniform class of the OR-Library. These

two classes also have 20 instances each. In the following, instances with 120, 250, 500, 1000, 5000, and

10000 items are called u120, u250, u500, u1000, u5000, and u1000, respectively.

In this section, the quality of the solution is represented by the di�erence of the number of bins from

the number of bins in the globally optimal solution or from the lower bound of the number of bins. For

the instances from OR-Library, the di�erence of the number of bins from that in the globally optimal

solution is used as the quality index of solutions, since the globally optimal solution has been obtained

by Carvalho (1999). For u5000 and u10000, the di�erence between the number of bins and the lower

bound of the number of bins is used. The lower bound of the number of bins NLB is obtained as follows:

NLB =

�Pn

i=1 si
C

�
; (3)

where n is the number of items, si is the size of item i, and C is the capacity of a bin.

In the following discussion, the number of searches, which is the number of evaluations needed to

check whether a neighborhood operation improves the objective function, is used as the speed index

instead of the CPU time. This is because the CPU times for the evaluation of the objective function and

the feasibility check vary widely among real-world BPPs, while the number of searches depends mainly

on the characteristics of the local search algorithms. The CPU time is also a�ected by the performance

of computers and their implementations, which are irrelevant to the essence of the algorithm.

Note that �lled bins, that is, bins occupied to their full capacity, are not searched in our implementa-

tions because, once �lled, they do not contribute to any improvement of the objective function. Most of

the bins become �lled as local search algorithms proceed, so the number of searches is greatly decreased

by not searching them.

3.2 Computational Experiments

3.2.1 A Condition for Local Search Algorithms to Obtain Good Solutions

First of all, only well-known construction heuristics, FFD, FF, and NF, are used, and the performances

of various local search algorithms are compared. Figure 1 shows (a) the qualities of solutions obtained by

various local search algorithms, and (b) the numbers of searches performed in the local search algorithms

to reach locally optimal solutions. Segments are drawn between the results of construction heuristics and

the results after application of the local search algorithms. Figure 1 shows the results only for u1000,

but the characteristics of construction and local search algorithms were the same in other instances.

The best-quality solutions were obtained by the PI2 after FF or NF, where the quality of solutions

was 0.05, which means that the algorithm found the solutions that had the same number of bins as that

of the globally optimal solution in 19 out of 20 instances. In the PI2, the greater the average size of items

in a bin, the earlier the bin is searched. Therefore, in the early stages of the PI2, items with greater

sizes are packed to form nearly-�lled bins. If these items cannot compose nearly-�lled bins until the �nal

stages, bins containing these items have little possibility of being improved. In other words, the PI2 �rst

constructs a rough framework of the solution with items with greater sizes, which are more diÆcult to

0 10 20 30 40 50 60 70

number of searches (x10000)

0.01

0.1

1

10

100

quality of solutions

BI

FI
PI1 PI2

(a) FFD

BI

FI

PI1

PI2
0 50 100 150 200 250 300 350

number of searches (x10000)

0.01

0.1

1

10

100

quality of solutions

(b) FF

BI
FI

PI1

PI2

0 50 100 150 200 250 300 350

number of searches (x10000)

0.01

0.1

1

10

100

quality of solutions

(c) NF

:1-1-exchange :1-2-exchange :2-2-exchange

Figure 1: Performance of various local search algorithms with various construction heuristics

pack, and then constructs the details of the solution with smaller items. The grand-tour method (Misono

and Iwano (1996)), a construction heuristic for the TSP that generates a shorter tour and runs faster

than the multiple-fragment method, is based on a similar idea. The following observation summarizes

the discussion:

Observation 1. The framework of a solution (i.e., a part of a solution consisting of large items) should

be constructed in the early stages of a local search.

3.2.2 Dependence on Initial Solutions

From Figure 1, we can see that the quality of the solutions obtained by local search algorithms depended

on the initial solutions and search methods rather than the neighborhood operations, while the number

of searches monotonically increases as the size of the neighborhood increases. We can also see that

good initial solutions were not necessarily improved to good solutions by local searches. Locally optimal

solutions obtained by the BI, PI1, and PI2 starting from initial solutions constructed by FFD were all

worse than those starting from initial solutions constructed by FF or NF, though those obtained by the FI

after FFD were slightly better than those after FF or NF. In the later discussion, we apply 1-1-exchange

as the neighborhood operation, since there is little di�erence in the quality of the solutions among various

p-q-exchanges (p � 1, q � 1), while the complexity increases monotonically as p or q increases.

Figure 2 shows the performance of the FI with various construction heuristics, including CkCHs and

RdCHs. A remarkable result is that when initial solutions were constructed by CkFFD, the qualities of

solutions were better and the numbers of searches were smaller than those after FFD; and the smaller k

was, the better the qualities of solutions and the smaller the numbers of searches were. This characteristic

also held true for the PI1. For the BI and PI2, the qualities of solutions became better as k decreased,

but the number of searches increased.

On the other hand, when initial solutions were constructed by CkFF or RdFF, the performance,

which is the number of searches and the quality of solutions obtained by a local search applied after

them, was about the same as that after FF. This was also true for other search methods, except that the

BI after RdFF yielded worse solutions and required a larger number of searches than the BI after FF.

The number of searches after initial solutions constructed by RdFFD was larger than that after FFD,

while the quality of solutions was about the same. This was also true for other search methods.

Accordingly, we conclude that whether initial solutions are good or bad does not very much a�ect

the performance of local search algorithms for the BPP. To clarify the conditions of initial solutions from

which local search algorithms obtain good solutions, we focus on the characteristics of C2FFD, since the

combination of C2FFD and the FI has a good tradeo� between the speed and quality of the solutions.

In the instances used in this section, the average number of items in a bin of optimal solutions is about

2.5, since the capacity of a bin is 150 and the sizes of items are uniformly distributed between 20 and

100. Because CkFFD places items in decreasing order of their size, in the solutions obtained by C2FFD,

there exist both nearly �lled bins composed of the pairs of relatively large items and nearly empty bins

composed of pairs of small items. Since it takes more neighborhood operations to improve bins with

small items, the bins with large items are naturally nearly �lled in the early stages of the algorithm.

This may be a reason for C2FFD's good performance. More formally, the local optimality of the bins

with large items is guaranteed by the following theorem and corollary:

Theorem 1. The solution obtained by C2FFD is optimal with respect to the swap operation, where

Equation (2) is used as the objective function.

0 2 4 6 8

number of searches (x10000)

0.1

1

10

100

quality of solutions

C FFDk

C FF, Ck 1

: FFD FFD: C4 FFD: C2

FF: C2FF: C3: FF : C1

(a) FI after CkCHs

R FFDd

R FFd

0 2 4 6 8 10 12

number of searches (x10000)

0.1

1

10

100

quality of solutions

FF: R15

FFD: R5FFD: R15

FF: R5

: FFD

: FF

(b) FI after RdCHs

Figure 2: Performance of the �rst improvement (FI) after various CkCHs and RdCHs

The proof of this theorem is given in the appendix. Clearly, between the bins with items whose sizes

are all greater than C/3, there is no move operation that produces a feasible solution. Accordingly, we

obtain the following corollary.

Corollary 1. If a subset of the bins in a solution obtained by C2FFD consists solely of bins with items

whose sizes are greater than C/3, then the subset is optimal with respect to 1-1-exchange, where Equation

(2) is used as the objective function.

In our experience, when the capacities of bins are increased without changing the sizes of items, the

problem become easier, and local search algorithms almost always �nd solutions that have the same

number of bins as in the globally optimal solutions. This observation may support C2FFD's eÆciency

for relatively diÆcult instances.

3.2.3 Other Search Methods

The above discussion leads to the following local search algorithm (algorithmA), which provides support

for the correctness of our discussion:

Algorithm A
Step. 1 construct an initial solution by C2FFD

Step. 2 for k = 3 to N do (N : maximum number of item in a bin)

Step. 2.1 apply a local search algorithm under the constraint that no bin has more than k items

Step. 2.2 k := k + 1

Clearly, algorithm A forces items with greater sizes to be placed into nearly �lled bins in the early

stages. If Observation 1 is correct, algorithmA with any search method �nds good solutions. Algorithm

A with the BI, FI, or PI1 is applied to u1000, and the results are shown in Figure 3.

0 100 200 300 400

number of searches (x10000)

0.01

0.1

1

10

100

quality of solutions

: BI

: algorithm A with BI

: FI

: algorithm A with FI

: PI

: algorithm A with PI

1

1

Figure 3: Performances of algorithm A and various local search algorithms after C2FFD

Figure 3 shows that algorithmA was hardly a�ected by search methods and found solutions that were

comparable to the solutions obtained by the PI2. This result supports Observation 1 that a framework of

a solution should be constructed in the early stages of a local search. The number of searches performed

in algorithm A was relatively large. This is mainly because the algorithm begins searching from scratch

after the value of k is incremented in our current implementations.

3.3 Scalability of Various Local Search Algorithms

120 1000 10000

size of instances

0

0.2

0.4

0.6

0.8

quality of solutions

5000250 500

C FFD+FI2

FF+PI1

algorithm A with FI

algorithm A with PI1

algorithm A with BI

FF+PI2

(a) Quality of solutions

C FFD+FI2

FF+PI1
algorithm A with FI

algorithm A with PI1
algorithm A with BI
FF+PI2

1000 10000
size of instances

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

number of searches

120 5000250 500

(b) Numbers of searches

Figure 4: Scalability of various local search algorithms

Finally, the performances of various local search algorithms when they were applied to instances

of di�erent sizes were evaluated to clarify the best combinations of heuristics for the elementary BPP.

Figure 4 (a) shows the qualities of solutions obtained by various combinations of construction and local

search algorithms. Note that Figure 4 shows only results in which the number of bins in excess of the

lower bound was less than 1 on the average for u10000. Algorithm A performed well for small instances.

In particular, algorithm A with the BI or PI1 obtained solutions with optimal numbers of bins in all the

20 instances in u120. In contrast, the PI2 after FF and the FI after C2FFD performed well for large

instances. Both combinations obtained solutions with the same numbers of bins as the lower bound in

at least 17 out of 20 instances for u5000 or u10000.

Figure 4 (b) shows the number of searches performed by the combinations of construction and local

search algorithms that appeared in Figure 4 (a). We can say that the FI after C2FFD and algorithm A

after the FI have good tradeo�s for large and small instances, respectively.

4 Application of Local Search Algorithms to a Real-World BPP

In Section 3, we showed that Observation 1 holds true for the elementary BPP. In this section, we will

discuss whether the same observation, that the framework of a solution should be constructed in the

early stages of a local search, also holds true for real-world BPPs.

4.1 BPP with conicts

In this section, we consider the bin packing problem with conicts (BPP with conicts), which is de�ned

as follows (Jansen (1998)): given an undirected graph G = (U;E), a �nite set U = f u1, u2, ... , ung of

items and a rational size s(u) 2 [0,1] for each item u 2 U , �nd a conict-free partition of U into disjoint

subsets U1, U2, . . . , Uk such that the sum of the sizes of the items in each Ui is no more than 1 and

k is as small as possible. If E is an empty set, it is the elementary BPP. Furthermore, if �j2Usj � 1, it

is the problem of computing the chromatic number of the conict graph G, which is also known to be

NP-hard (Garey and Johnson (1979)). Without loss of generality, the BPP with conicts is considered

to be the problem of �nding a conict-free packing of a �nite set of items of integer sizes s(ui) 2 [0, C]

into bins of capacity C to minimize the number of bins.

4.2 A PI for the BPP with conicts

In Section 3, we showed that Observation 1 holds true for the elementary BPP. In the BPP with conicts,

items that are diÆcult to pack, which should compose a framework of a solution in the early stages of

local search, are not only items with large sizes but also items with large degrees, that is, items that

conict with many other items. Accordingly, in this section, we consider another PI, which is called

the PI3 in the following. The PI3 searches bins with greater average degrees of items earlier. If the

observation also holds true in the BPP with conicts, then the PI2 should perform well when conict

graphs are sparse, and the PI3 should perform well when conict graphs are dense.

4.3 Settings of Experiments

The instances used in this section are u1000 with undirected graphs where edges are randomly generated.

The construction heuristics for the elementary BPP were modi�ed for the BPP with conicts so that the

items that conict with any item in a bin are not placed in that bin. The neighborhood operations for

the elementary BPP were also modi�ed so that conicts of edges are considered in feasibility checking.

Maximization of Equation (2) is used as the objective function. 1-1-exchange is used as the neighborhood

operation, as in the elementary BPP, since there was little di�erence in the qualities of solutions among

various p-q-exchanges (p � 1, q � 1).

4.4 Computational Experiments

We show how the performances of various local search algorithms vary as the density of the conict

graph increases, where the density of the graph is the ratio of the number of edges to the number of

edges of its corresponding complete graph. Here, initial solutions are constructed by FFD in terms of

the degree of the item (FFDdegree), by placing each item in decreasing order of degree into the �rst bin

into which it will �t. FFDdegree produced the best initial solution among all the construction heuristics

considered in this paper when the conict graph was dense; to be more precise, when the density of the

graph was more than about 25%. The higher the quality of initial solution, the better the performance

of the local search algorithm when the conict graph was dense, especially when the density was more

than 60%. When there is no edge in the conict graph, FFDdegree is equivalent to FF, which was fairly

good when combined with local search algorithms except the FI. Consequently, in many cases of the

BPP with conicts, FFDdegree is good as a construction heuristic for initial solutions in terms of the

total performance when combined with local search algorithms.

0 20 40 60 80 100
density of the conflict graph (%)

 10

 5

0

-5

quality of solutions

FI

PI2

PI1

PI3

(BI)

(a) Quality of solutions

0 20 40 60 80 100

density of the conflict graph (%)

1E+4

1E+5

1E+6

1E+7

number of searches (x10000)

FI

PI2

PI1

PI3

BI

(b) Numbers of searches

Figure 5: Performance of various local search algorithms in the BPP with conicts

Figure 5 (a) shows the quality of solutions obtained by various local search algorithms, where the

quality of a solution is shown as the number of bins in excess of that obtained by the BI. In terms of

the quality of solutions, the PI1 was similar to the BI, though the PI1 produced slightly better solutions

in most cases. When there were few edges in the conict graph, the PI2 had the best performance.

However, its performance gradually declined as the number of edges increased, and it never produced

solutions better than that by the BI on average when the density was more than 4%. The dependence of

its performance on the density of the conict graph was similar to that of the FI. The quality of solutions

obtained by the PI3 was never worse than that of solutions obtained by the BI when the density of the

conict graph was more than 50%. In particular, when the density was around 54%, the quality of the

solutions obtained by the PI3 was outstanding. From the above results, we conclude that Observation 1

also holds true in the BPP with conicts.

Figure 5 (b) shows the number of searches performed by each local search algorithm. In terms of

the tradeo� between the speed and quality of the solutions, the PI1 had a good performance when the

density of the conict graph was relatively low, and the PI3 and BI were both good when the density

was relatively high. The PI2, which produced quite good solutions in the elementary BPP, performed

well only when there were few edges in the conict graph. We conjecture that some PI that prioritizes

both the sizes and degrees of items may produce good solutions where neither the PI2 nor PI3 performs

worse than the BI or PI1.

5 Conclusion

In this paper, we clari�ed that the following statement holds true both for the elementary BPP and

real-world BPPs: the framework of a solution (i.e., a part of a solution consisting of large items or items

with tight constraints) should be constructed in the early stages of a local search. That is, items that

are diÆcult to pack should be placed in nearly �lled bins in the early stages of local search algorithms.

New local search algorithms that have such characteristics were proposed, and their performances were

evaluated through various computational experiments.

In terms of the tradeo� between the speed and quality of the solutions, the combination of algorithm

A, which forces large items to be placed in nearly �lled bins in the early stages, and the �rst improvement

was good for small instances of the uniform class of the elementary BPP, while the combination of the

�rst improvement and C2FFD was good for large ones. These construction and local search algorithms

were also applied to the BPP with conicts. In the BPP with conicts, one prioritized improvement

(PI1), which prioritizes bins with small total sizes of items, had a good performance when the density

of the conict graph was relatively low; and the best improvement and another prioritized improvement

(PI3), which prioritizes items that conict with more items, had good performances when the density

was relatively high.

The authors hope that the observation presented in this study will provide useful information for

designing algorithms for real-world problems that can be modeled as the BPP. Successful design of new

algorithms for the BPP with conicts based on the observation may provide existential support for

real-world BPPs for which eÆcient approximation algorithms can be found by our approach.

Appendix: Proof of Theorem 1

It is suÆcient to show that when arbitrary two bins i, j (i < j) are selected from the solution obtained

by C2FFD, there is no swap operation that improves the objective function between the two bins.

Clearly, there is no swap operation that reduces the number of bins, because only a swap of two items

is considered, so the objective function is equivalent to
PN

i=1 F
k
i . Four cases are possible, corresponding

to the number of items in each bin.

Case 1: Both bin i and bin j have one item each.

Clearly, the swap operation does not change the solution, and there is no swap operation that improves

the objective function between the two bins.

Case 2: Bin i has one item and bin j has two.

It has previously con�rmed that items in bin j cannot be placed in bin i, since bin i has a lower index

than bin j. Therefore, an item in bin j and the item in bin i cannot be in the same bin, but an item in

bin j and the item in bin i must be placed in the same bin by any swap operation. Consequently there

is no swap operation between the two bins that produces any feasible solution.

Case 3: Bin i and bin j have two items each.

Let a and b (a � b) be the sizes of the two items in bin i, and c and d be the sizes of the items in bin

j. For simplicity, let a also mean the item with size a and so on. a is the largest among the four items,

since bin i has a lower index than bin j. It is suÆcient to consider the swap of b and an item in bin j,

since the swap of a and c is equivalent to the swap of b and d and so on. If c > b and d > b, then c and

d have been packed before b. The fact that neither c nor d are packed into bin i indicates that neither c

nor d can be in a bin with a. Therefore swapping b and any item in bin j produces an infeasible solution.

If at least one item in bin j (let it be c) is not greater than b (b � c), then it is possible to swap b and c,

but in this case the improvement of the objective function is

(a + c)2 + (b + d)2 � [(a+ b)2 + (c+ d)2] = �2(a� d)(b� c) � 0;

since a � d, b � c. Therefore, there is no swap operation that improves the objective function between

the two bins.

Case 4: Bin i has two item and bin j has one.

The discussion in case 3 still holds when d = 0, so there is no swap operation that improves the

objective function between the two bins.

It is concluded that there is no swap operation that improves the objective function between the two

bins in any case, and thus the theorem is proved.

References

J. J. Bentley. (1992). \Fast Algorithms for Geometric Traveling Salesman Problems," ORSA Journal of

Computing 4, 387{411.

V. Carvalho. (1999). \Exact Solution of Bin-Packing Problems Using Column Generation and Branch-

and-Bound," Annals of Operations Research 86, 629{659.

W.-C. Chiang. (1998). \The Application of a Tabu Search Metaheuristic to the Assembly Line Balancing

Problem," Annals of Operations Research 77, 209{227.

E. G. Co�man, M. R. Garey, and D. S. Johnson. (1997). \Approximation Algorithms for Bin Pack-

ing: a Survey," In D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company.

E. Falkenauer and A. Delchambre. (1992). \A Genetic Algorithm for Bin Packing and Line Balancing,"

In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1186{1192.

E. Falkenauer. (1994). \A Hybrid Grouping Genetic Algorithm for Bin Packing," Journal of Heuristics

2, 5-30.

E. Falkenauer. (1998a). \On Method Over�tting," Journal of Heuristics 4, 281{287.

E. Falkenauer. (1998b). Genetic Algorithms and Grouping Problems. John Wiley & Sons Ltd.

M. R. Garey and D. S. Johnson. (1979). Computers and Intractability | A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company.

I. P. Gent. (1998). \Heuristic Solution of Open Bin Packing Problems," Journal of Heuristics 3, 299{304.

I. P. Gent. (1999). \A Response to \On Method Over�tting," Journal of Heuristics 5, 109{111.

K. Jansen. (1998). \An Approximation Scheme for Bin Packing with Conicts," In Proceedings of the

6th Scandinavian Workshop on Algorithm Theory, pp. 35{46.

D. S. Johnson. (1973). \Near-Optimal Bin Packing Algorithms," Ph.D. thesis, Massachusetts Institute

of Technology, Department of Mathematics, Cambridge.

T. K�ampke. (1988). \Simulated Annealing: Use of a New Tool in Bin Packing," Annals of Operations

Research 16, 327{332.

N. Karmarker and R. M. Karp. (1982). \An EÆcient Approximation Scheme for the One-Dimensional

Bin Packing Problem," In Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, pp. 312{320.

S. Misono and K. Iwano. (1996). \Experiments on TSP Real Instances," IBM Research Report, RT0153.

H. Okano. (1998). \An Approximation Algorithm for the 2D Free-Form Bin Packing Problem," IBM

Research Report, RT0286.

H. Okano, S. Misono, and K. Iwano. (1999). \New TSP Construction Heuristics and Their Relationships

to the 2-Opt," Journal of Heuristics 5, 71{88.

T. Osogami. (1998). \Approaches to 3D Free-Form Cutting and Packing Problems and Their Applica-

tions: A Survey," IBM Research Report, RT0285.

M. Racer. (1994). \A Robust Heuristic for the Generalized Assignment Problem," Annals of Operations

Research 50, 487{503.

C. R. Reeves. (1996). \Hybrid Genetic Algorithms for Bin-Packing and Related Problems," Annals of

Operations Research 63, 371{396.

M. Yagiura, T. Yamaguchi, and T. Ibaraki. (1999). \A Variable Depth Search Algorithm for the

Generalized Assignment Problem," In S. Voss (ed.), Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization. Kluwer Academic Publishers.

