
April 3, 2000
RT0350
Computer Science 18 pages

Research Report

Eliminating Exception Checks and Partial Redundancies for
Java Just-in-Time Compilers

Motohiro Kawahito, Hideaki Komatsu, Toshio Nakatani

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

AbstrAbstrAbstrAbstraaaactctctct

We present new algorithms for eliminating null pointer checks, array bound checks, and partial redundancies from

programs written in Java. These algorithms have been implemented in the latest IBM JavaTM Just-In-Time (JIT)

compiler. Preliminary performance results using SpecJVM98 show significant improvements over previously-known

algorithms.

1111.... IntroductionIntroductionIntroductionIntroduction

The Java language[11] has a powerful exception-handling mechanism, which is useful for error handling, program

control, and safety preservation. However, any instruction capable of throwing an exception inhibits a compiler's ability

to optimize the program. In general, a program written in Java tends to have many such instructions, which become

barriers to code motion and thus significantly reduce the scope of optimizations. For example, null pointer checks are

required for every instance variable access, method call, and array access. Also, array bound checks are required for

every array access. In fact, these operations are quite common in typical Java programs.

A Just-in-Time (JIT) compiler, which generates native code from Java bytecode on the fly, must optimize and

generate the native code for the best runtime performance without compromising the safety of Java. Exception check

elimination is particularly important for the JIT compiler, not only because it improves the quality of the generated

code by reducing the code size, but also because it increases the opportunity for other optimizations to be applied in a

wider region by eliminating barriers to code motion.

JIT compilers can optimize Java programs more effectively if runtime trace information is used for optimizations. In

the latest version of our JIT compiler, we modified the interpreter to collect the outcome of the first execution of

every conditional branch and to pass that information to the JIT compiler to enhance partial redundancy elimination. It

is not an ideal solution, in that the interpreter does not always pass accurate branch statistics but only the outcome of

the first occurrence, but this is a trade off for increased efficiency of interpretation. Collecting precise branch

statistics by the interpreter may significantly slow down its execution.

In this paper, we present a new algorithm for null pointer check elimination, array bound check elimination, and

trace-based partial redundancy elimination, all of which have been implemented in the latest IBM JavaTM Just-in-Time

(JIT) compiler. Our new algorithm moves null pointer checks out of loops and utilizes the hardware trap mechanism. We

enhanced Gupta's algorithm[2] to eliminate more array bound checks. We use runtime trace information and eliminate

common subexpressions more aggressively on the first-taken path, employing a variant of the partial redundancy

elimination algorithm[5]. We conducted experiments by running SpecJVM98 benchmark programs on Pentium III 600MHz,

Windows NT 4.0, and IBM Developer Kit for Windows(R), JavaTM Technology Edition, Version 1.2.2. Our preliminary

performance results show significant improvements over previous approaches.

The rest of the paper is organized as follows. Section 2 summarizes previous work on each type of optimization.

Section 3 gives an overview of our approach for each type of optimization. Section 4 presents the details of our

1

Eliminating Exception Checks and Partial RedundanciesEliminating Exception Checks and Partial RedundanciesEliminating Exception Checks and Partial RedundanciesEliminating Exception Checks and Partial Redundancies

forforforfor Java Just-in-Time Compilers Java Just-in-Time Compilers Java Just-in-Time Compilers Java Just-in-Time Compilers

Motohiro Kawahito Hideaki Komatsu Toshio Nakatani
 jl25131@jp.ibm.com komatsu@jp.ibm.com nakatani@jp.ibm.com

IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan

algorithms. Section 5 shows the performance results obtained in our experiments. Section 6 offers some concluding

remarks and outlines future work.

2222.... Previous WorkPrevious WorkPrevious WorkPrevious Work

2.2.2.2.1111 NullNullNullNullccccheck Elimination using Forward Data-Flow Analysisheck Elimination using Forward Data-Flow Analysisheck Elimination using Forward Data-Flow Analysisheck Elimination using Forward Data-Flow Analysis

Previous JIT compilers, such as the Jalapeño Dynamic Optimizing Compiler[1, 9] from the IBM T.J. Watson Research

Center or previous version of our JIT compiler[10, 13], eliminate null pointer checks (called nullchecknullchecknullchecknullchecks in this paper) by

using forward data-flow analysis. However, there are two drawbacks to this approach:

� The implementation of nullcheck takes advantage of the hardware trap and the associated OS support function, but

this elimination algorithm does not take into account this hardware support.

� Forward data-flow analysis cannot move loop invariant nullchecks out of the loops. For example, when the first

object access lies inside of a loop, the nullcheck for it must remain in the loop body.

2.2.2.2.2222 Array Array Array Array BBBBound ound ound ound CCCCheck heck heck heck EEEEliminationliminationliminationlimination

Previous JIT compilers, such as the Intel JIT compiler[8], used a simple mechanism to eliminate array bound checks

(called boundcheckboundcheckboundcheckboundchecks in this paper) of only constant indices. In addition, when the array is created (using the newarraynewarraynewarraynewarray

byte code), it used the size specified in the newarraynewarraynewarraynewarray to eliminate bounds checking on subsequent array accesses. The

main advantage of this algorithm is its fast compilation. However, it has two limitations. First, the optimization scope is

local, that is, the elimination algorithm is only applied within each basic block. Second, the algorithm eliminates only

redundant boundcheck for the arrays with a constant index; more bound checks could be eliminated if a symbolic

representation of indices were supported.

Gupta's algorithm[2], which was developed for a static compiler, eliminates the array bound checks in two steps. We

explain Gupta's algorithm using an example in Figure 1. Here, we use an array aaaa, and ubububub as an upper bound of the array

aaaa. For an array aaaa, boundcheck(0<=i) means that an array bound must be checked to see if iiii is no smaller than 0 and an

exception will be thrown otherwise.

Figure 1: Gupta's algorithmFigure 1: Gupta's algorithmFigure 1: Gupta's algorithmFigure 1: Gupta's algorithm

1) Original program

(a) boundcheck(0 <= i-1);

(b) boundcheck(i-1 < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) boundcheck(0 <= i);

(f) boundcheck(i < ub);

(g) boundcheck(0 <= i-1);

(h) boundcheck(i-1 < ub);

(i) t += a[i] + a[i-1];

3) After second step

(a) boundcheck(0 <= i-1);

(b) boundcheck(i < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) (e) (e) (e)

(f) boundcheck(i < ub)

(g) (g) (g) (g)

(h) (h) (h) (h)

(i) t += a[i] + a[i-1];

2) After first step

(a) boundcheck(0 <= i-1);

(b) boundcheck(i < ub);(b) boundcheck(i < ub);(b) boundcheck(i < ub);(b) boundcheck(i < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);

(f) boundcheck(i < ub);

(g) boundcheck(0 <= i-1);

(h) boundcheck(i-1 < ub);

(i) t += a[i] + a[i-1];

In the first step, Gupta's algorithm will move boundchecks up in the backward data-flow analysis as in the following:

1. The boundcheck (e) is replaced by (g), because (e) will always hold if (g) holds for iiii.

2. The lower boundchecks (e) and (g) cannot be moved up across (d), because these boundchecks may not be valid

any more if they are moved.

3. The upper boundcheck (f) can be moved up across (d), and (b) is replaced by (f) because (b) will always hold if (f)

holds for iiii.

2

In the second step, Gupta's algorithm will move boundchecks down and will eliminate the redundant boundchecks in

the forward data-flow analysis as in the following:

1. The upper boundcheck (b) cannot be moved down across (d), because this boundcheck may not be valid any more

if it is moved.

2. The lower boundcheck (a) can be moved down across (d), and (e) and (g) are eliminated because (a), (e), and (g)

are identical checks.

3. The boundcheck (h) is eliminated because (h) will always hold if (f) holds for iiii.

However, Gupta's algorithm has the following drawback:

� Either the lower or the upper boundcheck cannot be moved across the index update. If both lower and upper

boundchecks could be moved, then more boundchecks could be eliminated.

2.2.2.2.3333 Common Sub-Common Sub-Common Sub-Common Sub- EEEExpression Eliminationxpression Eliminationxpression Eliminationxpression Elimination

Previous JIT compilers, such as the Intel JIT compiler[8], used a fast common sub-expression elimination (CSE)

algorithm that eliminates common sub-expressions from each basic block. The main advantage of this algorithm is its

fast compilation. However, it has two limitations. First, the optimization scope is local; that is, the elimination algorithm

is applied only within a basic block. Second, backward code motion, such as loop-invariant code motion, is not applied.

Partial-redundancy elimination (PRE) is an optimization that combines CSE and loop-invariant code motion. PRE

inserts and deletes computations in the flow graph in such a way that after the transformation each path contains a

fewer computations than before. PRE was originated by Morel and Renvoise[3]. Later Knoop and others developed a new

method[4, 5] to avoid any unnecessary register pressure and code motion. They describe two methods of moving code in

[5]: "busy code motion" (BCM), which is essentially the same as the original method developed by Morel and Renvoise,

and "lazy code motion" (LCM). BCM inserts an expression at every first point where the expression can be moved, and

eliminates common expressions that can be reached by the inserted expressions. LCM inserts an expression as late as

possible, to reduce the lifetime of the variable that holds the result of the expression; moreover, it avoids unnecessary

code motion. However, LCM has the following limitation, particularly when it is applied to the JIT compiler, which uses

run-time trace information for aggressive optimization:

� When there is a path on which the expression is not executed, the expression cannot be moved even on a frequently

executed path. Gupta and others[15] solved this problem, but their algorithm is too slow to use for JIT compilers.

3333.... OurOurOurOur Approach Approach Approach Approach

We use the following approach to solve the issues described in the previous section:

3.3.3.3.1111 Enhancement of Enhancement of Enhancement of Enhancement of NNNNullcheckullcheckullcheckullcheck EEEEliminationliminationliminationlimination

We begin by explaining our implementation of the nullcheck. We define two kinds of nullchecks:

� Explicit Nullchecks, which need to generate actual checking code.

� Implicit Nullchecks, which do not need to generate actual checking code, but rely on the hardware trap and its

associated OS support function.

To implement nullcheck, we use implicit nullcheck wherever possible. However, in some cases we use an explicit

nullcheck in order to maintain the Java language specification. For example, when an instruction requiring nullcheck is

a dead store, the instruction can be eliminated by using an explicit nullcheck to replace the dead store instruction.

To take another example, when method inlining is applied to a call site and an invoked method is specified at

3

compile-time, say invokenonvirtual, an explicit nullcheck needs to be generated.

Figure 2: Explicit nullcheck with method inliningFigure 2: Explicit nullcheck with method inliningFigure 2: Explicit nullcheck with method inliningFigure 2: Explicit nullcheck with method inlining

1) Before inlining1) Before inlining1) Before inlining1) Before inlining

result = obj.div(a, b);

int div(int s1, int s2) {
 return s1 / s2;
}

2) After inlining2) After inlining2) After inlining2) After inlining

explicit_nullcheck obj;
result = a / b;

Figure 2 shows an example. If the explicit nullcheck in Figure 2 (2) is replaced by an implicit nullcheck, no content of

obj is accessed. Therefore, when obj is a null pointer, no exception occurs and execution continues. This violates the

Java language specification. Explicit nullchecks with method inlining appear frequently in typical Java programs, and

thus explicit nullcheck elimination is an effective optimization. Implicit nullcheck elimination is also effective, since an

implicit nullcheck will become a barrier to the application of other optimizations across the nullcheck.

3.1.3.1.3.1.3.1.1111 EEEExplicit xplicit xplicit xplicit NNNNullcheckullcheckullcheckullcheck EEEEliminationliminationliminationlimination

Explicit_Nullcheck a

Implicit_Nullcheck a
t = a.field1

Implicit_Nullcheck a
t = a.field2

3)

Figure 3: Explicit nullcheck eliminationFigure 3: Explicit nullcheck eliminationFigure 3: Explicit nullcheck eliminationFigure 3: Explicit nullcheck elimination

1)

2)

We explain explicit nullcheck elimination with reference of Figure 3. In this case, if the explicit nullcheck in (1) is

deleted, execution on both paths becomes faster. However, traditional approaches using forward flow analysis cannot

delete this explicit nullcheck in (1), but only the implicit nullchecks in (2) and (3). This is because the explicit nullcheck

in (1) is the first point at which the contents of the object are accessed. In contrast, our method can eliminate explicit

nullchecks wherever possible if the following instruction that requires a nullcheck can be used as a substitute for the

explicit nullcheck. To minimize explicit nullchecks, explicit nullcheck elimination needs to be performed before the

optimizations described in section 3.1.2.

3.1.3.1.3.1.3.1.2222 CCCCode ode ode ode MMMMotion of otion of otion of otion of NNNNullcheckullcheckullcheckullcheck

We enhance busy code motion (BCM)[5] in order to eliminate partially-redundant nullchecks and also to move

nullchecks out of loops.

Nullcheck a
t += a.field1

1) Before optimization1) Before optimization1) Before optimization1) Before optimization

Nullcheck a
t += a.field2

2) After optimization2) After optimization2) After optimization2) After optimization

Figure 4: Partially-redundant nullcheckFigure 4: Partially-redundant nullcheckFigure 4: Partially-redundant nullcheckFigure 4: Partially-redundant nullcheck

Nullcheck a
t += a.field1

t += a.field2

Nullcheck a

Figure 4 shows an example of a partially-redundant nullcheck. In Figure 4 (1), the nullcheck located at the junction

cannot be eliminated without code motion, because the right path does not include any nullcheck. Therefore, nullcheck

will be executed twice along the left path. This optimization inserts a nullcheck in the right basic block and eliminates

4

the nullcheck at the junction. As a result, a nullcheck will be executed only once along each path.

Nullcheck a
X += a.f1 * b

1) Before optimization1) Before optimization1) Before optimization1) Before optimization

X += a.f1 * b

2) Apply nullcheck2) Apply nullcheck2) Apply nullcheck2) Apply nullcheck
optimizationoptimizationoptimizationoptimization

Nullcheck a

Figure 5: Move nullcheck out of loopFigure 5: Move nullcheck out of loopFigure 5: Move nullcheck out of loopFigure 5: Move nullcheck out of loop

X += t

3) Apply lazy code motion3) Apply lazy code motion3) Apply lazy code motion3) Apply lazy code motion

Nullcheck a
t = a.f1 * b

Figure 5 shows an example of moving nullchecks out of loops. In Figure 5(1), the nullcheck cannot be eliminated by

the previous approach using forward data-flow analysis, because the outer path does not include any nullcheck. When

a nullcheck remains in a loop, the field access (a.f1) cannot be moved out of the loop. Figure 5(3) shows the final result,

which cannot be achieved without moving the code of the nullcheck out of the loop.

We note here that the attribute (explicit/implicit) must be determined for the nullcheck inserted by the code motion

as follows. If one of the original nullchecks for the inserted one has the explicit attribute, then the attribute of the

inserted nullcheck is determined to be an explicit. We note here that the optimization described in section 3.1.1 should

be executed before the optimization in section 3.1.2, in order to eliminate as many explicit nullchecks as possible.

3.3.3.3.2222 Enhancement for Enhancement for Enhancement for Enhancement for AAAArray rray rray rray BBBBound ound ound ound CCCCheck heck heck heck EEEEliminationliminationliminationlimination 1111

We enhance Gupta's array bound check elimination algorithm[2, 12] in order to eliminate more array bound checks. Our

algorithm is basically the same as Gupta's, which modifies boundchecks by backward data-flow analysis as the first

step and eliminates boundchecks by forward data-flow analysis as the second step. However, our algorithm is improved

over Gupta's algorithm in the following four areas:

� Our algorithm can move both the upper and the lower boundchecks when an index variable is updated by adding a

constant.

While Gupta's algorithm propagates the boundcheck without modifying the expression of the boundcheck, our

algorithm will modify the subscript expression of the boundcheck to allow the boundcheck to be moved across the

definition of the relevant variable. Therefore, our algorithm can propagate more boundchecks than Gupta's. We

explain this enhancement using the same example as before (Figure 1).

Figure 6: Enhancement for array bound check elimination (1)Figure 6: Enhancement for array bound check elimination (1)Figure 6: Enhancement for array bound check elimination (1)Figure 6: Enhancement for array bound check elimination (1)

1) Original program

(a) boundcheck(0 <= i-1);

(b) boundcheck(i-1 < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) boundcheck(0 <= i);

(f) boundcheck(i < ub);

(g) boundcheck(0 <= i-1);

(h) boundcheck(i-1 < ub);

(i) t += a[i] + a[i-1];

3) After second step

(a) boundcheck(0 <= i-1);

(b) boundcheck(i+1 < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) (e) (e) (e)

(f) (f) (f) (f)

(g) (g) (g) (g)

(h) (h) (h) (h)

(i) t += a[i] + a[i-1];

2) After first step

(a) boundcheck(0 <= i-1);

(b) boundcheck(i+1 < ub);(b) boundcheck(i+1 < ub);(b) boundcheck(i+1 < ub);(b) boundcheck(i+1 < ub);

(c) t = a[i-1];

(d) i = i + 1;

(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);(e) boundcheck(0 <= i-1);

(f) boundcheck(i < ub);

(g) boundcheck(0 <= i-1);

(h) boundcheck(i-1 < ub);

(i) t += a[i] + a[i-1];

In the first step, our algorithm will move boundchecks up in the backward data-flow analysis. The boundcheck (e)

is replaced by (g), because (e) will always hold if (g) holds for iiii. In our algorithm, both the upper and the lower

5

1 This algorithm was briefly introduced in our previous paper[10, 13].

boundchecks can be moved up across (d) by modifying the expressions of the boundchecks in the following. Here we

assume that iiii1111 is the value of iiii at (c) and iiii2222 is the value of iiii at (e).

(d) i2 = i1 + 1
(e) boundcheck(0 <= i2-1) boundcheck(0 <= i1) -- (e')�

(f) boundcheck(i2 < ub) boundcheck(i1+1 < ub) -- (f ')�

Finally, (b) is replaced by (f '), because (b) will always hold if (f ') holds for iiii. Figure 6(2) is the result of the first

step.

In the second step, our algorithm will move boundchecks down and eliminate boundchecks in the forward data-flow

analysis. In our algorithm, both the upper and the lower boundchecks can be moved down across the (d) by modifying

the expressions of the boundchecks as in the following.

(d) i2 = i1 + 1 i1 = i2 - 1�

(a) boundcheck(0 <= i1-1) boundcheck(0 <= i2-2) -- (a')�

(b) boundcheck(i1+1 < ub) boundcheck(i2 < ub) -- (b')�

The boundchecks (e) and (g) can be eliminated because (e) and (g) will always hold if (a') holds for iiii. The

boundchecks (f) and (h) can also be eliminated because (f) and (h) will always hold if (b') holds for iiii. Figure 6(2) is the

result of the second step. Notice that our algorithm eliminated more array bound checks than the original algorithm.

� Our algorithm can create a new boundcheck with a constant index based on the maximum and minimum constant

offset from the index variable.

boundcheck(0 <= i-1);
boundcheck(i+1 < ub);
(We create a new available information, that is boundcheck(2 < ub)boundcheck(2 < ub)boundcheck(2 < ub)boundcheck(2 < ub) , at this point.)
a[i+1] = a[i] + a[i-1];
boundcheck(2 < ub); /* This array bound check can be eliminated */
a[2] = 0;

Figure 7: Enhancement for array bound check elimination (2)Figure 7: Enhancement for array bound check elimination (2)Figure 7: Enhancement for array bound check elimination (2)Figure 7: Enhancement for array bound check elimination (2)

 For example in Figure 7, our algorithm will create a new boundcheck with the constant offset equivalent to the

value of (maximum offset - minimum offset). In Figure 7, since the maximum constant offset of iiii is 1 and the

minimum constant offset is -1, our algorithm will add the new boundcheck(1-(-1) < ub) = boundcheck(2 < ub).

Therefore, the next boundcheck(2 < ub) can be eliminated. We note here that the new boundcheck is not actually

generated but it is only used for eliminating the following boundchecks.

� If the maximum (or minimum) value of the subscript expression is known and the boundcheck with the maximum (or

minimum) index value has already been performed earlier in the program, then our algorithm can eliminate all the

following boundchecks with the known indices.

boundcheck(10 < ub);
a[10] = 1;
for (i = 0; i < 10; i++) {
 boundcheck(0 <= i); /* This array bound check can be eliminated */
 boundcheck(i < ub); /* This array bound check can be eliminated */
 a[i] = 0; /* min. value of i is 0, max. value of i is 9 */
}

Figure 8: Enhancement for array bound check elimination (3)Figure 8: Enhancement for array bound check elimination (3)Figure 8: Enhancement for array bound check elimination (3)Figure 8: Enhancement for array bound check elimination (3)

For example, in Figure 8, the minimum value of i is known to be 0 and the maximum value of i is known to be 9 inside

the loop2. Therefore, both the lower and the upper boundchecks in the loop can be eliminated after the

boundcheck(10 < ub) is performed.

6

2 We have used the same approach as Chambers's algorithm[14] to compute range of local variables.

� Our algorithm can eliminate boundchecks whose subscript expression is equivalent to the average of those index

variables whose boundchecks are already performed. This is based on the following inequalities.

Minimum(variables) Average(variables) Maximum(variables)� �

boundcheck(left < ub);
boundcheck(0 <= left);
w1 = a[left];
boundcheck(right < ub);
boundcheck(0 <= right);
w2 = a[right];
boundcheck((left+right)/2 < ub); /* This array bound check can be eliminated */
boundcheck(0 <= (left+right)/2); /* This array bound check can be eliminated */
center = a[(left+right)/2];

Figure 9: Enhancement for array bound check elimination (4)Figure 9: Enhancement for array bound check elimination (4)Figure 9: Enhancement for array bound check elimination (4)Figure 9: Enhancement for array bound check elimination (4)

For example, in Figure 9, the following inequalities will hold. Therefore, the two boundchecks involving (left+right)/2

can be eliminated.

Minimum(left, right) Average(left, right) Maximum(left, right)� �

3.3.3.3.3333 Enhancement for Lazy Code Motion (LCM)Enhancement for Lazy Code Motion (LCM)Enhancement for Lazy Code Motion (LCM)Enhancement for Lazy Code Motion (LCM)

We enhance lazy code motion (LCM) to allow scalar replacement and common subexpression elimination by moving

redundant expressions aggressively along frequently executed paths, even if they cannot be moved on all of the paths

in the original LCM algorithm.

For example, in Figure 10(1), there are two instances of "a * b * c" on one side of the conditional branch. The

traditional LCM algorithm cannot treat them as common, since there is no common expression on the other path. Our

algorithm will move the common expression on the "frequently taken edge" if it does not cause any side effects (that

is, if the expression is potentially throwing an exceptions or writing the result into memory). As a result, we can

improve the runtime performance on the frequently executed path. Figure 10(2) shows the result of the transformation,

where "a * b * c" is optimized along the "frequently taken edge." If common subexpressions are eliminated from the

loop body, the performance improvement will become even more significant. Let us note here that the machine code

for "i=t" will not be generated in a later phase, because the lifetime of tttt ends at the trivial copy "i=t", and therefore

register allocator will treat iiii and tttt as the same register.

1) Before transformation1) Before transformation1) Before transformation1) Before transformation

h = a * b * c a = func()

i = a * b * c

frequently taken edge rarely taken edge

2) After transformation2) After transformation2) After transformation2) After transformation

t = a * b * c
h = t

a = func()
t = a * b * c

i = t

frequently taken edge rarely taken edge

Figure 10: Enhancement of lazy code motionFigure 10: Enhancement of lazy code motionFigure 10: Enhancement of lazy code motionFigure 10: Enhancement of lazy code motion

Gupta's PRE algorithm[15] uses path profiles and computes the cost and benefit along each path. In contrast, our

algorithm uses only edge profiles created by the interpreter. Owing to this simplification, as shown in Table 3 in Section

5.3, there was no noticeable increase in compilation time compared to the original LCM algorithm.

7

4444.... OutlineOutlineOutlineOutlinessss of of of of OOOOur Algorithmsur Algorithmsur Algorithmsur Algorithms

4.4.4.4.1111 Algorithm for Algorithm for Algorithm for Algorithm for NNNNullcheckullcheckullcheckullcheck EEEEliminationliminationliminationlimination

We first describe the outline of our algorithm for nullcheck elimination.

4.1.4.1.4.1.4.1.1111 Algorithm for Algorithm for Algorithm for Algorithm for EEEExplicit xplicit xplicit xplicit NNNNullcheckullcheckullcheckullcheck EEEEliminationliminationliminationlimination

This optimization is performed when both implicit nullchecks and explicit nullchecks are generated. Out(n) is the set

of substitutes for nullcheck at the exit of the basic block. This set is computed by solving the backward data-flow

equations given below.

Gen(n): The set of substitutes for nullcheck at the entry of basic block n. Both nullcheck and accessing the contents

of an object are included in the set.

Kill(n) : The set of nullchecks killed through basic block n in the backward direction. Concrete instructions are

definitions of a variable that is used in nullcheck or that causes side effects, such as other kinds of

exceptions or writes to memory.

Out(n) = In(m)�
 m = Succ(n)

In(n) = (Out(n) - Kill(n)) Gen(n)�

The set of substitutes for nullcheck at each point inside a basic block n is determined from Out(n). An explicit

nullcheck is eliminated if we determine that a substitute for nullcheck can reach the explicit nullcheck in the backward

direction.

4.1.4.1.4.1.4.1.2222 Algorithm for Algorithm for Algorithm for Algorithm for NNNNullcheckullcheckullcheckullcheck IIIInsertionnsertionnsertionnsertion

This optimization can be performed at any time; but when both implicit nullcheck and explicit nullcheck are

generated, an algorithm that determines the attribute for the inserted nullcheck is necessary.

Out(n) is the set of movable nullchecks at the exit of the basic block. This set is computed by solving the backward

data-flow equations given below.

Gen(n) : The set of movable nullchecks at the entry of basic block n. Only nullchecks are included in the set.

Kill(n) : The set of nullchecks killed through basic block n in the backward direction. It is the same as Kill(n) in section

4.1.1.

Out(n) = In(m)�
 m = Succ(n)

In(n) = (Out(n) - Kill(n)) Gen(n)�

Next, Earliest(n) is the set of the first points of nullcheck in the region where nullcheck can be moved toward the

backward. This set is computed by means of the following equation:

Earliest(n) = (Out(m)) Out(n)� �
 m = Pred(n)

The nullchecks in Earliest(n) are inserted at exit of basic block n.

Algorithm for attribute determinationAlgorithm for attribute determinationAlgorithm for attribute determinationAlgorithm for attribute determination

When both an implicit nullcheck and an explicit nullcheck are generated, the attribute for the inserted nullcheck must

be determined.

Out_explicit(n) is the set of explicit nullchecks at the exit of the basic block. This set is computed by solving the

8

backward data-flow equations given below.

Gen(n) : The set of movable explicit nullchecks at the entry of basic block n. Only explicit nullchecks are included in

the set.

Kill(n) : The set of nullchecks killed through basic block n in the backward direction. It is the same as Kill(n) in section

4.1.1.

Out_explicit(n) = In_explicit(m)�
 m = Succ(n)

In_explicit(n) = (Out_explicit(n) - Kill(n)) Gen(n)�

The set of explicit nullchecks at each point inside a basic block n is determined from Out_explicit(n). The attribute of

an inserted nullcheck is determined to be explicit nullcheck when the set of an explicit nullcheck contains the inserted

nullcheck. The implicit nullcheck inserted by the optimization described in 4.1.2 is located at a different point from that

at which the NullPointerException actually occurs. This difference is corrected by the transaction of 4.1.4; the reason

we perform implicit nullcheck optimization, which consumes compilation time, is that nullcheck becomes barrier to the

application of other optimizations, such as scalar replacement or code scheduling.

4.1.4.1.4.1.4.1.3333 Algorithm for Algorithm for Algorithm for Algorithm for NNNNullcheckullcheckullcheckullcheck EEEEliminationliminationliminationlimination

This optimization can be performed any time. Its purpose is to eliminate nullchecks that have already been checked

somewhere along the data-flow.

In(n) is the set of available nullchecks at the entry of the basic block. This set is computed by solving the forward

data-flow equations given below.

Gen(n) : The set of available nullchecks at the exit of basic block n. Both nullcheck and accessing the contents of an

object are included in the set.

Kill(n) : The set of nullchecks killed through basic block n in the forward direction. A concrete instruction is a definition

of a variable used in nullcheck.

Non_null(n) : The set of non-null objects that are determined by a conditional branch or a "this" object in the original

Java program at the entry of the basic block n. Concrete examples are ifnull, ifnonnull, and the "this" object

for an instance method.

In(n) = (Out(m)) Non_null(n)� �
 m = Pred(n)

Out(n) = (In(n) - Kill(n)) Gen(n)�

The set of available nullchecks at each point inside a basic block n is determined from In(n). A nullcheck CCCC is

eliminated if we determine that there is an available nullcheck that can reach CCCC.

4.1.4.1.4.1.4.1.4444 Algorithm for Algorithm for Algorithm for Algorithm for IIIImplicit mplicit mplicit mplicit NNNNullcheckullcheckullcheckullcheck PPPPropagationropagationropagationropagation

This phase must be executed after the optimization described in section 4.1.2 has been applied and an implicit

nullcheck has been generated. It should be executed after the optimizations of code motion. Figure 11 explains why it

must be applied. We assume that all nullchecks in Figure 11 are implicit nullchecks. As we explained before, we cannot

move "a.f1a.f1a.f1a.f1" in Figure 11(a) out of the loop without implicit nullcheck optimization. Therefore, implicit nullcheck

optimization should be applied. In Figure 11 (b), the implicit nullcheck is placed at a different point from that at which

the NullPointerException actually occurs. This might cause an invalid optimization result, and therefore it is necessary

to apply implicit nullcheck propagation, which propagates the implicit nullcheck to the exception occurrence point.

9

Nullcheck a
X += a.f1a.f1a.f1a.f1 * b

a)

Nullcheck a
X += a.func(b)a.func(b)a.func(b)a.func(b)

b)

1) Before optimization1) Before optimization1) Before optimization1) Before optimization

X += t

a)

2) After all optimization2) After all optimization2) After all optimization2) After all optimization

Nullcheck a
t = a.f1a.f1a.f1a.f1 * b

X += a.func(b)a.func(b)a.func(b)a.func(b)

b)

Nullcheck a

Figure 11: Implicit nullcheck propagationFigure 11: Implicit nullcheck propagationFigure 11: Implicit nullcheck propagationFigure 11: Implicit nullcheck propagation

(ItalicsItalicsItalicsItalics denote the actual exception sites)

In(n) is the set of implicit nullchecks whose objects have not yet been accessed at the entry of the basic block. This

set is computed by solving the forward data-flow equations given below.

Gen(n) : The set of implicit nullchecks whose object has not yet been accessed at the exit inside the basic block n.

Only implicit nullchecks are included in the set.

Kill(n) : The set of nullchecks that contains Kill(n) described in section 4.1.3 and instructions for accessing the

contents of its object.

In(n) = Out(m)�

 m = Pred(n)

Out(n) = (In(n) - Kill(n)) Gen(n)�

The set of a nullcheck whose object has not yet been accessed at each point inside a basic block n is determined

from In(n). Information on exception occurrence is added if it is determined that the set can reach the instruction by

accessing the contents of the object. Finally, all implicit nullchecks are eliminated.

4.4.4.4.2222 Algorithm for AAlgorithm for AAlgorithm for AAlgorithm for A rray rray rray rray BBBBound ound ound ound CCCCheckheckheckheck Elimination Elimination Elimination Elimination

In this section, we outline our algorithm for array bound check elimination.

4.2.4.2.4.2.4.2.1111 Algorithm for Modifying Algorithm for Modifying Algorithm for Modifying Algorithm for Modifying BBBBoundcheckoundcheckoundcheckoundcheckssss

The purpose of this optimization is to combine as many boundchecks as possible. Out(n) is the set of movable

boundchecks at the exit of the basic block. This set is computed by solving the backward data-flow equations given

below.

Gen(n) : The set of movable boundchecks at the entry of basic block n.

Kill(n) : The set of boundchecks killed through basic block n in the backward direction. Concrete instructions are

definitions of an object that is used in boundcheck or instructions that cause side effects, such as other kinds

of exceptions or a write to memory. A definition of a variable of the subscript used in boundcheck is not

included in the set.

Effect(n, v) : This summarizes the effect of nnnn on variable vvvv. It consists of a changed state and a value. The statestatestatestate has

four bits denoting "change," "constant," "increase," and "decrease." The valuevaluevaluevalue is valid when the "constant"

bit of statestatestatestate is true.

Out(n) = In(m)�
 m = Succ(n)

In(n) = backward(Out(n) - Kill(n), n) Gen(n)�

backward() denotes the following transaction, which returns a set. In the description of backward(), I(u) denotes that

f(v) in I is replaced by f(u).

10

backward(INPUT, n) {
RET = �
for (each boundcheck IIII INPUT){�

vvvv = index variable in IIII
if ("change" bit in Effect(n, vvvv) == false){

RET = RET IIII(vvvv)�
} else if (("increase" bit in Effect(n, vvvv) == true) || ("decrease" bit in Effect(n, vvvv) == true)) {

f(vvvv) = subscript expression in IIII
if (f(vvvv) is monotonemonotonemonotonemonotone by vvvv){

if ("constant" bit in Effect(n, vvvv) == true){
CCCC = changed valuevaluevaluevalue in Effect(n, vvvv)
RET = RET IIII(vvvv + CCCC)�

} else {
switch(kind of comparison in IIII){
case compared with lower boundcompared with lower boundcompared with lower boundcompared with lower bound ：

if (("increase" bit in Effect(n, vvvv) == true && f(vvvv) is a decreasing expressiondecreasing expressiondecreasing expressiondecreasing expression by vvvv) ||
 ("decrease" bit in Effect(n, vvvv) == true && f(vvvv) is a increasing expressionincreasing expressionincreasing expressionincreasing expression by vvvv)){

RET = RET IIII(vvvv)�
}
break;

case compared with upper boundcompared with upper boundcompared with upper boundcompared with upper bound ：
if (("increase" bit in Effect(n, vvvv) == true && f(vvvv) is a increasing expressionincreasing expressionincreasing expressionincreasing expression by vvvv) ||
 ("decrease" bit in Effect(n, vvvv) == true && f(vvvv) is a decreasing expressiondecreasing expressiondecreasing expressiondecreasing expression by vvvv)){

RET = RET IIII(vvvv)�
}
break;

}
}

}
}

}
return (RET)

}

The set of a movable boundcheck at each point inside a basic block n is determined from Out(n). A bound check CCCC is

modified if we determine that there is another check C'C'C'C' that is a movable boundcheck at the point immediately

following CCCC and that C'C'C'C' contains CCCC. In this case, we replace CCCC by C'C'C'C'.

4.2.4.2.4.2.4.2.2222 Algorithm for Algorithm for Algorithm for Algorithm for BBBBoundcheckoundcheckoundcheckoundcheck EEEEliminationliminationliminationlimination

The purpose of this optimization is to eliminate boundchecks that have already been checked somewhere along the

data-flow. In(n) is the set of available boundchecks at the exit of the basic block. This set is computed by solving the

forward data flow equations given below.

Gen(n) : The set of available boundchecks at the exit of basic block n. We can determine the following already checked

boundchecks:

� The boundcheck itself

� The constant index obtained by computing (maximum offset - minimum offset) from the index variable

� The constant index obtained by computing (creation size - 1) at the instruction that is created by kind of

newnewnewnew with constant size.

Kill(n) : The set of boundchecks killed through basic block n in the forward direction. Concrete instructions are

definitions of an object used in boundcheck. A definition of a variable of the subscript used in boundcheck is

not included in the set.

Effect(n, v) : The same as Effect(n, v) in section 4.2.2.

In(n) = Out(m)�
 m = Pred(n)

Out(n) = forward(In(n) - Kill(n), n) Gen(n)�

11

forward() denotes the following transaction, which returns a set. In the description of forward(), I(u) denotes that f(v)

in I is replaced by f(u).

forward(INPUT, n) {
RET = �
for (each boundcheck IIII INPUT){�

vvvv = index variable in IIII
if ("change" bit in Effect(n, vvvv) == false){

RET = RET IIII(vvvv)�
} else if (("increase" bit in Effect(n, vvvv) == true) || ("decrease" bit in Effect(n, vvvv) == true)) {

f(vvvv) = subscript expression in IIII
if (f(vvvv) is monotonemonotonemonotonemonotone by vvvv){

if ("constant" bit in Effect(n, vvvv) == true){
CCCC = changed value in Effect(n, vvvv)
RET = RET IIII(vvvv - CCCC)�

} else {
switch(kind of comparison in IIII){
case compared with lower boundcompared with lower boundcompared with lower boundcompared with lower bound ：

if (("increase" bit in Effect(n, vvvv) == true && f(vvvv) is a increasing expressionincreasing expressionincreasing expressionincreasing expression by vvvv) ||
 ("decrease" bit in Effect(n, vvvv) == true && f(vvvv) is a decreasing expressiondecreasing expressiondecreasing expressiondecreasing expression by vvvv)) {

RET = RET IIII(vvvv)�
}
break;

case compared with upper boundcompared with upper boundcompared with upper boundcompared with upper bound ：
if (("increase" bit in Effect(n, vvvv) == true && f(vvvv) is a decreasing expressiondecreasing expressiondecreasing expressiondecreasing expression by vvvv) ||
 ("decrease" bit in Effect(n, vvvv) == true && f(vvvv) is a increasing expressionincreasing expressionincreasing expressionincreasing expression by vvvv)) {

RET = RET IIII(vvvv)�
}
break;

}
}

}
}

}
return (RET)

}

The set of available boundchecks at each point inside a basic block n is determined from In(n). A boundcheck is

eliminated if we determine as follows that the boundcheck CCCC has already been checked:

� There is an available boundcheck C'C'C'C' that contains CCCC at the point immediately preceding CCCC.

� The maximum (or minimum) value VVVV of the subscript expression in CCCC is known, and there is an available boundcheck

with VVVV.

� The subscript expression of CCCC consists of the average of previously checked index variables.

4.4.4.4.3333 Algorithm for Algorithm for Algorithm for Algorithm for Enhanced Enhanced Enhanced Enhanced Lazy Code MotionLazy Code MotionLazy Code MotionLazy Code Motion

We use lazy code motion, which minimizes the lifetime of temporary variables, to perform scalar replacement and

common sub-expression elimination. There is a problem in implementing LCM in a JIT compiler because of its time

complexity. To reduce the compilation time, we limit the number of expressions to 32 or 64, since these can be

represented by non-array bit vectors. We count expressions in a method according to the specified weight of its loops

and limit the number of expressions according to the count.

We modify the original algorithm as follows:

1. We determine a set of expressions that do not have any side effects (exceptions or writes to memory).

2. When the Down-SafetyDown-SafetyDown-SafetyDown-Safety described in [2, 3] is computed, we ignore the edge of the "rarely taken edge" for the set

not causing any side effects.

12

h += a * b a = func()

1) Before transformation1) Before transformation1) Before transformation1) Before transformation

frequently taken edge rarely taken edge

h += t
a = func()
t = a * b

t = a * b

2) After transformation2) After transformation2) After transformation2) After transformation

frequently taken edge rarely taken edge

Figure 12: Example of our lazy code motionFigure 12: Example of our lazy code motionFigure 12: Example of our lazy code motionFigure 12: Example of our lazy code motion

If the optimization applies to expressions in loops, the effect is significant. Figure 12 shows an example of the results

obtained by our algorithm. Here the expression "a * b" is moved off of the frequently executed path and therefore will

be executed much fewer times.

5555.... Experimental Experimental Experimental Experimental RRRResultsesultsesultsesults

We chose SPECjvm98[7], which is a set of industry-standard client benchmark programs, for the evaluation of our

individual optimizations. The measurements were performed in test mode with a count of 100, as specified for the

SPEC-compliant mode. All the experiments described below were conducted on an IBM IntelliStation M Pro (Pentium

III 600MHz with 384 MB of RAM), Windows NT 4.0 Service Pack 5, and IBM Developer Kit for Windows(R), JavaTM

Technology Edition, Version 1.2.2. Our implementation of nullcheck utilized the hardware trap (implicit nullcheck), and

our implementation of boundcheck used compare and branch. The runtime trace on the conditional branch, which is

created by the interpreter, was recorded only on the first execution.

We disabled each optimization (denoted as "No Null", "No Array", and "No Lazy" in Table 1) individually to show the

effectiveness over the full optimizations that enabled all optimizations (denoted as "All New" in Table 1). To compare

the performance improvement over previous approach, we also implemented Whaley's algorithm[1] (denoted as "Old

Null" in Table 1) for nullcheck elimination, Gupta's algorithm[2] (denoted as "Old Array" in Table 1) for boundcheck

elimination, and Knoop's algorithm[5] (denoted as "Old Lazy" in Table 1) for lazy code motion. Table 1 shows the results

(time in seconds) for each case.

Table 1: ITable 1: ITable 1: ITable 1: I mprovementmprovementmprovementmprovement of individual optimizations of individual optimizations of individual optimizations of individual optimizations

14.8612.0012.3423.9717.948.087.02Old Lazy

15.1312.3913.8124.2217.938.487.09No Lazy

15.0711.7312.1624.1118.198.147.09Old Array

15.2711.9413.9424.4218.598.317.14No Array

14.8511.7612.1424.3118.118.137.56Old Null

14.8611.8612.1424.4518.258.167.61No Null

14.8311.6912.0323.9518.038.087.03ALL NEW

javacjackmpegdbcompressjessmtrt(unit : sec)

ALL NEW: All new optimizations are applied.
No Null: Disable nullcheck optimization.
Old Null: Use Whaley's algorithm[1] for null check elimination. Enable other optimizations.
No Array: Disable boundcheck optimization.
Old Array: Use Gupta's algorithm[2] for array bound check elimination. Enable other optimizations.
No Lazy: Disable optimization by lazy code motion.
Old Lazy: Use Knoop's algorithm[5] for lazy code motion. Enable other optimizations.

13

5.5.5.5.1111 Improvement Improvement Improvement Improvement ofofofof OOOOur Exception Check Eliminationur Exception Check Eliminationur Exception Check Eliminationur Exception Check Elimination

Figure 13 shows the percentage of performance improvement achieved by the nullcheck optimization described in

section 4. It has been noticed that our explicit nullcheck elimination is particularly effective for mtrtmtrtmtrtmtrt after method

inlining is performed. This is because mtrtmtrtmtrtmtrt has those small methods (to access data in a class) which are called

frequently and many explicit nullchecks associated with them can be eliminated only after they are inlined.

0.66%
0.37%

0.77% 0.58%

0.00%

0.85%

0.07%

8.25%

0.99%
1.22%

2.09%

0.91%

1.45%

0.20%

mtrt jess compress db mpegaudio jack javac
0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

New null check optimization
Old null check optimization

Figure 13: Improvement of nullcheck optimizationFigure 13: Improvement of nullcheck optimizationFigure 13: Improvement of nullcheck optimizationFigure 13: Improvement of nullcheck optimization

Figure 14 shows the percentage of performance improvement achieved by the boundcheck optimization described in

section 4. This optimization is most effective for mpegaudiompegaudiompegaudiompegaudio , because it performs a large number of array accesses.

0.71%

2.09% 2.20%
1.29%

14.64%

1.79%
1.33%1.56%

2.85% 3.11%

1.96%

15.88%

2.14%
2.97%

mtrt jess compress db mpegaudio jack javac
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

New array bound check optimization
Old array bound check optimization

Figure 14: Improvement of boundcheck optimizationFigure 14: Improvement of boundcheck optimizationFigure 14: Improvement of boundcheck optimizationFigure 14: Improvement of boundcheck optimization

5.5.5.5.2222 Improvement of Our Lazy Code MotionImprovement of Our Lazy Code MotionImprovement of Our Lazy Code MotionImprovement of Our Lazy Code Motion

Figure 15 shows the percentage of performance improvement achieved by our lazy code motion algorithm described

in section 4.

14

1.00%

4.95%

-0.06%

1.04%

11.91%

3.25%

1.82%
0.85%

4.95%

-0.55%

1.13%

14.80%

5.99%

2.02%

mtrt jess compress db mpegaudio jack javac
-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

New lazy code motion
Old lazy code motion

Figure15: Improvement of lazy code motionFigure15: Improvement of lazy code motionFigure15: Improvement of lazy code motionFigure15: Improvement of lazy code motion

This optimization is most effective for mpegaudiompegaudiompegaudiompegaudio. As shown in Figures 14 and 15, we must implement both array

bound check elimination and enhanced LCM to achieve the best performance of mpegaudiompegaudiompegaudiompegaudio. It has been noticed that

optimizing multidimensional arrays is important to improve performance of mpegaudiompegaudiompegaudiompegaudio. In contrast, this optimization is

least effective for compresscompresscompresscompress, which is slightly worse (0.49%) than that with the original LCM. This might be caused by

inaccurate runtime trace information. To validate this, we collected branch statistics for each program. Figure 16

shows a hit ratio of the trace information, that is the ratio of the outcome of the first execution of every conditional

branch over the outcomes of all the branches actually executed in the whole life of each program. In summary,

compresscompresscompresscompress shows the worst hit ratio among all the benchmark programs.

79%

70%

66%

80%
82%

94%

84%

mtrt jess compress db mpegaudio jack javac
65%

70%

75%

80%

85%

90%

95%

100%

Figure 16: Hit Ratio of Trace InformationFigure 16: Hit Ratio of Trace InformationFigure 16: Hit Ratio of Trace InformationFigure 16: Hit Ratio of Trace Information

5.5.5.5.3333 Compilation TimeCompilation TimeCompilation TimeCompilation Time

In this section, we compare the compilation time in our approach with that in the previous one. We assume that the

difference between the first run and the best run is essentially due to compilation time. Table 2 shows the time for the

first run, best run, and the compilation time. Figure 17 shows the percentage of the compilation time over the whole

execution time (that is, the time spent for the first run). In summary, javacjavacjavacjavac spends the greatest percentage of its time

for compilation among the benchmark programs in SPECjvm98.

15

Table 2: Compilation time (seconds)Table 2: Compilation time (seconds)Table 2: Compilation time (seconds)Table 2: Compilation time (seconds)

5.92 (28.53%)1.23 (9.52%)0.86 (6.67%)0.46 (1.88%)0.15 (0.83%)2.71 (25.12%)1.98 (21.98%)compilation time

14.8311.6912.0323.9518.038.087.03best run

20.7512.9212.8924.4118.1810.799.01first run

javacjackmpegaudiodbcompressjessmtrt

mtrt jess compress db mpegaudio jack javac
0

10

20

30

40

50

60

70

80

90

100

(%) Running time Compilation time

Figure 17: Percentage of compilation time (100% = first run)Figure 17: Percentage of compilation time (100% = first run)Figure 17: Percentage of compilation time (100% = first run)Figure 17: Percentage of compilation time (100% = first run)

We further measured the breakdown of the compilation time by using a trace tool available in AIX, and computed the

compilation time by taking into account platform differences. Table 3 and Figure 18 show the results. We were not able

to measure the breakdown of the compilation times for compresscompresscompresscompress , dbdbdbdb, and jessjessjessjess because they were very short.

 Table 3: Breakdown of compilation times (seconds) Table 3: Breakdown of compilation times (seconds) Table 3: Breakdown of compilation times (seconds) Table 3: Breakdown of compilation times (seconds)

5.28 (89.19%)0.32 (5.41%)0.11 (1.86%)0.05 (0.84%)OLD

5.28 (89.19%)0.32 (5.41%)0.12 (2.03%)0.20 (3.38%)NEWjavac

1.13 (91.87%)0.04 (3.25%)0.02 (1.63%)0.02 (1.63%)OLD

1.13 (91.87%)0.04 (3.25%)0.02 (1.63%)0.04 (3.25%)NEW
jack

We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.mpegaudio

We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.db

We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.We could not measure the breakdown because the compilation time was very short.compress

2.45 (90.41%)0.11 (4.06%)0.08 (2.95%)0.02 (0.74%)OLD

2.45 (90.41%)0.11 (4.06%)0.09 (3.32%)0.06 (2.21%)NEW
jess

1.76 (88.89%)0.11 (5.56%)0.05 (2.53%)0.02 (1.01%)OLD

1.76 (88.89%)0.11 (5.56%)0.05 (2.53%)0.06 (3.03%)NEW
mtrt

Others
Lazy code

motion
Bound check
optimization

Null check
optimization

16

mtrt (NEW)
mtrt (OLD) jess (NEW)

jess (OLD) jack (NEW)
jack (OLD) javac (NEW)

javac (OLD)

0%

20%

40%

60%

80%

100%

(100% = our approach)

compilation time

Null check Bound check Lazy code motion Others

Figure 18: Breakdown of compilation timesFigure 18: Breakdown of compilation timesFigure 18: Breakdown of compilation timesFigure 18: Breakdown of compilation times

 Table 4: Increases in compilation time in our approach Table 4: Increases in compilation time in our approach Table 4: Increases in compilation time in our approach Table 4: Increases in compilation time in our approach

0.77%2.70%0.16javac

0.15%1.63%0.02jack

0.46%1.85%0.05jess

0.44%2.02%0.04mtrt

Increase in total
execution time (%)

Increase in total
compilation time (%)

Increase in total
compilation time (second)

Table 4 shows the increase in the compilation time in our new approach relative to the compilation time in the old

one. In summary, three enhancements described in this paper increased the total compilation time by approximately

2.7%.

6666.... Conclusions and Future WorkConclusions and Future WorkConclusions and Future WorkConclusions and Future Work

In this paper, we have presented a new algorithm for null pointer check elimination, array bound check elimination,

and trace-based partial redundancy elimination (enhanced LCM), all of which have been implemented in the latest IBM

Java Just-in-Time compiler. Preliminary performance results show a significant performance improvement over

previous approaches. There are several areas in which further improvements are needed. First, we need more accurate

runtime trace information for conditional branches. Currently, the runtime trace uses only the outcome of the first

execution of every conditional branch, whose accuracy is approximately 70% according to our experiments. We can

enhance the accuracy by using more samples from several runtime executions. Second, we can further improve the

performance by applying runtime trace information to other optimizations, such as exception check elimination. Third,

we should run larger collections of application programs to evaluate our new algorithm with respect to the performance

improvement and the overhead of the compilation time.

17

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment

We would like to thank the members of the TRL JIT team for helpful discussions and analysis of possible

performance improvements.

ReferencesReferencesReferencesReferences

[1] J. Whaley. Dynamic optimization through the use of automatic runtime specialization. M.Eng., Massachusetts Institute of

Technology, May 1999.

[2] R. Gupta. Optimizing array bound checks using flow analysis. ACM Letters on Programming Languages and Systems, Vol. 2,

Nos. 1-4, pp.135-150, March-December 1993.

[3] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies, CACM, Vol. 22, No. 2, Feb. 1979,

pp.96-103.

[4] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, ACM SIGPLAN Notices, Vol. 27, No. 7, pp. 224-234, San Francisco, CA, June 1992 .

[5] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion: Theory and practice. ACM Transactions on Programming

Languages and Systems, Vol. 17, No. 5, pp.777 -802, 1995.

[6] A.V.Aho, R.Sethi, and J.Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley Publishing Co., Reading,

MA(1986).

[7] Standard Performance Evaluation Corp. "SPEC JVM98 Benchmarks," http://www.spec.org/osg/jvm98/

[8] A-R. Adl-Tabatabai, M. Cierniak, G-Y. Lueh, V. M. Parikh, and J. M. Stichnoth. Fast, effective code generation in a

Just-In-Time Java compiler. In SIGPLAN '98 Conference on Programming Language Design and Implementation , 1998.

[9] M. G. Burke, J-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarker, M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley. "The

Jalapeño dynamic optimizing compiler for Java," In Proceedings of the ACM SIGPLAN Java Grande Conference, June 1999.

[10] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu, and T. Nakatani.

"Optimizations to reduce overheads of the Java language in a Just-in-Time Java compiler." In Proceedings of the ACM

SIGPLAN Java Grande Conference, June 1999.

[11] J. Gosling, B. Joy, and G. Steele, The Java Language Specification, Addison-Wesley Publishing Co., Reading, MA (1996).

[12] R. Gupta. A fresh look at optimizing array bound checking, In Proceedings of the ACM SIGPLAN '90 Conference on

Programming Language Design and Implementation , pp. 272-282, June 1990.

[13] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu, T. Nakatani. Overview of the IBM

Java Just-in-Time Compiler, IBM Systems Journal, Vol. 39, No. 1, 2000.

[14] C. Chambers, D. Ungar. Iterative type analysis and extended message splitting: Optimizing dynamically-typed object-oriented

programs. In Proceedings of the ACM SIGPLAN' 90 Conference on Programming Language Design and Implementation, pp.

150-164, June 1990.

[15] R. Gupta, D. Berson, and J. Z. Fang. Path profile guided partial redundancy elimination using speculation. In IEEE International

Conference on Computer Languages, May 1998.

18

