
February 1, 2000
RT0343
Computer Science 14 pages

Research Report

New Approaches for Analyzing Recombinations of Biological
Sequences

Tetsuo Shibuya

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

New Approaches for Analyzing Recombinations of Biological
Sequences

Tetsuo SHIBUYA
IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan.
Tel: +81-462-73-5915 Fax: +81-462-73-7413

E-mail: tshibuya@trl.ibm.co.jp

Abstract

Recombination is one of the most important mechanisms of genomic mutation. Recent work
has revealed that recombinations occur far more frequently than previously thought in sequences
such as RNA sequences of human immunode�ciency viruses (HIVs). But existing techniques
for detecting recombinations of sequences are inaccurate or impractical. For this problem, we
propose two kinds of approaches. One is an approach by the alignment of sequences considering
recombinations, and the other is a statistical approach that detects recombinations using aligned
multiple sequences.

For the �rst approach by the alignment technique, we �rst formulate an alignment problem
for sequences containing recombinations. We then give algorithms with practical bounds for
various versions of the problem. In the statistical approach, we consider a simple model of the
statistical behavior of point mutations, and propose a method for detecting recombinations by
computing what we call z-values.

To demonstrate both techniques, we conducted experiments using actual RNA sequences of
HIVs and arti�cially recombined sequence data.

Keywords: sequence analysis, recombination, sequence alignment,
dynamic programming, algorithm, statistical analysis

1

1 Introduction

Recombination is one of the most important mechanisms of genomic mutation. It produces a new
sequence by crossing two parent sequences: the new sequence is constructed by copying a substring
of a parent sequence, then crossing over to somewhere in the other parent and copying a substring
of that sequence. This mechanism leads to many other complex events, such as block insertions and
deletions, tandem repeats, and substring shu�ing. Recent work has revealed that recombinations
occur far more frequently than previously thought in sequences such as RNA sequences of human
immunode�ciency viruses (HIVs) [3, 5, 6, 16, 18, 19, 21]. We must therefore take account of
recombinations in sequence analysis. However, a lot of computing time is often needed to deal with
these higher-order phylogenetic events [1, 14, 15].

Most work related to recombination has focused on statistical tests or analyses for population
genetics studies [2, 8, 12, 13, 24]. In sequence analysis, there are two frequently-used methods for
detecting such recombinations, both of which use multiple sequence alignment of the sequences.
One method is to plot local similarity [27]. In this method, we �rst align the candidates for parent
sequences with the child sequence, and then we plot lines along the sequences which describe
the similarities of �xed-length substrings (called windows) of the child sequence and each of the
candidates for parents. Crossovers are found by locating crossings of the plotted lines of two parent
candidates. The other method constructs local phylogenetic trees [22, 23], by using substrings of at
the same position in the alignment. If di�erent trees appear in di�erent positions of the sequences,
we conclude that a crossover may have occurred. Both methods are very useful for showing the
\atmosphere" of recombination among sequences, but neither gives evidence of occurrences of
recombinations from a statistical or mathematical viewpoint.

Sequence alignment is one of the most famous and useful techniques for analyzing sequences in
computational biology. It is used in various �elds of molecular biology, such as the �nding of motifs
in genome sequences, the prediction of protein structures, and the inference of phylogenetic trees.
But the ordinary alignment technique ignores many factors such as recombination and tandem
repeats. The �rst work related to the alignment technique that considers recombination, by Hein
[10, 11], deals only with equal-length crossovers of appropriately aligned sequences. Kececioglu and
Gus�eld [14] considered aligning sequences to take account of recombination, but their algorithms
have large bounds on the computing time. We will introduce their work briey in section 2.1.

In this paper, we propose two di�erent approaches for detecting recombinations. One is an ex-
tension of the ordinary sequence alignment techniques, and the other is a statistical approach that
uses ordinary alignment techniques. In the �rst approach, we begin by formulating the problem,
and then present an algorithm that can be computed in O(kn2) time, where n is the maximum
length of the sequences and k is the number of sequences. In the statistical approach, we consider
a simple model of the statistical behavior of point mutations, and propose a method for detecting
recombinations by computing what we call z-values. Furthermore, we perform experiments us-
ing actual RNA sequences of HIVs and arti�cially recombined sequence data to demonstrate our
methods.

2 Alignment of Sequences with Recombinations

In this section, we propose a new alignment technique that can detect recombinations among
sequences.

2.1 Previous Works

The pairwise sequence alignment problem is one of the most fundamental problems in computational
molecular biology. Given a �nite alphabet set � including a gap denoted by -, and a score function
between alphabets : ���! R, the most commonly used de�nition of this problem is as follows.

Each member of � except for the gap is called a character, and a �nite string of characters is
called a sequence. On the other hand, a �nite string of members in � is called a padded sequence.
The set of ith elements of two padded sequences is called the ith column of the set of the sequences.
A set of two padded sequences (S01; S

0
2) is called an alignment of S1 and S2 if and only if all of the

padded sequences have the same length l, the ith column contains at least one character for any
i (1 � i � l), and S01 and S02 are identical with S1 and S2, respectively, if we ignore gaps. The

1

s

t

A T CG

A

C

T

Figure 1: The graph for the alignment of two sequences ATGC and ACT. The s-t path in the bold
line represents the alignment of ATGC- and A--CT

problem is to �nd the alignment of S1 and S2 with the largest score, i.e.,
P

1�i�l (S
0
1(i); S

0
2(i)),

where S(i) denotes the ith element of S.
In this de�nition of the problem, the gap penalty is linear to the number of gap characters. This

kind of a gap penalty is called the linear gap penalty. We often impose some starting gap penalty
on the starting of a gap sequence. In this case, the score to maximize is g �+P1�i�l (S

0
1(i); S

0
2(i))

where g is the number of the sets of consequent gaps and is the starting gap penalty. This strategy
of imposing a gap penalty is called the aÆne gap penalty.

The most famous and fundamental exact algorithm for the alignment problem is the dynamic

programming (DP) [7, 9, 17, 25, 26]. Let pij be the best score of the alignment of sequences S
(i)
1

and S
(j)
2 , where S(i) denotes the pre�x substring of S whose length is i. pij can be obtained by

pi�1;j, pi�1;j�1, and pi;j�1 as follows. Let � be the gap penalty, and pi;j (i < 0 or j < 0) be �1.

pij = maxfpi�1;j + �; pi�1;j�1 + (S1(i); S2(j)); pi;j�1 + �g (1)

It is obvious that this value can be obtained by dynamic programming. Note that this problem
can be represented by the longest path problem on a grid-like graph as in Figure 1. Note also that
there are also many heuristic algorithms for this problem, and many of these heuristic algorithms
are based on dynamic programming. This simple dynamic programming can be easily extended to
an algorithm that can deal with the aÆne gap penalty [7].

In the above formulation of the problem, we consider only deletion, insertion, and base sub-
stitution as evolutionary events. But there are many higher-order events such as recombination.
As for the recombination, Kececioglu and Gus�eld [14] formulated the Recombination Distance
Problem in several ways and proposed algorithms for them. They considered two types of recom-
bination: pure recombination and recombination with a point mutation. A sequence S0 is formed
from S1 and S2 by pure recombination if S1 and S2 can be cut at h locations into h+ 1 substrings
(S1 = v1v2 � � � vh+1, S2 = w1w2 � � �wh+1) such that S0 can be written as the concatenation of h+ 1
of these substrings, alternating between S1 and S2 (without loss of generality, S0 = v1w2v3w4 � � �).
We call these cuttings recombinations or crossovers. We call S1 and S2 parent sequences of S0. In
recombination with point mutation, errors are allowed in S0: S0 = ~v1 ~w2 ~v3 ~w4 � � �, where ~s di�ers
from s by insertion, deletion, and base substitution. Let d(v; v0) be some appropriately de�ned
score between substrings v and v0. The problem is to maximize the following value:

d(v1; ~v1) + d(w2; ~w2) + � � �+ h � �; (2)

where h is the number of recombinations and � is the penalty for the recombination, which is
preferably a negative value. Note that the most appropriate score for d(v; v0) is the ordinary
alignment score.

The above formulation of recombination has several drawbacks:

� The case in which a child is formed from more than two sequences is not considered.
� Shu�ing of the order of substrings is not allowed.
� The repetition of substrings is not allowed.

Because recombinations can lead to these three phenomena, these limitations are not desirable for
analyzing recombinations. The formulation also has the following drawback:

2

� If we use the alignment score as d(v; v0), its computation time is O(n3), where n is the
maximum length of the three sequences. It is hard to call this a practical bound, considering
that the length of the sequences to be analyzed is often larger than 10,000. Note that we can
solve this problem faster if we do not consider any point mutations, but it is unlikely from a
biological viewpoint.

A new formulation of recombination is thus required.

2.2 New Problem De�nition

We consider the following problem, which we call the Recombination Alignment Problem:

De�nition 1 The Recombination Alignment Problem is as follows. Let d(v; v0) be an appropriate
score function for two strings v and v0, � be an appropriate penalty for a crossover. Given a sequence
S0 to be analyzed and a set of sequences T = fS1; S2; : : : ; Skg that are candidates for parents, �nd
the subdivision of sequence S0 = v1v2 : : : vh+1 such that the following value is maximized:

d(v1; v
0
1) + d(v2; v

0
2) + � � �+ d(vh+1; v

0
h+1) + h � �; (3)

where v0i is a substring of one of the sequences in T .

By this de�nition, we can deal with not only recombination but also shu�ing of the order of
substrings, tandem repeats, block insertion/deletion, and so on. We will consider algorithms for
several versions of the de�nitions of d(v; v0).

2.3 Alignment Algorithm for Recombined Sequences

In this section, we will provide algorithms for three versions of the above Recombination Alignment
Problem. At �rst, we do not permit any point mutations (deletions, insertions, and substitutions).
This case is not a realistic model, but we can achieve a linear time algorithm in this case. Next we
consider an algorithm for the version that permits point mutations. We then extend this algorithm
to deal with aÆne gap penalties.

2.3.1 Recombination without a point mutation

In the recombination alignment problem without any point mutation, we let d(v; v0) = 0 if v = v0,
and d(v; v0) = +1 otherwise. This version of the problem does not allow any point mutations such
as deletions, insertions, and substitutions, which is not desirable from a biological viewpoint, but
it can be solved in a time linear to the input size.

Matching statistics [4, 9] is a very useful notion for this problem:

De�nition 2 Consider two sequences S and T . Let ms(i) be the length of the longest substring of
S starting at position i that matches a substring somewhere in T. The set of matching statistics for
S against T is the array of ms(i), therefore its length is the same as the length of the sequence S.

By using the suÆx tree of T , it is known that the matching statistics can be obtained in O(jSj+ jT j)
time if the alphabet size is constant [4].

Let @ denote a character that does not appear anywhere in S0. First, consider the sequence
S = S1+'@'+S2+'@'+ � � �+'@'+Sk, where + means that a sequences is appended. Then compute
the matching statistics for S0 against S. This can be done in O(N) time, where N is the sum of
the lengths of all the input sequences. Let rc(i) be the value de�ned by the following induction:�

rc(1) = 1
rc(i+ 1) = rc(i) +ms(rc(i)) (rc(i + 1) � jS0j) (4)

Let h+ be the largest i such that rc(i) is de�ned in the induction above. Let S[i : : : j] denote the
substring of S that starts at the ith base and ends at the jth base. Then consider the following
subdivision of S0: S0 = S0[1 : : : (rc(2)� 1)] + S0[rc(2) : : : (rc(3)� 1)] + � � �+ S0[rc(h

+) : : : S0(jS0j).
Here, each substring has a same substring somewhere in at least one of the candidates for parents,
and this subdivision achieves the largest score for this problem, that is, (h+ � 1) � �. Note that if
the corresponding positions of these substrings in the candidates for parents are required, we can
easily �nd them in O(N) time by traversing the suÆx tree of S or by using any other standard
string matching algorithms [9].

3

2.3.2 Recombination with point mutations

In this section, we propose an algorithm for the Recombination Alignment Problem with point
mutations. We consider the standard alignment score using the linear gap penalty as d(v; v0) in
de�nition 3. Let ni = jSij. In the following discussion, we use notations like recomb() and prev()
which describe set of values of indices. For example, if we let recomb(i) be fk; lg, pj;recomb(i) means
pj;k;l. For another example, \we set fi; recomb(i)g to prev(i; j; k)" means that we let the �rst value
of prev(i; j; k) be i and the second and third values be the �rst and second values of recomb(i)
respectively. The algorithm is as follows:

Algorithm 1

1. Let p0;j;l = 0 for any j and l � 0, and pi;j;�1 = �1 for any i and j.
2. For i = 1; : : : ; n0 do the following:

(a) For j = 1; : : : ; k do the following:

� For l = 0; : : : ; nj, set the following value to pi;j;l:

pi;j;l = maxfpi�1;j;l�1 + (S0(i); Sj(l)); pi�1;j;l + �; pi;j;l�1 + �g (5)

Note that this expression is very similar to expression (1), which is used for the
normal alignment problem. Let prev(i; j; l) be the values of fi0; j0; l0g such that pi0;j0;l0

determines the value of pi;j;l in the above expression.
(b) Let recomb(i) be the values of fj; kg that give the largest value of pi;j;l (1 � j � k; 0 �

l � nj).
(c) For j = 1; : : : ; k do the following:

� For l = 0; : : : ; nj, if pi;j;l < pi;recomb(i)+�, set pi;recomb(i)+� to pi;j;l, and fi; recomb(i)g
to prev(i; j; l).

At the end of the algorithm, pk;recomb(k) is the maximized score for this problem. If we need

only the score and do not need the alignment itself, the computing time is O(n0 � N�) and the
space is O(N�), where N� =

P
1�j�k nj which is O(kn) letting n be the maximum length. This

is because we do not have to remember old p, prev, and recomb values. If we need the alignment,
we can obtain it by tracing back prev() as follows:

Algorithm 2

1. Let i = k and fj; lg = recomb(k).
2. Let fi0; j0; l0g = prev(i; j; l). If i0 = i � 1, j0 = j and l0 = l � 1, align S0(i) with Sj(l). If

i0 = i � 1, j0 = j and l0 = l, align S0(i) with a gap inserted between Sj(l) and Sj(l + 1). If
i0 = i, j0 = j and l0 = l � 1, align a gap inserted between S0(i) and S0(i + 1) with Sj(l).
Otherwise, we assume that a recombination occurred at the position between S0(i � 1) and
S0(i).

3. Let fi; j; kg = prev(i; j; k). If i = 0, stop. Otherwise go to step 2.

Tracing back requires only a time linear to the output alignment size. In this case, the total
computing time is the same as above (O(n0 �N�)), and the space is O(n0 �N�), because we have to
remember prev values. But if we do not require alignment but only the score, the required space
is only O(N�). Note that this is a practical bound and the same as that for obtaining the optimal
alignment of two sequences by dynamic programming.

2.3.3 Recombination alignment problem with aÆne gap penalty

The aÆne gap penalty is a strategy for imposing a penalty on the starting of consequent gaps. In
the alignment problem, the algorithm for the linear gap penalty can be extended very easily [7].
The same technique also applies to our algorithm for the Recombination Alignment Problem.

The algorithm in detail is given in Appendix, which requires about three times as much compu-
tation time and space as the previous one for the linear gap penalty. The order of the computation
time does not change: the time is O(n0 �N�), and the space is O(N�) if only the score is required,
or O(n0 �N�) if the alignment is required.

4

Table 1: RNA sequences of HIVs and their pairwise similarity
Sequences Pairwise Similarity (%)

Name Type Length ss.D ss.E nr.20 nr.A ns.1 ns.12
sr.10 SI 5643 98.7 97.3 95.5 95.2 95.2 94.8
ss.D SI 5642 98.1 95.1 95.2 95.5 95.2
ss.E SI 5633 95.4 95.5 95.8 95.5
nr.20 NSI 5603 98.5 98.4 95.8
nr.A NSI 5624 99.0 95.9
ns.1 NSI 5624 96.2
ns.12 NSI 5617

2.3.4 Linear space divide-and-conquer algorithm

For the problem with point mutations, we have mentioned that we can compute it using O(N�)
space if we require only the score. In this section, we consider how to obtain the alignment in
O(n0 �N�) time and O(N�) space. This algorithm is a typical divide-and-conquer algorithm, and
requires twice time as that of the above algorithms.

Notice that we can also compute the alignment by starting from the last character of the child
sequence. Thus, by doing dynamic programming from both ends, we can obtain the node pdn0=2e;j;l
that must be encountered in the tracing back procedure. It can be done in O(n0 � N�) time and
O(N�) space because it does not require any tracing back procedure. Recursively, we can search
for pdn0=4e;j;l and pd3�n0=4e;j;l by doing the same way. We continue the recursive procedure until we
obtain all the p's that will be encountered if we trace back. The computing time will be twice as
the original algorithm. Note that it can be applied also to the case of aÆne gap penalty.

2.3.5 Considering reverse and/or complementary sequences

The reverse sequence is a sequence in which the order of the bases in the original sequence is
reversed. DNA has four kinds of bases: A, T, C, and G. The complementary bases of A, T, C, and
G are T, A, G, and C, respectively. The base and its complementary base sometimes combine with
each other. A complementary sequence is one whose bases are replaced by their complementary
bases.

It is known that a DNA sequence often contains reverse and/or complementary substrings of
itself or other sequences. Thus it is also important to consider such substrings in aligning sequences.
This is very easy to do: add the reverse and/or complementary sequences of the candidates for
parents to the set of original candidates, and align them in the same way as in the previous sections.

2.3.6 The Bottleneck Recombination History Problem

Kececioglu and Gus�eld [14] proposed the Bottleneck Recombination History Problem, which is a
generalization of evolutionary tree construction problems. This problem includes the Recombination
Distance Problem as a subproblem, and our models of recombination can also be applied to it.
Their algorithm for the version of multiple crossovers without point mutation required O(khN2)
preprocessing time, but our model can reduce this to O(k2N) time, where k is the number of the
input sequences, h is the number of maximum crossovers, and N is the total length of all the input
sequences. Furthermore, their algorithm for the version of multiple crossovers with point mutation
required O(N3) preprocessing time, but our model can also reduce it to O(kN2) time.

2.4 Computational Experiments

It is known that HIV RNA sequences mutate very fast and recombinate with others very often.
We carried out an experiment using the actual RNA sequences of HIVs, all of which were taken
from the same patient. Table 1 shows the sequences used in the experiments and their pairwise
similarity. According to the table, the most closely related sequence to sr.10 seems to be ss.D,
because the similarity between them is 98:7%, which is highest in the sr.10 row.

5

sr.10 1 CCCTCAAATCACTCTTTGGCAACGACCCCT � � � GGGAGTTGGAGGTTTTATCAAAGTAAGACA 174
nr.A 1 CCCTCAAATCACTCTTTGGCAACGACCCCT � � � GGGAATTGGAGGTTTTATCAAAGTAAGACA 174

sr.10 175 GTATGATCAGATACCCATAGAAATCTGTGG � � � CACTAATGATGTGAAACAATTAACAGAGGT 1410
nr.20 155 GTATGATCAGATACCCATAGAAATCTGTGG � � � CACTAATGATGTAAAACAATTAACAGAGGT 1390

sr.10 1411 AGTGCAAAAAATAACCACAGAAAGCATAGT � � � TTCTTGGGAGCAGCAGGAAGCACTATGGGC 5643
ss.D 1411 AGTGCAAAAAATAACCACAGAAAGCATAGT � � � TTCTTGGGAGCAGCAGGAAGCACTATGGG- 5642

Figure 2: Optimal alignment taking account of recombinations

Figure 2 shows the optimal alignment of sr.10 with the other sequences by our method. In the
experiment, we used linear gap costs, and let the matching score be 1, the mismatching score be
0, the gap score be �1, and the recombination score be �10. According to the �gure, the �rst 174
bases are aligned with the bases in nr.A, the next 1236 bases are aligned with the bases in nr.20,
and the remaining bases are aligned with the bases in ss.D. This result claims that sr.10 might be
a recombined sequence of nr.20 and ss.D. Note that we cannot know whether or not sr.10 is in part
a recombined sequence of nr.A and nr.20, because nr.20 lacks the data of the �rst 20 bases.

3 Statistical Method for Detecting Recombinations

In the previous section, we presented a new alignment technique that can detect recombinations.
But how con�dently can we say that it is a recombined sequence? In this section, we propose a new
statistical method for detecting recombination among sequences, which is totally di�erent from the
approach in the previous section and answers this question.

3.1 New statistical techniques

To detect recombination, there must be at least three sequences to analyze: we cannot detect
recombination from only two sequences. From now on, we consider how to determine the possibility
that there is a recombination site in given three sequences.

Let S0 be a candidate for a child sequence, and S1 and S2 be candidates for parent sequences.
Let some appropriate alignment of S0 and S1, and that of S0 and S2 be given. Let l(x) denote
the length of sequence x, l(x; y) denote the length of the alignment of sequences x and y, and
d(x; y) denote the number of mutations found in the alignment of sequences x and y. From now on,
consider x and y to be related to each other by only point mutations (i.e., not by recombinations,
repeats, or any other higher-order events). Let t(x; y) be the evolutionary time between x and y,
that is, t(x; z) + t(z; y), where z is the most recent common ancestor of x and y. Consider the
probability p that one �xed base in x and y mutates in a unit of evolutionary time. Then let p(x; y)
be the mutation probability of one base between x; y. It is computed as follows:

p(x; y) = 1� (1� p)t(x;y) � q(x; y); (6)

where q(x; y) = p(x; y)2=((1� p(x; y)) � (�+ p(x; y)� 1)) (�: the size of alphabet) is the probability
that a base mutates more than once and becomes the same as the original base. If p(x; y) and p
are small enough, we can let p(x; y) = p � t(x; y). Let p̂(x; y) = d(x; y)=l(x; y) be the estimate for
this probability.

Let u and v be arbitrary, non-overlapping substrings of S0. Let u
0 and v0 be the substrings of

S1 corresponding to u and v (i.e., located in the same region of the alignment of S0 and S1). Let
u00 and v00 be the substrings of S2 that correspond to u and v.

If there are no evolutionary events other than point mutations between S0 and S1, and also
between S0 and S2, there must be some � such that the following equations hold:

p(u; u0) = � � p(u; u00): (7)

p(v; v0) = � � p(v; v00): (8)

We can test for the existence of recombinations by testing for the non-existence of � in these
equations. Note that even if � exists, it does not imply the non-existence of recombinations. For
example, recombinations between same sequences cannot be detected (by any method, of course).

6

The number of point mutations in a sequence of length n, whose point mutation probability
is p, follows the binomial distribution Bi(n; p). The probability function of binomial distribution
often requires a large computation time, hence we often approximate this distribution to the normal
distribution N(p; p(1� p)) by the central limit theorem in cases where np is large enough (np > 5).
Let d be the number of point mutations that occurred in the sequence of length n, and p̂ = d=n be
the estimate for the point mutation probability. Then the following equations hold:

P (p � p̂+ Z�

q
p̂(1� p̂)=n+ 1=(2n)) � �; (9)

P (p � p̂� Z�

q
p̂(1� p̂)=n� 1=(2n)) � �; (10)

where P () denotes the probability of the inequality in the equation, and Z� denotes the upper (1��)
con�dence limit of the standard normal distribution N(0; 1):

R Z�
�1 exp(�x2=2)dx=p2� = 1 � �.

Note that +1=(2n) and �1=(2n) in these expressions are called 0:5 corrections for the binomial
distribution.

Without loss of generality, we can let p̂(u; u0)=p̂(u; u00) > p̂(v; v0)=p̂(v; v00). Note that if
p̂(u; u0)=p̂(u; u00) = p̂(v; v0)=p̂(v; v00), � can exist and we cannot tell whether crossovers exist or
not. Let r(x; y) =

p
p̂(x; y)(1 � p̂(x; y))=l(x; y). Then the probability of the existence of � is less

than 4� if the following inequality holds:

fp̂(u; u0)� Z� � r(u; u0)� 1=(2l(u; u0))g=fp̂(u; u00) + Z� � r(u; u00) + 1=(2l(u; u00))g
� fp̂(v; v0) + Z� � r(v; v0) + 1=(2l(v; v0))g=fp̂(v; v00)� Z� � r(v; v00)� 1=(2l(v; v0))g > 0: (11)

If this inequality holds, at least one of the four values p(u; u0), p(u; v0), p(u; u00), and p(v; v00) must
lie outside the 1 � � con�dence region, which means that the probability of the existence of � is
less than �. Note that if the number of point mutations is small, we can test for the existence of �
by means of the binomial distribution itself. It will take far more computation time, but the result
will be more accurate.

The above inequality can test the existence of the � , but we cannot know any probability.
Consider z that satis�es the following expressions:

fp̂(u; u0)� z � r(u; u0)� 1=(2n)g=fp̂(u; u00) + z � r(u; u00) + 1=(2n)g
= fp̂(v; v0) + z � r(v; v0) + 1=(2n)g=fp̂(v; v00)� z � r(v; v00)� 1=(2n)g

(p̂(u; u0) > z � r(u; u0); p̂(u; u00) > z � r(u; u00); z > 0) (12)

If there is no such value, let z be 0. We call this a z-value. If z > Z�, the probability of the
existence of � is less than 4�. For example, if z = 3:0, the probability of the existence of � is
only 0:54% at most, and we can conclude that there is a high possibility of recombination. This
probability becomes larger if z becomes smaller. For example, if z = 2:0, the probability is about
9:1%.

Since we do not know where a crossover occurs, we must test several selected sets of u and v
from S0. z or � can be computed in constant time, and therefore the speed of this method depends
on the number of these selected sets. The simplest way is to divide S0 into two parts at every
position, which requires only O(l(x; y)) time, because d()'s can be computed in a total time of
O(l(x; y)). Another simple way is to test every consequent two substrings of �xed length, which
also requires only O(l(x; y)) time. These are very reasonable and practical bounds. We call the
latter technique the sliding window method. It may be useful if the sequence to be tested is a
recombination of more than 2 sequences. Note also that the sites of crossovers can be predicted
by plotting z-values along the alignment: if there is a site with a large z-value, there is a high
probability that recombination occurred around that site.

3.2 Computational Experiments

First, we examined properties of z-values using arti�cial sequences. Consider two similar and
evolutionarily related sequences of length 2n, and let them be A and B. Let A1 and A2 be A's
substrings of length n such that A = A1+A2. In the same way, let B1 and B2 be B's substrings of
length n such that B = B1+B2. To simplify the problem, we let both the mutation ratio between

7

(a) 0.5%

(b) 1%

(c) 2%

(d) 4%

(e) 6%

(f) 8%

(g) 10%

Z

Mutation Ratio(%)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

0.00 5.00 10.00 15.00 20.00

(a) 0.5%

(b) 1%

(c) 2%

(d) 4%

(e) 6%

(f) 8%

(g) 10%

Z

Mutation Ratio(%)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

0.00 5.00 10.00 15.00 20.00

(a) 0.5%

(b) 1%

(c) 2%

(d) 4%

(e) 6%

(f) 8%

(g) 10%

Z

Mutation Ratio(%)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

0.00 5.00 10.00 15.00 20.00

(1) n = 200 (2) n = 1000 (3) n = 5000

Figure 3: Relationships between the z value and the time elapsed since the recombination
Ancestor

A
B

C

D E

Figure 4: Phylogenetic diagram of arti�cial sequences to be tested.

A1 and B1, and that between A2 and B2 be p (i.e., Ai (Bi) has p � n mutations from Bi (Ai)). In
other words, the similarities between them are both 1 � p. Then consider a recombination of A
and B that produces a new sequence C = A1 + B2. Ordinarily, observed recombinated sequences
have mutated after the event of recombination in most cases. Hence we consider A0 = A0

1 + A0
2,

B0 = B0
1 +B0

2, and C
0 = C 0

1 +C 0
2 be the mutated sequences respectively. To simplify the problem,

we assume that the number of the mutations in each substring is the same, and let it be n �q=2. We
also assume that all the mutations (including those between A and B) occur at di�erent positions.
In this situation, the mutation ratio between A0

1 and C
0
1, and that between B0

2 and C
0
2 are both q,

while the mutation ratio between B0
1 and C

0
1, and that between A0

2 and C
0
2 are both p+ q.

Figure 3 shows the relationships between z-values and q (the mutation ratio, which represents
the time elapsed since the recombination) for various values of n ((1) 200, (2) 1000, (3) 5000)
and p ((a) 0.5%, (b) 1%, (c) 2%, (d) 4%, (e) 6%, (f) 8%, (g) 10%). As we mentioned in the
previous section, if the z-value is larger than 3:0, the possibility of the existence of � is smaller than
0:54%. Let us use this value for detecting recombinations in these cases. In case (1), in which the
sequences are short (n = 200), we cannot detect the recombinations of A and B if p = 0:02 (i.e.,
if the similarity between them is at least 98%). Even if p = 0:1, we cannot detect recombinations
if q is larger than 2%. It seems that n = 200 is not large enough for detecting recombinations. In
case (2), we can always detect recombinations in the experiments if p � 0:08. In case (3), we can
always detect recombinations if p � 0:04. (Note that we do not consider the cases where q > 0:2.)
These observations reveal the following facts:

� Detection becomes easier as n becomes larger. This is a very important fact. We cannot
determine the existence of recombinations if the given sequences are too short.

� Detection becomes easier as p becomes larger. This means that recombinations between
similar sequences are diÆcult to detect.

� Detection becomes more diÆcult as q becomes larger. This means that old recombinations
are diÆcult to detect.

Note that in some actual cases, the sequences may be inuenced by some unknown higher order
phylogenetic events other than recombination if n becomes too large.

8

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

(1) C vs. A and B (2) D vs. A and B

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

(3) E vs. A and B (4) E vs. A and C

Figure 5: z-values over arti�cial sequences

We also conducted experiments to detect the recombination site. For these experiments, we
constructed 6 sequences. First, we constructed an arbitrary sequence of length 10000 (which is
the ancestor of all the other sequences). Then, we constructed three sequences A, B, and C by
mutating randomly chosen 1% of the bases of the ancestor. Let S[i : : : j] denote the substring of
S that starts at the ith base and ends at the jth base. We then constructed a sequence D by
mutating 1% of the bases of the recombined sequence A[1 : : : 4000] + B[4001 : : : 10000]. We also
constructed sequence E by mutating 1% of the bases of the recombined sequence A[1 : : : 4000] +
B[4001 : : : 7000] +C[7001 : : : 10000]. Figure 4 shows the phylogenetic diagram of these constructed
sequences.

In the experiments, we plotted z-values along the aligned sequences by dividing the alignment
to two aligned substrings at each position (see the previous subsection). Figure 5 shows the results
of the experiments. Case (1) is to test whether C is a recombined sequence of A and B. In this
case, z-values are smaller than 0:5 at most positions. Actually, C is not a recombined sequence of A
and B, so it is a reasonable result. Case (2) is to test whether D is a child of A and B. The z-value
becomes largest (about 5:0) around the position 4000, which means that our method succeeded in
correctly detecting not only the existence of a recombination but also the site of it. Cases (3) and
(4) are to test whether E is a child of A and B, or a child of A and C. In both cases, our method
correctly detected the existence recombination. In case (3), our method detects the recombination
site of A and B. But in case (4), it is diÆcult to determine the recombination site from the result
(the peaks at the positions 4000 and 7000 are not clear). This is because the part of the substring
of A and that of C are widely separated. The experiment revealed that our method can detect
recombinations of more than two sequences to some extent.

We also conducted an experiment using actual RNA sequences of HIVs. In the experiment, we
used 4 sequences (ns.12, sr.10, ss.D, and nr.20) of the HIV RNA sequences used in the last section.

9

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 1.00 2.00 3.00 4.00 5.00

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 1.00 2.00 3.00 4.00 5.00

Z

3Position x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 1.00 2.00 3.00 4.00 5.00

(1) ns.12 vs. ss.D and nr.20 (2) sr.10 vs. ss.D and nr.20 (3) by the sliding window
technique

Figure 6: z-values over HIV sequences

Before the experiment, we deleted the columns with gaps from the alignment, because gaps are
often produced by higher-order events other than point mutations. In the experiment, we tested
whether ns.12 and sr.10 are recombinated sequences of ss.D and nr.20. Figure 6 shows the result.
Experiment (1) showed that ns.12 cannot be said to be a child of ss.D and nr.20. Experiment
(2) con�dently insists that sr.10 is a recombinated sequence of ss.D and nr.20. But it is diÆcult
to know where the crossover occurred from this experiment. Experiment (3) uses the sliding
window technique with a window size of 2000; that is, we did not count the mutations farther than
1000 = 2000=2 from the dividing position in computing the z-value. The result indicated that the
site may be around the 1450th base. This experiment revealed that the sliding window technique
is a good choice for detecting the site of the recombination. But note that the largest z-value in
this experiment is smaller than that in experiment (2). In this way, we can justify the results of
the experiments in section 2.4.

4 Concluding Remarks

In this paper, we have proposed two di�erent approaches for detecting recombinations. One ap-
proach is an alignment method that takes account of recombinations. It has a practical bound of
O(kn2), where k is the number of sequences and n is the maximum length of the sequences. The
other is a statistical method that detects recombinations by computing values called z-values. For
both techniques, we conducted experiments using actual RNA sequences of HIVs and arti�cially
recombined sequence data. In future work, we need to determine an appropriate recombination
penalty (see section 2). It would also be interesting to consider how to detect statistically a recom-
bined sequence formed from many parent sequences.

Acknowledgements

The author wishes to thank Dr. Shinichi Oka, Dr. Setsuko Ida, and Ms. Saori Aizawa at the
International Medical Center of Japan, for introducing him to the problem of recombination in
HIV, and for providing him with several useful data for computational experiments.

10

References

[1] G. Benson, \Sequence Alignment with Tandem Duplication," J. Comput. Biol., Vol. 4, No. 3,
1997, pp. 351-367.

[2] E. Bertran, J. Rozas, A. Navarro, and A. Barbadilla, \The Estimation of the Number of
the Length Distribution of Gene Conversion Tracts from Population DNA Sequence Data,"
Genetics, Vol. 146, 1997, pp. 89-99.

[3] J. K. Carr et al., \Full-Length Sequence and Mosaic Structure of a Human Immunode�ciency
Virus Type 1 Isolate from Thailand," J. Virology, September 1996, pp. 5935-5943.

[4] W. I. Chang and E. L. Lawler, \Sublinear Expected Time Approximate String Matching and
Biological Applications," Algorithmica, Vol. 12, 1994, pp. 327-344.

[5] K. D. Chenault and U. Melcher, \Phylogenetic Relationships Reveal Recombination among
Isolates of Cauliower Mosaic Virus," J. Mol. Evol., Vol. 39, 1994, pp. 496-505.

[6] D. R. Forsdyke, \A Stem-Loop \Kissing" Model for the Initiation of Recombination and the
Origin of Introns," Mol. Biol. Evol., Vol. 12, No. 5, 1995, pp. 949-958.

[7] O. Gotoh, \An Improved Algorithm for Matching Biological Sequences," J. Mol. Biol. Vol.
162, 1982, pp. 705{708.

[8] R. C. GriÆths and P. Marjoram, \Ancestral Inference from Samples of DNA Sequences with
Recombination," J. Comput. Biol., Vol. 3, No. 4, 1996, pp. 479-502.

[9] D. Gus�eld, \Algorithms on Strings, Trees, and Sequences: computer science and computa-
tional biology," Cambridge University Press, 1997.

[10] J. Hein, \Reconstructing the Evolution of Sequences Subject to Recombination Using Parsi-
mony," Mathematical Biosciences 98, 1990, pp. 185-200.

[11] J. Hein, \A Heuristic Method to Reconstruct the History of Sequences Subject to Recombi-
nation," J. Molecular Evolution, Vol. 36, 1993, pp. 396-405.

[12] R. R. Hudson, \Estimating the Recombination Parameter of a Finite Population Model with-
out Selection," Genet. Res. Comb., Vol. 50, 1987, pp. 245-250.

[13] R. R. Hudson and N. L. Kaplan, \Statistical Properties of the Number of Recombination
Events in the History of a Sample of DNA Sequences," Genetics, Vol. 111, 1985, pp. 147-164.

[14] J. Kececioglu and D. Gus�eld, \Reconstructing a History of Recombinations from a Set of
Sequences," Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 471-
480.

[15] B. Ma, L. Wang. and M. Li, \Fixed Topology Alignment with Recombination," Proc. 9th An-
nual Symposium on Combinatorial Pattern Matching (CPM98), Springer-Verlag LNCS 1448,
1998, pp. 174-188.

[16] L. Moutouh, J. Corbeil, and D. D. Richman, \Recombination Leads to the Rapid Emergence
of HIV-1 Dually Resistant Mutants under Selective Drug Pressure," Proc. Natl. Acad. Sci.
USA, Vol. 93, June 1996, pp. 6106-6111.

[17] S. B. Needleman and C. D. Wunsch, \A General Method Applicable to the Search for Similar-
ities in the Amino Acid Sequence of Two Proteins," J. Mol. Biol., Vol.48, 1970, pp. 443-453.

[18] D. L. Robertson, B. H. Hahn, and P. M. Sharp, \Recombination in AIDS Viruses," J. Mol.
Evol., Vol. 40, 1995, pp. 249-259.

[19] D. L. Robertson, P. M. Sharp, F. E. McCutchan, and B. H. Hahn, \Recombination in HIV-1,"
Nature, vol. 374, 9 March, 1995, pp. 124-126.

1

[20] J. Rozas and R. Rozas, \DnaSP Version 2.0: A Novel Software Package for Extensive Molecular
Population Genetics Analysis," CABIOS, Vol. 13, No. 3, 1997, pp. 307-311.

[21] K. Sherefa, B. Johansson, M. Salminen, and A. Sonnerborg, \Full-Length Sequence of Hu-
man Immunode�ciency Virus Type 1 Subtype A, Recombined with Subtype C in the env V3
Domain," AIDS Research and Human Retroviruses, Vol. 14, No. 3, 1998, pp. 289-292.

[22] A. C. Siepel, A. L. Halpern, C. Machen, and B. T. M. Korber, \A Computer Program Designed
to Screen Rapidly for HIV Type 1 Intersubtype Recombinant Sequences," AIDS Research and
Human Retroviruses, Vol. 11, No. 11 1995, pp. 1413-1416.

[23] A. C. Siepel and B. T. Korber, \Scanning the Database for Recombinant HIV-1 Genomes,"
The Human Retroviruses and AIDS, 1995 Compendium, Part III, 1995, pp. 35-60.

[24] K. L. Simonsen and G. A. Churchill, \A Markov Chain Model of Coalescence with Recombi-
nation," Theor. Popul. Biol., Vol. 52, 1997, pp. 43-59.

[25] T. F. Smith and M. S. Waterman, \Identi�cation of Common Molecular Subsequences," J.
Mol. Biol., Vol. 147, 1981, pp. 195-197.

[26] M. S. Waterman, \Introduction to Computational Biology: Maps, Sequences and Genomes,"
Chapman & Hall, 1995.

[27] G. F. Weiller, \Phylogenetic Pro�les: A Graphical Method for Detecting Genetic Recombina-
tions in Homologous Sequences," Mol. Biol. Evol., Vol. 15, No. 3, 1998, pp. 326-335.

2

Appendix: The Algorithm for Recombination Alignment Problem
with AÆne Gap Penalty

Let � be the penalty imposed on the starting of gaps. Note that recomb() and prev() in the
following descriptions are di�erent from those in the subsection|2.3.2. Then the algorithm is as
follows:

Algorithm 3

1. Let p0;j;l;x = 0 for any j, l � 0, and x. Let pi;j;�1;x = �1 for any i, j, and x.
2. For i = 1; : : : ; n0 do the following:

(a) For j = 1; : : : ; k do the following:

� For l = 0; : : : ; nj, set the value of pi;j;l;x as follows:

pi;j;l;1 = (S0(i); Sj(l)) + maxfpi�1;j;l�1;1; pi�1;j;l�1;2; pi�1;j;l�1;3g (13)

pi;j;l;2 = � +maxfpi�1;j;l;1 + �; pi�1;j;l;2; pi�1;j;l;3 + �g (14)

pi;j;l;3 = � +maxfpi;j;l�1;1 + �; pi;j;l�1;2 + �; pi;j;l�1;3g (15)

Let prev(i; j; l; x) be the values of fi0; j0; l0; x0g such that pi0;j0;l0;x0 determines the value
of pi;j;l;x in the above expression.

(b) Let recomb(i) be the values of fj; k; xg that give the largest value of pi;j;l;x (1 � j �
k; 0 � l � nj; 1 � x � 3).

(c) For j = 1; : : : ; k do the following:

� For l = 0; : : : ; nj and x = 1; 2; 3, if pi;j;l;x < pi;recomb(i) + �, set pi;recomb(i) + � to
pi;j;l;x, and fi; recomb(i)g to prev(i; j; l; x).

The tracing algorithm for obtaining the alignment is as follows:

Algorithm 4

1. Let i = k and fj; l; xg = recomb(k).
2. Let fi0; j0; l0; x0g = prev(i; j; l; x). If i0 = i � 1, j0 = j and l0 = l � 1, align S0(i) with Sj(l).

If i0 = i � 1, j0 = j and l0 = l, align S0(i) with a gap inserted between Sj(l) and Sj(l + 1).
If i0 = i, j0 = j and l0 = l � 1, align a gap inserted between S0(i) and S0(i + 1) with Sj(l).
Otherwise, we assume that a recombination occurred at the position between S0(i � 1) and
S0(i).

3. Let fi; j; k; xg = prev(i; j; k; x). If i = 0, stop. Otherwise, go to step 2.

This algorithm requires about three times as much computation time and space as the previous
one for the linear gap penalty. The order of the computation time does not change: the time is
O(n0 �N�), and the space is O(N�) if only the score is required, or O(n0 �N�) if the alignment is
required.

1

