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At last document, we described new method to describe the shape of polyhedral surface by using

Spherical Moment Functions (S.M.F.) for the purpose of similarity retrieval. In this document, we

describe two techniques to improve accuracy of S.M.F in similarity retrieval.

There were two major problems when we describe polyhedral data by using S.M.F. Firstly, the

accuracy of comparisons are irregular, since sampling points on the polyhedral surfaces were not

uniform. Secondary, S.M.F. blends all the sampling points, which are in the same direction seen

from the center of polyhedral surface.

We introduced two techniques namely a normalization of sampling points and a quasi-solid

description method to a S.M.F. procedure and improved the accuracy of similarity retrieval. At the

experiments, an efficiency of our improvement is shown comparing original S.M.F and improved

S.M.F.

1. Introduction

There were two major problems, when we describe polyhedral surface by using S.M.F, namely an

irregular accuracy of comparisons and a blending of sampling points, which are in the same direction

seen from the center of polyhedral surface.

In the case of similarity retrieval, many comparisons will be performed between key model and various

models. The accuracy of each comparison will be affected by the density of input meshes and this causes

an irregular accuracy of comparisons. Further more, since each input mesh is not uniform on the surface

of polyhedral data, the similarity computed form S.M.F. will be affected. We will solve this problem by

normalizing sampling points of polyhedral surface as to dense of sampling points become even and the

direction of each sampling points seen form the center of polyhedral surface become uniform.

When we are to compare complex models, in many cases, there are several pieces of surface overlapped,

when seen from the center of polyhedral surface. If we place normalized sampling points on the surface,

in many cases, several sampling points are in the same direction when seen from the center for

polyhedral data. Though S.M.F. distincts the directions of sampling points seen from the center of

polyhedral surface, it does not distincts overlaps of sampling points in the same direction. Let us call this

problem a “vertical blending problem.” To solve a vertical blending problem, we introduced the idea of
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quasi-solid that distincts front face, and back face according to the direction of normal of surface at the

each sampling point and the direction of each sampling point seen from the center of plolyhedral

surface.

In this document, we firstly describe terminology used in this document, then describe the method to

normalize sampling points of polyhedral surface, then describe entire process of improved S.M.F using

quasi-solid description technique, then show efficiency of improved S.M.F. by comparing older S.M.F,

and finally describe conclusion of this document.

2. Terminology

In this section, we describe several terminology of used in this paper. Suppose we are going to compare

following polyhedral data named aP  and bP .

jvijα

Definition sphere

iap

o

aP

Fig. 1 Terminology

In this paper, we use following terms.

aP : Polyhedral data a

o : The center of mass of each polyhedral data

iap : Normalized Radial vectors from the center of mass to each sampling point on the surface of

polyhedral data a. The identifier i  denotes the direction of each 
iap .

iar : The length of each 
iap

Definition sphere: A sphere, whose center coincides the center of mass of aP .

jav : Radial vectors form the center to each sampling point on the surface of a definition sphere. The

identifier j  denotes the direction of each 
jav .



3/10
Oct. 25th 1999

3. Normalization

Before we begin, all the models should be normalized their positions, and should be normalized

their scales if necessary. Normalization of orientation may also needed before we begin normalize

sampling points. It is depends on dataset that we perform queries.

Suppose polyhedral surface consist of triangle mesh. The normalization of position is performed

using the center of mass of polyhedral surface. The center of mass of polyhedral surface is given as

follows:

i
i

i c
S

s
C ∑= , (1)

 where C  denotes the center of mass of polyhedral surface, ic  denotes the center of mass of each

triangle, is  denotes the area of each triangle, and S  denotes the total area of polyhedral surface.

By translating each model as to the center of mass coincides the origin of local coordinates, the

normalization of position is performed

The normalization of scale is performed by using following scale factor.

i
i

i
s r

S

s
f ∑= , (2)

where sf  denotes the scale factor, and ir  denotes the distance form the center of mass of

polyhedral surface to the center of mass of each triangle. By scaling each model by sf/1 , the

normalization of scale is performed.

The normalization of orientation is performed by using primary moment functions, which is

described in section five. By computing primary moment function using the coordinates of nodes of

triangle mesh insetad of normalized sampling point. We can compute the rotation matrix to

normalize the orientation of each model.

4. Normalization of sample points

In this section, we describe the method to solve irregular accuracy of each comparison described in

introduction. Objective of this section is to calculate sample points 
iap  by resampling polyhedral

surface and to calculate weights 
iaw correspond to sample points 

iap .

Normalized sample points of polyhedral surface aP  are calculated as intersection points between a

polyhedral surface and a set of vectors which share starting points, and whose directions are uniform.

The concrete procedure to calculate normalized sapling points is as follows.

1. Place a sphere, whose radius is 1.0, as to the center of a sphere coincides center of mass of

polyhedral surface aP .

2. Generate points on a sphere in even dense, and in uniform directions seem from the center.
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3. Generate rays form the center of a sphere to points on a sphere that is generated in step 2.

4. Calculate intersection points between each ray and polyhedral surface. The calculated intersection

points are the normalized sampling points 
iap .

A step 2 can be implemented by following steps

1. Place a cube as to inscribe to a sphere.

2. Insert a vertex to the center of each face of a cube.

3. Subdivide each face into four.(fig)

4. Make vectors from the center of a sphere to points generated by subdivision of a cube surface.

5. Normalize the length of vectors to 1.0.

By processing procedures above, we can get uniform sampling points on each polyhedral surface.

A vertex on
 the cube

A sphere

A vertex generated  on 
the surface of sphere

…

The center of
 a sphere

Fig. 2 generating points on sphere in even dense

The weight for each normalized sampling point is calculated as a ratio of the area of sphere surface,

which is occupied by each sampling point, to the area of sphere surface. It can be calculated very simple

as follows.

n
w

ia

1=  , (3)

where n denotes the number of points generated on the surface of a sphere.

5. Quasi-solid description

In this section we firstly describe a basic idea of quasi-solid description, then describe the method of

making quasi-solid description of S.M.F, and finally the method to compare polyhedral surfaces using

quasi-solid description of S.M.F.

Let us focus on one of radius vectors that starts from the center of polyhedral surface to one of

normalized sampling points on the polyhedral surface. In many cases, there are several piece of surface



5/10
Oct. 25th 1999

that intersects this radius vector. Let us focus on a couple of pieces of a surface namely back face and

front face that intersects a radius vector 
iap . A back face and a front face are determined by the

direction of normal vectors of piece of a surface and the direction of a radius vector as follows. If

0≥⋅
ii aa np , 

iap is on a front face other wise, 
iap  is on a back face, where 

ian  denotes normal

vector of a surface at the point of 
iap .

aP
The center of 

mass of
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���������������
���������������

0ar

1ar

Front face
Back face 

Quasi-solid region

iap
kap

lap
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�����������������������������������������������������
�����������������������������������������������������

Radius vector

lan
kan

Fig. 3 Back face and front face on a radius vector

Let us denote identifier k as identifier for front faces, and identifier l as an identifier for back faces. In

the figure, 
kap  denotes normalized sample point on a front face, 

lap  denotes a normalized sample

point on a back face, 
lk aa nn ,  as normal vectors of surfaces at the point of 

lk aa pp , , and 
lk aa rr ,  as

the length of 
lk aa pp , . The region that in between neighboring 

kap  and 
lap  is regarded as inside of

quasi-solid.

5.1. Description Generation

In this subsection, we describe the method to describe polyhedral surface aP  by using quasi-solid

description of S.M.F.

In the S.M.F. a n-th degree of primary moment function 1aM  that corresponds to polyhedral data aP  is

defined as follows:

∑=
i

n
aijaj ii

rw α2
1a cos)(M v . (4)

A primary moment function can be explained by using radius vectors of a polyhedral data 
iap  and
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points on a definition sphere jv  as follows:

∑ 











=
−−

i
j

T

aaaa
T

jaj i

n

ii

n

ii
w vppppvv

11

1a
22)(M . (5)

This equation shows that we can easily compute a primary moment function form radius vectors of a

polyhedral data.

Further more, since ∑ 





 −−

i

T

aaaaa i

n

ii

n

ii
w pppp

11 22
is a symmetry matrix, it can be diagonized. A

primary moment function can be explained as follows

j
TT

jj RvRvv















=

2

1

0

1a )(M

λ
λ

λ
, (6)

where R  denotes rotation matrix, and 21,, λλλo  denotes eighgen values ordered as to 21 λλλ ≥≥o

holds. This equation shows that the orientation of each polyhedral data normalized by aligning the

eigenvectors with the x, y, and z-axis with a rotation matrix R . After a normalization of orientation, we

just need to keep three real value oλ , 1λ , and 2λ  to explain each polyhedral data as follows.

j
T

jj vvv















=

2

1

0

1a )(M

λ
λ

λ
(7)

In the case of quasi-solid description, we use two types of primary moment functions, defined as

follows:

∑∑ +=
l

n
alja

k

n
akjaj llkk

rwrw αα 22
10a coscos)(M v , (8)

∑∑ −=
l

n
alja

k

n
akjaj llkk

rwrw αα 22
11a coscos)(M v . (9)

These moment functions are easily calculated by changing the sign of 
iaw  in equation (5). Two set of

21,, λλλo  will be kept for each n-th degree of primary moment functions.

A n-th degree of secondary moment function is defined as follows.

∑=
i

n
aijaja ii

rwM αcos)(2 v , (10)

By using radius vectors 
iap  of a polyhedral data, a secondary moment function can be explained as
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follows after normalization of orientation:






= ∑ −

i

n

aaajja iii
wM

1

2 )( ppRvv , (11)

Since 




 ∑ −

i

n

aaa iii
w

1
ppR  denotes three-dimensional vector, we need to keep three real value to

describe a secondary moment value. We need to keep a total of only six real value to explain a primary

and a secondary moment function: the three eigenvalues of a primary moment function and the three

components of three-dimensional vector of a secondary moment function.

In the case of quasi-solid description, we use following two types of secondary moment functions.

∑∑ +=
l

n
alja

k

n
akjaja llkk

rwrwM αα coscos)(20 v , (12)

∑∑ −=
l

n
alja

k

n
akjaja llkk

rwrwM αα coscos)(21 v , (13)

Again these moment functions can be calculated by changing the sign of 
iaw  in equation (11). Two sets

of three-dimensional vectors will be kept for each n-th degree of secondary moment functions.

The description of polyhedral surface is done by using m(m>0) to n-th(n>=m) degree of moment

functions, and we need to keep 12 real values for each n-th degree of moment functions, as described in

this subsection. The resolution of the descriptor can be controlled by m and n.

  

5.2. Comparison of polyhedral surfaces

In this subsection we describe the method to compute similarity of two given polyhedral surface aP

and bP  by using quasi-solid description of S.M.F.

Let us consider the similarity computed by using n-th degree of moment functions. The difference of

primary moment functions, is calculated as follows:

( ) ( )∑ −+−=
j

jbjajbja MMMMd 2
1111

2
10101 )()()()( vvvv , (14)

where 10aM 11aM  denotes primary moment functions, which describe polyhedral surface aP , and

10bM 11bM denotes primary moment functions, which describe polyhedral surface bP .

The points on the definition sphere should be generated as to be distributed in the even dense on the

surface of definition sphere. The technique that described in section three (3.Normalization of sample

points) can be used.

In the same manner, the difference of secondary moment functions is calculated as follows:
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( ) ( )∑ −+−=
j

jbjajbja MMMMd 2
2121

2
20202 )()()()( vvvv . (15)

The similarity s  is computed as follows:

dv

d
s

−
= , (16)

where

( )nddd
1

21 += ,

( )nvvv
1

21 += ,

( ) ( ) ( ) ( )∑ +++=
j

jbjbjaja MMMMv 2
11

2
10

2
11

2
101 )()()()( vvvv ,

( ) ( ) ( ) ( )∑ +++=
j

jbjbjaja MMMMv 2
21

2
20

2
21

2
202 )()()()( vvvv .

Let us consider multiple degree of moment functions. If we describe polyhedral surface by using m-th to

n-th degree of S.M.F., the similarity is computed as the mean of similarity:

∑
= +−

=
n

mi

i

mn

s
s

1
, (17)

where, is  denotes the similarity computed from i-th degree of S.M.F.

6. Experiments

We compared improved S.M.F. and S.M.F to show efficiency of our improvement by using a

dataset that consist of about 250 car models. The models are categorized in several categories, for

example coupes, pickup trucks, and vans,

The comparison was performed for models categorized to pickup trucks. We first separated the

pickup truces from rest of models, then selected 10 models from pickup trucks, then put selected 10

pickup trucks back to rest of models. Ten test queries were performed by specifying 10 pickup

trucks as keys. We scored each test query by counting the number of pickup trucks from top ten of

retrieved models. The following shows the results:

Table 1 Results of test queries

Key models vp2588 vp1986 vp2232 vp1981 vp1991 vp1980
Quasi-solid description + S.M.F. 10 10 10 10 10 10
S.M.F. only 10 10 9 7 9 9
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Table 1 cont.

vp2210 vp1894 vp1990 vp1993 Total
Quasi-solid description + S.M.F. 10 10 10 10 100
S.M.F. only 9 6 1 8 78

Following figure shows snapshot of query results for vp1990, which showed significant difference

in between both of methods.

Fig. 4 Query result for vp1990 (quasi-solid description + S.M.F.)

Fig. 5 Query result for vp1990 (S.M.F. only)

As seen in table 1, our improvement showed visible efficiency. The efficiency of our improvement also

showed in figure 4 and figure 5. In the worst case of S.M.F., we could not retrieve other pickup trucks

within top ten, on the other hand in the case of improved S.M.F we could retrieve all the pickup trucks
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from the same key model. All the retrieval was performed same condition and we used 2-nd degree of

S.M.F. only for this test query.

7. Conclusion

We have described two major problem of S.M.F. namely an irregular accuracy of comparisons and a

vertical blending problem. To solve an irregular accuracy of comparisons, we introduced the technique

to normalize sampling point of polyhedral surface. To solve a vertical-blending problem, we introduced

quasi-solid description technique.

The efficiency of both of the techniques was shown by performing test queries using improved S.M.F.

and older S.M.F.


