
September 2, 1999
RT0329
Human-Computer Interaction 11 pages

Research Report

A Survey of Demonstrational User Interfaces

Yoshinori Aoki

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

- 1 -

A Survey of Demonstrational User Interfaces

Yoshinori Aoki
IBM Research, Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato,
Kanagawa 242-8502, Japan

+81-462-73-4931
yoshia@jp.ibm.com

ABSTRACT
This paper summarizes research on demonstrational interfaces. With a
demonstrational interface, the user performs actions, and the system then generates an
abstract program. Such techniques are called Programming by Demonstration (PBD).
PBD systems have been developed in many application domains. This paper classifies
PBD systems on the basis of their application domains, and explains the features of
various systems. One of the important techniques used in PBD systems is inductive
inference. This paper describes the inference mechanism and interaction techniques
used in PBD systems.

Keywords
Demonstrational User Interface, Programming by Demonstration, Programming by
Example, Visual Programming, End-User Programming, Intelligent User Interface

1. INTRODUCTION
Nowadays, almost all computers have graphical user
interfaces (GUIs). GUIs are user-friendly in that they are
intuitive and free users from the need to input commands.
Researchers in many fields, such as usability engineering,
cognitive science, and industrial design, have made great
efforts to improve user interfaces. Demonstrational
interfaces have been developed to improve the usability of
GUIs. This paper introduces systems that have
demonstrational interfaces, called Programming By
Demonstration (PBD) systems, and explains the interaction
techniques used in them.

Demonstrational interfaces have been developed in many
application domains. One of them is an interactive-
application development environment. GUI programming
is a complicated task for programmers, because they have
to learn the event-driven model of the window system, and
become familiar with the specifications of the library of
GUI components. PBD systems allow users to create GUI
programs by demonstrating the required operations, events,
objects, and so on. This reduces the cost of GUI
programming and allows programmers to concentrate on
the application logic. PBD techniques have been
developed by using the techniques of Visual Programming
[Myers 86].

Some other PBD systems have been developed to automate
users’ operations. There are two ways of achieving this:
(1) the user creates a macro program by demonstration,
and (2) the system automatically detects the user’s
repetitive operations, and generates a macro. To realize
the second approach, the system has to understand the
user’s intention from the operations. This approach allows
end users to create a macro program without seeing any
programs, because the system internally generates the
macro program. End-user programming will be more
important in the future [Myers 96], because no matter how
successful interface designers are, systems will still need to
be customized to the needs of particular users. It is
important for end-user programming that the user not be
required to see any program codes or scripts. To realize
this objective, many interaction techniques have been
developed for PBD systems.

The rest of the paper is organized as follows. The next
section classifies PBD systems. In the section after that, I
classify PBD systems on the basis of their application
domains, and explain various PBD systems. Then, in the
following section I summarize the techniques used in PBD
systems. The last section presents conclusions.

- 2 -

2. A TAXONOMY OF PROGRAMMING BY
DEMONSTRATION SYSTEMS

2.1. Terminology
Demonstrational interfaces allow a user to perform
concrete actions while constructing an abstract program.
Such techniques are called Programming by Example
(PBE) or Programming by Demonstration (PBD) [Cypher
93]. PBE encompasses a number of approaches for
creating programs by giving examples of their behavior or
effects. Early systems attempted to create an entire
program from examples of input-output pairs; this led to
the term Programming by Example. Later systems allowed
users to create programs by demonstrating the required
operations, events, objects, and so on, and thus the term
Programming by Demonstration was coined. However,
both terms are used with the same meaning nowadays
[Cypher 93]. In this paper, too, PBE and PBD are used
interchangeably.

2.2. A Taxonomy
PBD systems can be classified into two groups according to
the target users. The target users in one group are
developers, while those in other group are end users. Early
PBD systems were developed to help novice programmers.
They were followed by interactive-application development
systems, whose goal was to reduce programming costs.
With these systems, users create GUI components by
demonstration, or define the behaviors of GUI components
by demonstration. PBD systems in the other group are
designed to help end users. One category of systems in this
second groups, sometimes called macro programming
systems, can be used to create macros to automate their
repetitive operations.

Myers classified PBD systems into intelligent interfaces
and non-intelligent interfaces [Myers 92]. Intelligent
interfaces have an inference mechanism, while non-
intelligent interfaces do not. The inference mechanism is
used to infer the user’s intention and generate an abstract
program. A PBD system that does not have an inference
mechanism is sometimes called a Programming With
Example system, and is distinguished from Programming
By Example systems [Halbert 84] [Myers 86]. In this
paper, I do not distinguish them, in line with many other
recent researchers [Cypher 93].

3. PROGRAMMING BY DEMONSTRATION SYSTEMS
In this section, I classify PBD systems on the basis of their
application domains, and explain various PBD systems.

3.1. Graphical Programming Environment
Early PBD systems were developed to help programmers.
Although they were very simple, they inspired many HCI
researchers who later developed PBD systems.

Pygmalion [Smith 75] [Smith 77] was the first
programming by demonstration system. It was designed

for programmers, and attempted to make programming
easier. Pygmalion did not make inferences. Rather, it
required the user to specify the program at an appropriate
level of abstraction. One of its big advantages over
traditional programming was that the user developed the
program by operating on actual values in a particular
instance of program execution.

Tinker [Lieberman 81] [Lieberman 93] is a system that
permits a novice programmer to write Lisp programs by
providing concrete examples of input data, and typing Lisp
expressions or providing mouse input that gives the system
directions on how to handle each example. The user
explicitly indicates which objects should serve as examples,
and may present multiple examples that illustrate
conditional procedures. Tinker records the steps of the
computation, and formulates a program for handling
general cases. To perform an action, a user types in the
name of a function and then selects its arguments from
Tinker’s Object List, which contains a list of objects.
Tinker supports incremental program development: the
user demonstrates a simple case and then later
demonstrates more complicated situations. Programs are
executed by typing Lisp expressions. The user constructs a
program by using the generated programs. Functions
defined by demonstration are invoked in exactly the same
way as built-in Lisp functions. The Object List can be
edited, or the resulting Lisp definition can be edited as text.

3.2. User Interface Development Systems
GUI programming is a complicated task, because a
developer has to learn an event-driven model of the
window system. The developer also has to become familiar
with the properties and methods of each GUI object. PBD
systems allow a novice programmer who is not familiar
with GUI programming to create the GUI parts of an
application by demonstration. In this way, the programmer
can concentrate on the application logic and reduce the
cost of GUI programming.

Peridot [Myers 90a] is an experimental tool for creating
graphical, interactive user interface. Through direct
manipulation [Shneiderman 83], users can create many
types of user interface components. These are the low-
level components of user interfaces (sometimes called
“widgets”), and include most kinds of menus, property
sheets, light buttons, radio buttons, scroll bars, and many
other elements of GUIs. One of the primary goals of
Peridot is to allow these interfaces to be created by non-
programmers. To achieve this, it uses the techniques of
Visual Programming [Myers 86], Programming by
Example, Constraints [Leler 88], and inferencing. Peridot
is one of the first systems to use Programming by Example
with inferencing. Peridot handles two kinds of constraints:
graphical constraints relate one graphic object to another,
and data constraints ensure that a graphical object has a

- 3 -

particular relationship to a data value. Its inference
mechanism is successful because it deals with a fairly
narrow domain, the creation of user interface, and takes
advantage of built-in knowledge about typical situations in
that domain. The knowledge consists of simple 60 rules.
The complete set of rules is provided in [Myers 88].

Garnet [Myers 90b] is a comprehensive user interface
development environment in Lisp for X/11. It helps create
graphical, interactive, direct manipulation interfaces.
Garnet contains many high-level tools, including the Gilt
interface builder [Myers 91c] [Hashimoto 92], the Lapidary
interactive design tool [Myers 89], the C32 spreadsheet
system [Myers 91a], the Jade dialog box system [Zanden
90], and Marquise [Myers 93]. Marquise is an ambitious
tool, for it tries to allow users to create almost all parts of a
user interface by demonstration, without any programming.
Conventional interface builders have two modes: (1) edit
mode, in which the user edits a presentation of the user
interface, and (2) test mode, in which the user tests the
behavior of the user interface. In addition, Marquise has
two modes in which the user can define the behavior of the
interface in response to the user’s operations, such as
mouse dragging, by demonstration. In [Myers 93], Myers
shows that by using the lapidary, Gilt, and Marquise tools
in Garnet, it is possible without any programming to create
complete user interfaces of a graphic editor such as
MacDraw or PowerPoint, as well as applications with
various kinds of automatic layout for nodes.

Inference Bear [Frank 94a] is a user interface builder that
has an inference engine specially designed for GUI
interaction. The engine [Frank 94b] consists of two
components: the compactor and the inferencer. When a
user interacts with an interface object, the compactor
specifies the target object, event type, and variables that are
changed between the interaction, and then sends them to
the inferencer. The inferencer has inference modules for
each object type, and calls an appropriate inference module
on the basis of the object type of the variable. Each
inference module has its own knowledge and tactics for
generating abstract programs. For example, a standard
integer inference type comes with the engine, which
derives a target variable (variables of after interaction)
from a linear combination of source variables (variables of
before interaction) and uses the standard Gaussian
elimination to find a relation between the target variables
and the source variables. The problem of Inference Bear is
that it cannot deal with complicated interaction models.
For example, when target variables (or source variables)
consist of multiple object types, or the object type of the
target variables and that of the source variables are
different, the inference engine cannot work.

SILK [Landay 95] is a user interface development tool that
supports the early stages of user interface prototyping. It

allows designers to quickly sketch an interface by using an
electronic pad and stylus. It then tries to recognize user
interface widgets and other interface elements as they are
drawn by the designer. As soon as a widget has been
recognized, it can be used. For example, a sketched slider
can be dragged up and down as soon as it has been
recognized as a scrollbar widget. When the designer is
happy with the interface, SILK will replace the sketches
with real widgets and graphical objects; these can take on
the specified look-and-feel of a standard graphical user
interface, such as Motif, Windows, or Macintosh. SILK is
unique in that it focuses on the early stages of interface
prototyping. With SILK, interface designers can quickly
develop prototypes by trial and error.

Gamut [McDaniel 97] is a PBD tool for building whole
applications such as games. It uses many techniques for
improving the interaction with the user [McDaniel 96].
For example, it defines some forms of interactions. One of
them is hints and nudges: The user can actively nudge the
system to give it hints that will help the system inference.
Gamut focuses on games as its target application, and uses
game-specific rules and inference algorithms [McDaniel
98]. In future, PBD techniques will be applied to more
commercial applications, and domain-specific PBD
techniques will then be needed to provide truly easy-to-use
applications.

LEMMING [Olsen 95] is a tool that allows a user interface
designer to create a new geometric widget by
demonstration. Geometric widgets are those that are
geometrically defined. A prime example is a scroll bar.
Although a normal scrollbar does have event behavior, its
primary model is the geometric manipulation of the thumb.
The position of the thumb is tied to the value being
controlled by the widget. LEMMING provides general-
purpose mechanisms for mapping between the presentation
of a geometric widget and its control value. First, a user
draws a set of widgets and gives a set of example data to
LEMMING. Then, it automatically learns the mapping
between the presentation and the control value. I think the
most important feature of LEMMING is that it allows a
designer to create complicated widgets, not only 2D but
also 3D. Almost all PBD systems support only traditional
widgets such as buttons, radio buttons, and menus;
consequently, it is difficult to create complicated interface
components. It will be more important for PBD systems to
support not only traditional graphical user interfaces but
also next-generation user interfaces such as 3D interfaces.

In Druid UIMS [Singh 90], a user can indicate the location
of a widget or dialog by demonstration. [Slagle 94]
presents the idea for creating GUI program automatically
from operation histories on Xf interface builder, which
runs on the X window system, and Tcl/Tk toolkit.

- 4 -

3.3. Interactive-application development Systems
Wolbert et al. developed user interface development
systems based on a role-playing methodology called
stimulus-response demonstration. DEMO [Wolbert 91] is
a user interface development system that uses PBD
techniques and is based on the stimulus-response model.
In DEMO, a developer draws an interface by using a
drawing editor, and specifies the interactive behavior of the
interface by directly demonstrating how the system should
respond to stimuli from an end-user. To specify interactive
behavior, the developer first plays the role of the end-user
and performs some graphical actions, then plays the role of
the system and performs the graphical actions that should
be executed in response to the end-user’s stimulus. The
system generalizes from stimulus-response demonstrations
to generate stimulus-response specifications that define the
behavior of the interface. DEMO uses interactive dialog
with the developer to direct its inferencing choices.

Fisher et al. developed DEMO II [Fisher 92] to increase
DEMO’s ability to draw inferences about interface
behavior without having to rely on dialog with the
developer. To accomplish this, they integrated a rule-based
reasoning component into DEMO. The reasoning
component is implemented by means of expert system
techniques. It has approximately 75 rules on object
naming, constraint identification, constraint refinement,
constraint satisfaction, and communications and control.
With the component, DEMO II can gradually modify a
program from multiple examples.

DEMO and DEMO II were successful systems for creating
static user interfaces. Wolbert integrated a time
management function into the stimulus-response model, to
allow the creation of animated user interfaces. He
developed Pavlov [Wolbert 96], which can handle time as
one type of stimulus. With Pavlov, users can create
animated interfaces without programming. An important
aspect of a PBD system is how a user edits the behaviors
inferred by the system. Pavlov’s editor provides a view of
multiple time-lines: one for the events that occur without
an end-user stimulus, and one for the events triggered by
each end-user stimulus that has been demonstrated. The
problem with Pavlov is that it does not have a mechanism
for linking created user interfaces and application
programs.

KidSim [Smith 94] [Cypher 95] is an environment that
allows children to create their own simulations. They
create their own characters, and create rules that specify
how the characters are to behave and interact. Each
character has a list of rules, and acts on a game board
divided into discrete spaces, like a checkerboard. When a
user clicks on a character’s “New Rule” button, the entire
board darkens, except for a spotlight around the character.
The user reshapes this spotlight to specify the context for

the new rule, and demonstrates what the rule should do by
moving the objects in the spotlight. Apple Computer
produced a commercial product call Cocoa from KidSim.

3.4. Automating and Prediction of a User’s
Operations

MIKE [Olsen 88] is the first User Interface Management
System (UIMS) that supports macro programming
functions. A user can define a macro as a set of existing
commands and register it in a menu. A user can also
define conditional branches by using a macro editor. The
GUI model of MIKE is very primitive compared with
current major GUI models, which support interaction with
a user in an event-driven manner. MIKE merely enables a
user to call a set of functions from a menu.

SmallStar [Halbert 84] [Halbert 93] is a macro
programming system using PBD techniques, and is based
on the Xerox Star system. A user creates a program by
clicking the Start Recording and Stop Recording buttons.
SmallStar introduced the idea of data descriptions, which
describe the data to be used when the program is recorded.
SmallStar uses no inference, and chooses an initial data
description for every object used during recording. The
recorded program is displayed in a scripting language that
includes icons for various types of objects, such as folders
and text selections. After recording, the user can identify
the target objects by editing a data description sheet.
SmallStar also introduced the idea of a program icon,
which represents the recorded program.

LEDA [Mima 91] is a programming environment for
developing a PBD application. An application developed
with LEDA provides functions for recording and playback
of a user’s operations. The programmer does not have to
develop recording and playback functions for each
application. Such applications are sometimes called macro
programming systems. In conventional macro
programming systems, there was no general method for
specifying objects when the target object is different from
the object specified at the recording time. LEDA solved
the problem by enhancing the data descriptions of
SmallStar [Halbert 84] [Halbert 93] and enabling the user
to explain how to choose a target object by using a data
description mechanism. LEDA is implemented on top of
the window manager of IBM OS/2. AIDE [Piernot 93] is
also an application-independent PBD system that allows a
developer to add advanced macro capabilities to a
Smalltalk-based application without re-implementing
everything from scratch.

Almost all PBD systems use application data to specify
objects or detect a user’s operations. Triggers [Potter 93] is
unique in that it uses only bitmap data displayed on a
screen, and is therefore applicable to almost all
applications that display graphics on a screen.

- 5 -

Eager [Cypher 91] is a PBD system that automatically
detects a user’s repetitive operations on HyperCard, which
runs on Macintosh PCs. When Eager detects repetitive
operations by a user, it displays an Eager icon and
highlights the GUI object that is expected to be selected in
the next operation. If the user interacts with the
highlighted GUI object, Eager considers that the detection
is correct. It then highlights the next GUI object that is
expected to be selected. If the user confirms that Eager’s
predictions are correct, he or she can automatically execute
the repetitive operations by clicking an Eager icon. One of
the most important features of Eager is that users do not
have to perform any operations in addition to normal
operations. They do not have to specify a starting or an
ending point for repetitive operations, and they do not see
any programs. All they have to do is click an Eager icon to
confirm that Eager’s predictions are correct. If Eager’s
prediction is incorrect, they can ignore the Eager icon and
continue operations.

Pursuit [Modugno 94] allows a user to create shell
programming by demonstration. The user can easily
understand the program, because Pursuit displays before-
and-after pair of icons that represent the status of target
objects.

DemoOffice [Sugiura 96] is a PBD system that integrates
an e-mail system and a relational database. It extracts
necessary operations from the recorded history,
automatically generates a macro to make it applicable to
future contexts, and selects arguments for the macro. A
generated macro is invoked by clicking a macro button
located on a macro bar. Since almost all the processes in
macro definition are performed automatically, it is
important that users be able to confirm what the macro
does. When the user moves a mouse pointer over the
macro button, DemoOffice explains with a tip-help how the
macro behaves, and displays an example of its execution.

3.5. Text Editing
Editing by Example [Nix 85] is a system that infers text-
transformation rules from before-and-after pairs of text
given by a user, and applies those rules to the rest of the
text. Editing by Example handles only pairs of text, while
almost all PBD systems treat users’ operations as example
data.

TELS [Mo 92] generates a generalized program from a
user’s repetitive operations. It handles only four kinds of
operations; paste, delete, move, and select. For example, If
the user selects the telephone numbers 222-3456 and 234-
5555, TELS generates a program that selects 2??-??5?,
where ‘?’ represents any one-digit integer. TELS supports
incremental program modification: if a user corrects the
proposed text, TELS modifies the program to improve the
heuristic algorithm it uses for inference.

Dynamic Macro [Masui 94a] extracts a repetitive operation
pattern and generates a macro when a user instructs the
system. The user does not have to manually register the
macro, although the user has to tell the system to generate
a macro. It runs on GNU Emacs and can handle all Emacs
operations.

POBox [Masui 98a] [Masui 98b] is a pen-based Japanese
text input method that integrates software keyboards,
handwriting recognition, and PBD. If a user taps on the
“ma” key and immediately releases the pen, the system
shows candidate words that begin with the pronunciation
“ma”. If the user taps on the “ma” key and waits a while, a
pull-down menu appears and shows candidate words
around the pen position. When the user touches the tablet
with the pen, the system starts handwriting recognition and
interprets the strokes incrementally, and shows candidate
words that begin with the strokes. Masui calls the
approach Composition By Example.

Tourmaline [Myers 91b] provides a macro generation
function from a user’s demonstration. The system
generates a style by using heuristics when a user gives a
format example such as a font, size, position, and so on.

3.6. Graphics Editing
Metamouse [Maulsby 89a] [Maulsby 89b] is a system that
generates a program from a user’s graphical editing.
When Metamouse detects a repetition, it offers to perform
actions automatically. The user can verify each action,
undo it, and correct it. Metamouse uses a metaphorical
mouse, that is, a graphical turtle named Basil, to show the
actions. The user explains his/her intent to Basil through a
teaching metaphor. Metamouse is similar to Eager
[Cypher 91] in that both systems predict looping patterns
over history. In addition to looping patterns, Metamouse
can also find branching patterns when a user performs a
different action from the one expected.

Chimera [Kurlander 92] is a macro programming system
for a graphic editor. In SmallStar, a user can edit a
generated program as text. Chimera shows a generated
macro as a sequence of operation icons, and a user can
visually edit them. Each operation icon graphically
represents an operation. Mondrian [Lieberman 92] is also
a macro programming system for a graphic editor that
shows a generated macro as an operation icon. Mondrian’s
operation icon presents a before-and-after pair of the
images for the operation. A user can visually reuse
generated macros through the icons. Mondrian teaches the
user about its inferencing processes through voice output or
in natural-language text when it generates a macro.

PBD techniques are also used in graphics-layout
applications. Layout By Example [Hudson 93] is a system
that infers graphics-layout rules from example layouts.
The system allows a user to choose one example from

- 6 -

multiple examples that are the results of the inferencing.
The user can let the system infer again to correct its
inferencing. In this approach, the system corrects its
inferencing step by step. The approach allows the system
to improve the inferencing effectively through a little
interaction with the user, while conventional PBD systems
allow users to give multiple examples at one time.

TRIP2 [Matsuoka 92] and TRIP3 [Miyashita 92] are
declarative graphics-layout applications using graphical
constraints. TRIP2 realizes bidirectional translation
between a set of application data and its visual
representation by using a set of declarative translation
(mapping) rules. Through bidirectional translation, TRIP2
can not only automatically modify the mapping from the
visual representation to its application data, but also the
one from the application data to its visual representation,
when the user moves a graphical object. TRIP3 can
generate declarative translation rules from multiple
example visualizations. In TRIP3, a user gives multiple
examples at one time, and the system infers general
translation rules by comparing the examples. It then shows
the user its inferencing, and the user corrects any mistakes.
However, it is difficult to reduce mistakes in inferencing
from a small number of examples. IMAGE [Miyashita 94]
was developed to solve this problem. In IMAGE, a user
gives one example at a time, and the system shows the user
its inferencing by displaying another example to which the
generated translation rules have been applied. The user
then interactively modifies the example to correct the
inferencing.

Masui developed a graph-layout system that learns a user’s
preferences from examples [Masui 94b]. In the system, the
user shows the system pairs of good and bad layout
examples, and the system infers an evaluation function
using the genetic programming technique [Kozierok 93].
The system is unique in that it infers a user’s preferences,
which infers user preferences that are difficult to express in
text or a program.

When users want to create a chart or graphic from data in a
table, they can do so in with Lotus 1-2-3 or Microsoft
Excel by selecting from a menu of pre-defined chart types.
However, they cannot define a new type of a chart. Gold
[Myers 94] allows a user to create a complex business chart
by providing examples. The user draws an example of a
graphic object and demonstrates to the system
correspondences between data in a table and the properties
of the graphic object. The system then create a chat for a
set of actual data.

Sage [Roth 90] is another system that creates charts by
analyzing examples. It consists of a visualization tool
called SageBrush [Roth 94] and a knowledge base called
SageBook [Roth 94]. Rather than having users draw
examples of the desired display, in SageBrush the user

assembles displays by selecting graphical objects and
assembles data to match their properties.

3.7. World Wide Web
Internet Scrapbook [Sugiura 98a] [Sugiura 98b] is an
application that provides a function for automating
repetitive browsing tasks by means of PBD techniques. An
interesting function is that the system allows a user to
create a personal page by clipping only the necessary
portions from multiple Web pages. The personal page is
automatically updated by the system.

Turquoise [Miller 97] is another application that allows a
user to automate repetitive browsing tasks by
demonstration. The user can create a personal page by
clipping only the necessary portions from multiple Web
pages, in the same way as Internet Scrapbook [Sugiura
98a] [Sugiura 98b]. Turquoise has a pattern matcher
designed to find portions of an HTML document. It infers
patterns automatically from the user’s demonstration by
using a heuristic knowledge base of pattern templates,
which are patterns containing placeholders, such as
“<HTML element> after Heading containing <text>.”
Turquoise allows users to add patterns by themselves.

Web Operation Recorder [Aoki 98] allows a user to record
operations on a Web browser, and to play the recorded
operations with a real Web browser. It runs in a Java-
enabled Web browser. Users do not have to prepare the
Web contents to be recorded; they can work with ordinary
Web pages. In addition, Web Operation Recorder allows a
user to add explanations to existing HTML contents by
making “ink” annotations and attaching text, images, and
hyperlinks to a Web page [Aoki 99].

4. INTERACTION TECHNIQUES USED IN PBD
SYSTEMS

Many interaction techniques have been developed for PBD
systems, as explained in the previous section. This section
describes the key techniques used in successful PBD
systems.

4.1. Technical Issues in PBD Systems
The following is a typical flow of a PBD system:

(1) A user first demonstrates, to provide the system with
examples.

(2) The system then generates programs. Many recent
PBD systems use an inference mechanism to
generalize a generated program.

(3) Some PBD systems show the generated program to
the user. The user then modifies the program to
correct the mistakes in the inferencing.

Inference mechanisms are used in many PBD systems to
generates an abstract program in step (2). Inferencing is
one of the key techniques in PBD systems, because the

- 7 -

flexibility of the generated program depends on the
inference mechanism.

In step (3), the visualization technique is important. One
of the problems with early PBD systems was that users had
to check the generated program in text, and thus had to
know the programming language. In addition,
understanding programs written by someone else is a time-
consuming task. Therefore, the total cost of programming
cannot be reduced. Another important issue is how a user
can modify generated programs without editing them.

The following subsection describes some of the PBD
system interaction techniques developed to resolve the
above issues.

4.2. Inference Mechanism
Peridot [Myers 90a] was one of the first PBD systems to
use an inference mechanism. Subsequently, many such
systems were developed. Inferencing is used to understand
a user’s intent from his/her operations and generate an
abstract program. Peridot infers graphical constraints and
data constraints by using built-in knowledge of a specified
GUI domain. Eager [Cypher 91] is another successful
system that has an inference mechanism using domain
knowledge.

Inference Bear [Frank 94a] has an inferencing engine
[Frank 94b] that contains no domain knowledge. When a
user interacts with an interface object, the engine draws
inferences by comparing before-and-after snapshots of the
object. The advantage of having no domain knowledge is
that the engine is flexible and can be used for many
domains. It can also be used at any level of abstraction,
and is extensible. The engine comes with three predefined
inference types: string, integer, and boolean variables. A
user can easily add other inference types. The
disadvantage of no domain knowledge is that the engine
cannot make use of having such knowledge in the
inference process. Hence, a user has to give many
demonstrations, or manually modify the programs.

The main feature of the inference mechanism of
Metamouse [Maulsby 89a] [Maulsby 89b] is that it
generates conditional branches from multiple examples.
DEMO II’s inference mechanism can also generate a
program that has conditional branches [Fisher 92]. In
DEMO II, a user gives multiple examples to the system.
The inference mechanism then extracts graphical
constraints from the examples, and generates conditional
branches from the differences between the constraints.
When a system can generate a program that has
conditional branches, the program can be more flexibile.

4.3. Visualization and Modification of Generated
Programs

Peridot [Myers 90a] shows each inference in a text
message, using a natural-language template, and asks the

user to verify it. Thus, the user can find a mistake in the
inference and correct it. However, it is very time-
consuming for the user to answer each inference message.

Metamouse [Maulsby 89a] [Maulsby 89b] shows a
graphical turtle named Basil to show detected operations to
the user. When the system detects a user’s repetitive
operations, it offers to perform them automatically. If the
user accepts the offer, Basil performs as a metaphorical
mouse and the user can verify the detected repetitive
operations by watching Basil’s performance. If the user is
not satisfied with Basil’s performance, he/she can undo the
operations. This seems to be a natural approach, because
the system also shows detected operations by Basil’s
demonstration.

If Eager [Cyper 91] detects a user’s repetitive operations,
the system shows an Eager icon and highlights the object
that is expected to be selected in the user’s next operation.
The main feature of Eager’s approach is that Eager does
not use any text message or dialog box to show the
system’s inference. Highlighting the object is intuitive,
and does not interrupt the user’s operations even if the
prediction is wrong. If the user selects the highlighted
object, Eager deduces that the prediction is correct. The
fact that Eager does not bother users is important.
Microsoft Office also uses the same approach, providing
some input assistant functions. For example, when a user
types the same text in several cells on Excel, Excel shows
the colored text in the cell. If the user stops typing and
presses the Enter key, Excel completes the input of the text.
If the colored text does not satisfy the user, the user can
ignore the colored text and continue typing.

Like Eager, Edward [Bos 92] also detects a user’s next
operation. Its inference mechanism is similar to that of
Eager. However, it is unique in that the user can specify
operations in natural language. It also shows the results of
inferencing and asks questions of the user in natural
language.

Chimera [Kurlander 92], Mondrian [Lieberman 92], and
Pursuit [Modugno 94] generate macro programs and show
them as operation icons. Chimera has a component called
Macro Builder, in which snapshots of the user’s operations
are shown and can be visually edited. In Mondrian and
Pursuit, an operation icon includes a before-and-after pair
of operation snapshots. The user can visually reuse
generated macros through the icons. Mondrian is unique
in that it tells the user the result of its inferencing by using
a speech engine.

Masui’s graph-layout system [Masui 94b] infers the user’s
preferences from example layouts. The system does not
directly show a generated evaluation function to the user;
instead, it shows another example layout to which the

- 8 -

evaluation function has been applied. The user can modify
the evaluation function by judging the example layout.

5. CONCLUSIONS
Programming By Demonstration systems have been
developed for many application domains. Early PBD
systems were intended to help application developers, and
therefore assumed that users could understand and modify
the generated programs. These systems were successful,
and have influenced current commercial visual
programming environments such as Microsoft Visual
Basic. Since then, many PBD systems have been
developed to help the end users. The following issues
should be considered in future research on PBD systems:

• PBD systems should make good use of domain
knowledge to reduce the interaction with users.

• PBD techniques should be merged into non-PC
devices and applied to a new user interface paradigm.

I believe that it will be increasingly important to apply
PBD techniques to commercial products to help end users.
Microsoft eagerly adopts PBD techniques in its commercial
products. For example, Excel detects a user’s repetitive
text input and complements the input. Microsoft Office
also has a macro recording functions. These PBD
techniques are very helpful to users, although they are
simple. To help end users, PBD components have to be
naturally merged into applications. Conventional PBD
systems require users to interact with them in order to
correct their inferences. This approach is effective if the
target users are computer experts; however, such
interaction bothers or embarrasses many end users. The
system should collect more information from ordinary
operations. However, it is impossible for a system to
perfectly infer a user’s intention from ordinary operations,
and therefore domain knowledge will become more
important. Acquisition of domain knowledge from
operations will also be important, to complement built-in
domain knowledge.

Another issue is that all existing PBD systems have been
developed for graphical-user-interface environments,
sometimes called WIMP (Window, Icon, Menu, and
Pointing device) environments. PBD techniques should be
applied to other interface environments. For example,
many new kinds of devices, such as information
appliances, PDAs, and intelligent cellular phones, are
being developed. Such devices require simpler user
interfaces than the GUI of PCs, because (1) they have
poorer displays than PCs, (2) they have only simple input
devices, and (3) the target users are end users. PBD
techniques can reduce users’ complicated inputs on such
devices. However, new interaction techniques will be

needed, because such devices may not use WIMP
environments.

REFERENCES
[Aoki 98] Aoki, Y., Ando, F., Nakajima, A., “Web

Operation Recorder and Player,” IBM TRL Research
Report RT0267, 1998.

[Aoki 99] Aoki, Y., Nakajima, A., “User-Side Web Page
Customization,” Proceedings of 8th International
Conference on Human Computer Interaction (HCI
International ’99), to be published in August 1999.

[Bos 92] Bos, E., “Some Virtues and Limitations of Action
Inferring Interfaces,” Proceedings of UIST ’92, ACM
Press, NY, pp. 79-88, November 1992.

[Cypher 91] Cypher, A., “Eager: Programming Repetitive
Tasks by Example,” Proceedings of CHI ’91, ACM
Press, NY, pp. 33-39, April 1991.

[Cypher 93] Cypher, A., Ed., Watch What I Do:
Programming by Demonstration, The MIT Press,
Cambridge Mass., 1993.

[Cypher 95] Cypher, A., “KidSim: End User Programming
of Simulations,” Proceedings of CHI ’95, ACM Press,
NY, pp. 27-34, May 1995.

[Fisher 92] Fisher, G., Busse, D. E., “Adding Rule-Based
Reasoning to a Demonstrational Interface Builder,”
Proceedings of UIST ’92, ACM Press, NY, pp. 89-97,
November 1992.

[Frank 94a] Frank, M., Foley, J., “Inference Bear:
Inferring Behavior from Before and After Snapshots,”
Technical Report git-gvu-94-12, Georgia Institute of
Technology, Graphics, Visualization and Usability
Center, April 1994. Available at
http://www.gatech.edu/gvu/gvutop.html.

[Frank 94b] Frank, M. R., Foley, J. D., “A Pure Reasoning
Engine for Programming by Demonstration,”
Proceedings of UIST ’94, ACM Press, NY, pp. 95-101,
November 1994.

[Halbert 84] Halbert, D., “Programming by Example,”
Ph.D. Thesis, Department of Electrical Engineering
and Computer Science, University of California
Berkeley, 1984. Also as: Halbert, D., “Programming by
Example,” Technical Report No. OSD-T8402, Office
Systems Division, Xerox Corporation, 1984.

[Halbert 93] Halbert, D. C., “SmallStart: Programming by
Demonstration in the Desktop Metaphor,” Chapter 5,
pp. 103-123. In Cypher [Cypher 93], 1993.

[Hashimoto 92] Hashimoto, O., Myers, B. A., “Graphical
Styles for Building User Interaces by Demonstration,”
Proceedings of UIST ’92, ACM Press, NY, pp. 117-
124, November 1992.

- 9 -

[Hudson 93] Hudson, S. E., His, C. N., “A Synergistic
Approach to Specifying Simple Number Independent
Layout by Example,” Proceedings of CHI ’93, ACM
Press, NY, pp. 285-292, April 1993.

[Kurlander 92] Kurlander, D., Feiner, S., “A History-Based
Macro by Example System,” Proceedings of UIST ’92,
ACM Press, NY, pp. 99-106, November 1992.

[Kozierok 93] Kozierok, R., Maes, P., “A Learning
Interface Agent for Scheduling Meetings,” Proceedings
of the 1993 International Workshop on Intelligent User
Interfaces, ACM Press, N.Y., pp. 81-88, January 1993.

[Landay 95] Landay, J. A., Myers, B. A., “Interactive
Sketching for the Early Stages of User Interface
Design,” Proceedings of CHI ’95, ACM Press, NY, pp.
43-50, May 1995.

[Leler 88] Leler W., Constraint Programming Languages:
Their Specification and Generation, Addison-Wesley,
Reading, MA, 1988.

[Lieberman 81] Lieberman, H., “Tinker: Example-Based
Programming for Artificial Intelligence,” Proceedings
of the 7th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1060, August 1981.

[Lieberman 92] Lieberman, H., “Dominos and
Storyboards: Beyond Icons on Strings,” Proceedings of
the 1992 Workshop on Visual Languages, IEEE, pp.
65-71, September 1992.

[Lieberman 93] Lieberman, H., “Tinker: A Programming
by Demonstration System for Beginning
Programmers,” Chapter 2, pp. 49-64, In [Cypher 93],
1993

[Masui 94a] Masui, T., Nakayama, K., “Repeat and Predict
– Two Keys to Efficient Text Editing,” Proceedings of
CHI ’94, ACM Press, NY, pp. 118-123, April 1994.

[Masui 94b] Masui, T., “Evolutionary Learning of Graph
Layout Constraints from Examples,” Proceedings of
UIST ’94, ACM Press, NY, pp. 103-108, November
1994.

[Masui 98a] Masui, T., “An Efficient Text Input Method
for Pen-Based Computers,” Proceedings of CHI ’98,
ACM Press, NY, pp. 328-335, April 1998.

[Masui 98b] Masui, T., “Integrating Pen Operations for
Composition by Example,” Proceedings UIST’ 98,
ACM Press, NY, pp. 211-212, November 1998.

[Matsuoka 92] Matsuoka, S., Takahashi, S., Kamada, T.,
Yonezawa, A., “A General Framework for
Bidirectional Translation between Abstract and
Pictorical Data,” ACM Transactions on Information
Systems, Vol. 10, No. 4, pp. 408-437, October 1992.

[Maulsby 89a] Maulsby, D. L., Witten, I. H., and Kittlitz,
K. A., “Metamouse: Specifying Graphical Procedures

by Example,” Proceedings of SIGGRAPH ’89, ACM
Press, NY, pp. 127-136, July-August 1989.

[Maulsby 89b] Maulsby, D. L., Witten, I. H., and Kittlitz,
K. A., “Inducing Programs in a Direct-Manipulation
Environment,” Proceedings of CHI ’89, ACM Press,
NY, pp. 57-62, April-May 1989.

[McDaniel 96] McDaniel, R. G., “Improving
Communication in Programming-by-Demonstration,”
Proceedings of CHI ’96 Conference Companion, ACM
Press, NY, pp. 55-56, April 1996. Available at
http://www.cs.cmu.edu/afs/cs/user/richm/public/www/-
doct96.html.

[McDaniel 97] McDaniel, R. G., Myers, B. A., “Gamut:
Demonstrating Whole Applications,” Proceedings of
UIST ’97, ACM Press, NY, pp. 81-82, October 1997.

[McDaniel 98] McDaniel R. G., Myers, B. A., “Building
Applications Using Only Demonstration,” Proceedings
of Intelligent User Interface (IUI) ’98, ACM Press, NY,
pp. 109-116, January 1998.

[Miller 97] Miller, R. C., Myers, B. A., “Creating Dynamic
World Wide Web Pages By Demonstration,” Technical
Report #CMU-CS-97-131, School of Computer Science
Carnegie Mellon University, 1997. Available at
ftp://reports.adm.cs.cmu.edu/usr/anon/-1997/CMU-CS-
97-131.ps

[Mima 91] Mima, Y., “A Visual Programming
Environment for Programming by Example
Abstraction,” Proceedings of the 1991 Workshop on
Visual Languages, IEEE, pp. 132-137, October 1991.

[Miyashita 92] Miyashita, K., Matsuoka, S., Takahashi, S.,
“Declarative Programming of Graphical Interfaces by
Visual Examples,” Proceedings of UIST ’92, ACM
Press, NY, pp. 107-116, November 1992.

[Miyashita 94] Miyashita, K., Matsuoka, S., Takahashi, S.,
Yonezawa, A., “Interactive Generation of Graphical
User Interfaces by Multiple Visual Examples,”
Proceedings of UIST ’94, ACM Press, NY, pp. 85-94,
November 1994.

[Mo 92] Mo, D. H., Witten, I. H., “Learning Text Editing
Tasks from Example: A Procedural Approach,”
Behavior & Information Technology, Vol. 11, No. 1,
pp. 32-45, 1992.

[Modugno 94] Modugno, F., Myers, B. A., “A State-Based
Visual Language for a Demonstrational Visual Shell,”
Proceedings of the 1994 IEEE Symposium on Visual
Languages, IEEE, pp. 304-311, October 1994.

[Myers 86] Myers, B. A., “Visual Programming,
Programming by Example, and Program Visualization:
A Taxonomy,” Proceedings of CHI ’86, ACM Press,
NY, pp. 59-66, April 1986.

- 10 -

[Myers 88] Myers, B. A., Creating User Interface by
Demonstration, Academic Press, San Diego, 1988.

[Myers 89] Myers, B. A., Zanden, B. V., Dannenberg, R.,
“Creating Graphical Interactive Application Objects by
Demonstration,” Proceedings of UIST ’89, ACM Press,
NY, pp. 95-104, November 1989.

[Myers 90a] Myers, B. A., “Creating User Interfaces Using
Programming by Example, Visual Programming and
Constraints,” ACM Transactions on Programming
Languages and Systems, Vol. 12, No. 2, pp. 143-177,
April 1990.

[Myers 90b] Myers, B. A., Giuse, D., Dannenberg, R.,
Zanden, B. V., Kosbie, D., Pervin, E., Mickish, A.,
Marchal, P., “Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces,” IEEE
Computer, Vol. 23, No. 11, pp. 71-85, November 1999.

[Myers 91a] Myers, B. A., “Graphical Techniques in a
Spreadsheet for Specifying User Interfaces,”
Proceedings of CHI ’91, ACM Press, NY, pp. 243-249,
April 1991.

[Myers 91b] Myers, B. A., “Text Formatting By
Demonstration,” Proceedings of CHI ’91, ACM Press,
NY, pp. 251-256, April 1991.

[Myers 91c] Myers, B. A., “Separating Application Code
from Toolkits: Eliminating the Spaghetti of Call-
Backs,” Proceedings of UIST ’91, ACM Press, NY, pp.
211-220, November 1991.

[Myers 92] Myers, B. A., “Demonstrational Interfaces: A
Step beyond Direct Manipulation,” IEEE Computer,
Vol. 25, No. 8, pp. 61-73, August 1992.

[Myers 93] Myers, B. A., McDaniel, R. G., Kosbie, D. S.,
“Marquise: Creating Complete User Interfaces by
Demonstration,” Proceedings of CHI ’93, ACM Press,
NY, pp. 293-300, April 1993.

[Myers 94] Myers, B. A., Goldstein, J., Goldberg, M. A.,
“Creating Charts by Demonstration,” Proceedings of
CHI ’94, ACM Press, NY, pp. 106-111, April 1994.

[Myers 96] Myers, B. A., Hollan, J., Cruz, I., “Strategic
Directions in Human Computer Interaction,” ACM
Computing Surveys, Vol. 28, No. 4, pp. 794-809,
December 1996.

[Nix 85] Nix, R. R., “Editing by Example,” ACM
Transactions on Programming Languages and Systems,
Vol. 7, No. 4, pp. 600-621, October 1985.

[Olsen 88] Olsen, D. R. Jr., Dance, J. R., “Macros by
Example in a Graphical UIMS,” Computer Graphics &
Applications, IEEE, Vol. 8, No. 1, pp. 68-78, January
1988.

[Olsen 95] Olsen, D. R., Jr., Ahlstrom, B., Kohlert, D.,
“Building Geometry-Based Widgets by Example,”

Proceedings of CHI ’95, ACM Press, NY, pp. 35-42,
May 1995.

[Piernot 93] Piernot, P. P., Yvon, M. P., “The AIDE
Project: An Application-Independent Demonstrational
Environment,” Chapter 18, pp. 383-401, In [Cypher
93], 1993.

[Potter 93] Potter, R., “Triggers: Guiding Automation with
Pixels to Achieve Data Access,” Chapter 17, pp. 361-
380, In [Cypher 93], 1993.

[Roth 90] Roth, S. F., Matthis, J., “Data Characterization
for Intelligent Graphics Presentation,” Proceedings of
CHI ’90, ACM Press, NY, pp. 193-200, April 1990.

[Roth 94] Roth, S. F., Kolojejchick, J., Matthis, J.,
Goldstein, J., “Interactive Graphic Design Using
Automatic Presentation Knowledge,” Proceedings of
CHI ’94, ACM Press, NY, pp. 112-117, April 1994.

[Shneiderman 83] Shneiderman B., “Direct Manipulation:
A Step beyond Programming Language,” IEEE
Computer, Vol. 16, No. 8, pp. 57-69, August 1983.

[Singh 90] Singh, Kok, C. H., Ngan, T. Y., “Druid: A
System for Demonstrational Rapid User Interface
Development,” Proceedings of UIST ’90, ACM Press,
NY, pp. 167-177, October 1990.

[Slagle 94] Slagle, J. R., Wieckowski, Z., “Ideas for
Intelligent User Interface Design,” Tcl ’94 Workshop
Proceedings, 1994.

[Smith 75] Smith, D. C., “Pygmalion: A Creative
Programming Environment,” Report No. STAN-CS-
75-499, Department of Computer Science, Stanford
University, 1975.

[Smith 77] Smith, D. C., Pygmalion: A Computer Program
to Model and Stimulate Creative Thought, Birkhauser,
Basel, 1977.

[Smith 94] Smith, D. C., Cypher, A., Spohrer, J. C.,
“KIDSIM: Programming Agents without a
Programming Language,” CACM, Vol. 37, No. 7,
ACM Press, NY, pp. 54-67, July 1994.

[Sugiura 96] Sugiura, A., Koseki, Y., “Simplifying Macro
Definition in Programming by Demonstration,”
Proceedings of UIST ’96, ACM Press, NY, pp. 173-
182, November 1996.

[Sugiura 98a] Sugiura, A., Koseki, Y., “Internet
Scrapbook: Automating Web Browsing Tasks by
Programming-by-Demonstration,” Proceedings of 7th
International World Wide Web Conference, April 1998.
Available at
http://www7.scu.edu.au/programme/posters/1886/-
com1886.htm

[Sugiura 98b] Sugiura, A., Koseki, Y., “Internet
Scrapbook: Automating Web Browsing Tasks by

- 11 -

Demonstration,” Proceedings of UIST ’98, ACM Press,
NY, pp. 9-18, November 1998.

[Wolber 91] Wolber, D., Fisher, G., “A Demonstrational
Technique for Developing Interfaces with Dynamically
Created Objects,” Proceedings of UIST ’91, ACM
Press, NY, pp. 221-230, November 1991.

[Wolber 96] Wolber, D., “Pavlov: Programming by
Stimulus-Response Demonstration,” Proceedings of
CHI ’96, ACM Press, NY, pp. 252-259, April 1996.

[Zanden 90] Zanden, B. V., Myers, B. A., “Automatic,
Look-and-Feel Independent Dialog Creation for
Graphical User Interfaces,” Proceedings of CHI ’90,
ACM Press, NY, pp. 27-34, April 1990.

