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ABSTRACT 

While dynamic method calls are sources of reusability and extensibility in object-oriented languages, they have long been tar-
gets of optimizations because they incur runtime overhead and prevent classical compiler optimizations, resulting in many tech-
niques to devirtualize the calls having been proposed. However, these techniques are less effective in Java since either Java is a 
statically-typed language, or not straightforwardly applicable since Java’s capability of loading classes dynamically prevents whole 
program optimizations. This paper proposes a direct devirtualization technique with a code patching mechanism. This technique 
has lower overhead than a well-known recompilation approach. We have implemented a number of devirtualization techniques. 
This paper presents detailed characteristics and effectiveness as applied them to 16 real programs. We show reductions in the num-
ber of dynamic method calls ranging from 8.9% to 97.3% (an average of 40.4%). It conducts some interesting observations of pro-
gram characteristics and potential performance problems. We also report performance improvements from –1% to 122% (an aver-
age of 19%). 

1. Introduction 
Java [1] is a recently designed object-oriented programming language. It is also a popular language suitable for writing pro-

grams that can be reused, because it has excellent extensibility and reusability. This extensibility and reusability were achieved by 
supporting dynamic method calls and dynamic class loading. 

Java provides two dynamic method calls, invokevirtual and invokeinterface, with method lookup to find a target 
method like typical object-oriented languages. Furthermore, one of the innovative capabilities of the Java language is its provision 
for loading classes during the execution of a program. These features provide modularity of class libraries and applications, making 
it convenient for application programmers. However, they incur a performance penalty, because dynamic method calls requires 
method lookup at runtime, and dynamic class loading prevents the compiler from applying whole program analysis before execu-
tion. 

To improve the performance of dynamic method calls, many research approaches for devirtualization [2, 3, 4, 5, 6, 7, 8] have 
been proposed. Most of them involve tests to guard devirtualized code (i.e. inlined code or direct method calls) in order to ensure 
that it is correct for the dynamic type of the current receiver. We call this approach guarded devirtualization. In dynamically-typed 
object-oriented languages such as Self [4], since the overhead of dynamic method calls is high, guarded devirtualization is ex-
tremely effective. On the other hand, in statically-typed object-oriented languages like Java, since the overhead of dynamic method 
calls is low due to the fact that a dynamic method call is translated into a few loads followed by a indirect jump, guarded devirtu-
alization is less effective. 

To devirtualize dynamic method calls without a guard test, techniques for whole program analysis [5, 6] as used in C++ and 
Modula-3 have been proposed. We call this approach direct devirtualization. They assume that new classes and methods will never 
be loaded during the execution of a program. Therefore, these techniques cannot be applied directly to Java. If dynamic recompila-
tion [9] is used, direct devirtualization is possible. For its implementation, however, a complicated mechanism called on-stack re-



- 2 - 

placement is required. It also introduces inefficiency of generated code such as an expansion of a stack frame and redundant store 
instructions to a memory in order to recompile and restart a method. 

In this paper, we evaluate the effectiveness of several devirtualization techniques to maximize the efficiency of compiler op-
timizations. They are direct devirtualization techniques, such as a code patching mechanism [7] and preexistence analysis [8] using 
dynamic class hierarchy analysis, and type analysis [10, 11, 12]. The rest of them are indirect devirtualization techniques, such as 
class test [2, 3] and method test [8]. Especially, direct devirtualization with a code patching is a new approach to reduce the over-
head of dynamic method calls, because we have adapted direct devirtualization to allow dynamic class loading with low overhead. 
Instead of recompilation of a whole method, it leaves an original dynamic method invocation, in the code, which will be executed 
when a code is patched. We call this method invocation a backup path. It introduces slightly optimization constraints that we will 
discuss in Section 3.1. Furthermore, preexistence analysis and type analysis increase the opportunities for compiler optimizations 
by direct devirtualization without backup paths. We have implemented a number of devirtualization techniques in our Java JIT 
compiler. We also present the engineering issues in implementing these techniques. We have measured the effectiveness of these 
techniques and the performance on a set of sixteen real programs using our JIT compiler.  

We found a reduction in the number of dynamic method calls ranging from 8.9% to 97.3% (for an average of 40.4%). We show 
that the direct devirtualization technique that we propose in this paper can remove almost all test code generated by guarded devir-
tualization techniques, and can be applied to a wide category of dynamic method calls. We also show that type analysis and preex-
istence analysis can directly devirtualize with an average of 25.7% of call sites without backup paths that prevents compiler op-
timizations Furthermore, we also investigated the behavior of a program for which devirtualization is not very effective. At last, we 
report performance improvements ranging from –1% to 122% (an average of 19%). We also discuss some problems regarding per-
formance degradation. 

1.1 Contributions 
This paper makes the following contributions: 

�� Direct devirtualization with a code patching mechanism: This paper presents a direct devirtualization technique with a 
code patching mechanism. The implementation of our mechanism is simpler and incurs smaller overhead than that of a re-
compilation approach with on-stack replacement. 

�� Evaluation of the characteristics and efficiency of devirtualization techniques: This paper presents detailed statistics on a 
set of real programs. We measure the effectiveness of some devirtualization techniques. We also describe some interesting 
observations regarding program characteristics, potential performance problems, and consider performance improvements 
provided devirtualization techniques. 

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3 describes devirtualization techniques 
that we explored. Section 4 gives experimental results with statistics and performance data on a set of real programs. Section 5 out-
lines our conclusions. 

2. Related Work 
Devirtualization techniques are important to improve the performance in object-oriented languages. Therefore, many significant 

devirtualization techniques have been proposed. 

An inline cache technique was developed to speed up dynamic method calls. An inline cache records the class of the last re-
ceiver object at the call site, and jumps directly to the method for that class. A stub validates that the dynamic type of the receiver 
matches the expected type. If this test fails, a normal method lookup does a dynamic method call and stores the class of the current 
receiver to the call site cache. Holzle extended the technique to a polymorphic case of inline caches [13]. Type prediction [2, 3] and 
method test [8] have also been proposed. Type prediction and method test predict the type of a frequently-called object at compile 
time. A polymorphic inline cache, type prediction, and method test introduce new runtime tests, since they are executed based on 
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the cache mechanism with memory references. According to the results of simple experiments [14], type prediction without inlin-
ing even at 100% accuracy cannot outperform devirtualization of dynamic method calls without inlining. Type prediction with 
inlining must achieve 90% accuracy to outperform devirtualization without inlining. Finally, no known technique can outperform 
devirtualization with inlining. Junpyo el at. implement both monomorphic and polymorphic inline caches in a Java Virtual Ma-
chine [15]. The experiment results cannot achieve as good a speedup as in Self. In implementations of Java, the cost of dynamic 
method calls is not so different from that of polymorphic inline caches, type prediction, and method test. As presented earlier, in 
dynamically-typed object-oriented language, even guarded devirtualization based on a caching approach is extremely effective 
because the implementation of dynamic method calls is not simple. In statically typed object-oriented languages, guarded devirtu-
alization is effective in enabling inline methods with dynamic calls to expand the intra-procedure optimization scope of a compiler. 

Several systems perform analyses to directly devirtualize dynamic method calls, allowing them to be inlined or implemented by 
direct method calls. Dean et al. use a class hierarchy analysis to devirtualize dynamic method calls [5]. Class hierarchy analysis is 
an inexpensive process that determines when the static type of a receiver implies that an invoked method has only a single imple-
mentation in the set of classes used in a whole program. Fernandez [6] proposed a link-time optimization system. Bacon and 
Sweeney [16] proposed more precise static analysis. All such analyses statically devirtualize dynamic method calls. Since Java 
supports dynamic class loading, these techniques cannot be used in a straightforward manner. Therefore, we have proposed 
dynamic class hierarchy analysis with a code patching mechanism [7]. Flow-sensitive type analysis [10, 11, 12] attempts to tighten 
the static type constraints on the receiver expressions. It increases the opportunities for direct devirtualization to determine whether 
a call site has a single implementation. It can also directly devirtualize a dynamic method call without a backup path. 

Several languages, such as C++, Trells, Dylan, and Java have linguistic a mechanism that allows users to declare a class sealed, 
so that it is prohibited to subclass any new class from it. However, sealed methods are not common in the Java Core libraries such 
as java.util.Vector. Most of the methods in this class have not been sealed in Java 2. 

The Self system supports more aggressive optimizations such as extensive inlining of dynamic method calls [9], whose correct-
ness is ensured by the on-stack replacement mechanism. In Self, there are deoptimization points within each method in which the 
original state of the method’s variables can be recovered from the optimized context maintained by the compiled code. When a 
compilation assumption is violated by dynamic class loading, the Self system recovers the original state at a deoptimization point 
and recompiles the method without the violated assumption, and then the recompiled code continues execution. There are several 
concerns in such a system. In the Self implementation, the compiler produces numerous data structures called scope descriptors to 
enable deoptimization. Deoptimization points also introduce inefficiency of generated code such as an expansion of a stack frame 
and store instructions to a memory in order to recompile and restart a method. The compiler cannot also reorder two instructions 
over a deoptimization point. The Java HotSpot compiler [17] also adopts a recompilation approach with on-stack replacement. We 
did not explore this approach because of the complexity of its implementation and the overhead of generated code. Preexistence 
analysis [8] is an approach to prevent on-stack replacement by determining whether direct devirtualization can be performed based 
on analysis of the receiver expressions. We adopted it to directly devirtualization without a backup path. As a result, it increases 
the opportunity of compiler optimizations. 

Another related work involves specialization. The idea is that methods of a class are cloned based on the type of the receiver 
objects. Plevyak and Chien [18] proposed whole-program analysis that employs specialization to improve the precision of type 
analysis. Chambers and Ungar [19] describe the use of customization based on the type of arguments. A variation of specialization 
is proposed by Dean et al. [20]. Though specialization is an interesting research area, there are a number of concerns such a balance 
between execution speed and code size. It is difficult to apply in practice, and therefore we did not explore this method. 

3. Devirtualization of Dynamic Method Calls 
Dynamic method call is an important feature of object-oriented languages because of extensibility and reusability, and it is 

therefore used frequently. Since a dynamic method call requires method lookup at runtime, its overhead degrades the performance 
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of the program. As we have described in Section 2, many devirtualization techniques have been proposed to improve the perform-
ance of dynamic method calls. Since devirtualization enables the inlining of methods with dynamic calls, it increases the 
opportunities for intra-procedure optimizations such as data flow analysis and register allocation. 

We now present an overview of our approach. First, the compiler performs flow-sensitive type analysis and preexistence analy-
sis to directly devirtualize call sites without the backup paths that introduce constraints on compiler optimizations such as code 
motion. In addition, type analysis can reduce the overhead of dynamic method calls that may be invoked with an array object, and 
the preexistence analysis guarantees that on-stack replacement does not occur. Next, the compiler performs dynamic class hierar-
chy analysis to directly devirtualize the dynamic method calls. It can detect when a call site has a single implementation at compile 
time and inline the callee code without any guard tests. However, Java allows new classes to be loaded during the execution of a 
program, and therefore the compiler has to prepare the original dynamic method call to allow for execution where the assumption 
of a single implementation is violated. Finally, if the compiler knows a call site has multiple implementations, it devirtualizes a 
dynamic method call with a guard test. It inlines the dynamic method call with a class test verifying that the receiver has a particu-
lar class, or inlines a dynamic method call with a method test verifying that the receiver has a particular method. The class test is 
also used to optimize recursive method calls. 

In this section, we described devirtualization techniques for the optimization of dynamic method calls: a code patching mecha-
nism, flow-sensitive type analysis, preexistence analysis, class test, and method test. 

3.1 Code Patching Mechanism 
Class hierarchy analysis (CHA) [5, 6] determines a set of possible targets of a dynamic method call by combining the static 

type of an object with the class hierarchy of the whole program. If it can be determined that there is no overridden method, the dy-
namic method call can be replaced with inlined code or with a direct method call by direct devirtualization at compile time, and the 
method can be executed without method lookup. Previously, direct devirtualization with CHA has been investigated and imple-
mented for languages that support static class loading, in which the class hierarchy does not change during the execution of the 
program. However, Java supports dynamic class loading, which allows the class hierarchy to change during the execution of a pro-
gram. 

We have proposed a code patching mechanism in order to directly devirtualize dynamic method calls with dynamic class load-
ing [7]. If class loading overrides a method that has not been overridden, the inlined code sequence for a specific implementation 
must be replaced with the original dynamic method call. Since Java is an explicitly multi-threaded language, all optimizations must 
be thread-safe. That is, the code sequence must be invalidated atomically. We implemented this atomic updating by rewriting only 
one instruction [21] as shown in Example 1 using the PowerPC instruction set. In the example, we assume an object layout that 
combines the class instance data and the header that are derived from the Sun Java 2 Software Development Kit (SDK) reference 
implementation [22], so that three load instructions are required to obtain the address of a compiled instruction. 

Before overriding the method After overriding the method
// top word of inlined code b original_call // static jmp
// the rest of inlined code // the rest of inlined code

after_call: after_call:
: :
: :

original_call: original_call:
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr // dynamic method call
b after_inline b after_inline

 

Example 1: Example of the inlining of dynamic method call (invokevirtual) 

We have implemented a code patching mechanism with dynamic CHA for supporting dynamic class loading as follows. When 
the new class is loaded at runtime, the compiler maintains the internal structure that represents whether or not each method is over-
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ridden. If a class implements an interface class, the compiler also counts the number of implementation classes of the interface 
class in order to devirtualize interface method calls. The compiler checks whether a caller site has a single implementation when it 
attempts to inline a dynamic method call. The result (whether or not the method has only a single implementation) is checked on 
demand, when the first call that requires compilation of that method is issued, and the result is then cached in the result cache. 
When the native code is generated for the inlined code, the top address of the inlined code sequence is also recorded in the result 
cache entry for that method. When the compiler next checks the implementation of the same method, the result is returned from the 
result cache immediately, and the new code address is also recorded in the result cache. The result cache is also stored for use at 
runtime. When the compiler generates the native code, it places the inlined code in the fall through path in Example 1. Because it 
knows the inlined code is executed very frequently. This improves the efficiency of the instruction cache. 

When the method is not yet overridden in the left column in Example 1, the inlined code is executed and the italicized code se-
quence for the dynamic method call is not executed at all. When the method is overridden for dynamic class loading, the internal 
structures are updated appropriately. If the method related to the result cache is overridden, the instruction at the address stored in 
the result cache is replaced with a b instruction to the dynamic method call by the class loader in order to undo the direct devirtu-

alization. Consequently, the code sequence for the dynamic method call will be executed correctly. 

Java provides an interface for the implementation of multiple inheritances. The compiler also optimizes an interface method 
call by replacing it with inlined code. If CHA finds that only one class implements an interface class, a virtual method call with a 
single method lookup can be generated by using the implementation class as a static type. Furthermore, if the target method is not 
overridden anywhere in the implementation class hierarchy, the code can be inlined instead of using the interface method call by 
using direct devirtualization. As a result, the generated code is shown using PowerPC instruction set as shown in Example 2. When 
more than one class implements an interface class, the code patching mechanism cancels direct devirtualization to execute the 
original interface method call. This optimization is much more efficient than a naive implementation of an interface call, which 
requires a loop to search for an implementation class. 

Only one class implements More than one class implements
// top word of inlined code b interface_call // static jmp
// 2nd word of inlined code // 2nd word of inlined code // if implementing method is
// the rest of inlined code // the rest of inlined code // overridden, go to virtual_call

after_inline: after_inline:
: :
: :

virtual_call virtual_call
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr
b after_inline b after_inline

interface_call: interface_call:
mr r1, <rcv obj reg> mr r1, <rcv obj reg> // move receiver object
blr rt_interface blr rt_interface // call runtime for interface call
b after_inline b after_inline  

Example 2: Example of the inlining of dynamic method call (invokeinterface) 

The generated code using direct devirtualization has no overhead at execution time because there are no tests requiring memory 
access such as method tests and class tests. On the other hand, from the viewpoint of compiler optimizations, generated code using 
direct devirtualization with the code patching mechanism prevents the compiler from performing some optimizations, because the 
generated code includes a backup path (i.e. the original method call) as a kill pointi. Scalar replacement of instance variables and 
code motion may also be restricted. These problems are illustrated in Example 3 using RISC-like instructions. For example, the 
getfield bytecode instructions are translated into nullcheck instructions that are potentially excepting instructions (in the 

                                                           
i If an instruction redefines a value, it is said to kill the definition, which means the collected information on the variable cannot be preserved 

before and after the point. 
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bold font) and getfield instructions that are simple loads from a heap memory. At the end of basic block (BB) 1, there are im-
plicit branches by direct devirtualization. One is a branch to BB2, which is a primary execution path. The other is a branch to BB4, 
which is a backup path. 

 In the example, partial redundancy elimination (PRE) [23] can perform scalar replacement of the access of instance variable 
<o> by generating the compensation code around the kill point (invoke at BB4), though increases the size of the code. In this 
example, three instructions after the invoke instruction in BB4 are generated for scalar replacement of LO3. Code motion involv-
ing potentially excepting instructions or instructions with side effects is also limited and cannot cross over the kill point. If a 
nullcheck instruction is moved a head of a method call, the exception may be thrown before throwing an exception raised 
within the callee method. This violates the original semantics of the program. Here, the compiler can move up the getfield in-
struction for LO3 from BB3 to BB1 crossing over BB4, and not move a nullcheck instruction involving LO3 across BB4, be-
cause that is a potentially excepting instruction. 

Nullcheck LO0

getfield LO1=LOO,<o>
Nullcheck LO1

Getfield LI2=LO1,<i> Invoke LI2=LO1,LO0

getfield LO1=LOO,<o>
Nullcheck LO1

getfield LO3=LOO,<p>
Nullcheck LO3

putfield LO3,<q>=LO1
return LI2

a) Before PRE and code motion

BB1

BB3

BB2 BB4

Nullcheck LO0

getfield LO1=LOO,<o>
Nullcheck LO1

getfield LO3=LOO,<p>

Getfield LI2=LO1,<i> Invoke LI2=LO1,LO0

Getfield LO1=LOO,<o>
Nullcheck LO1

getfield LO3=LOO,<q>

Nullcheck LO3

putfield LO3,<q>=LO1
return LI2

b) After PRE and code motion

BB1

BB3

BB2 BB4

 

Example 3: An example of partial redundancy elimination and code motion. 

The existence of a backup path is a disadvantage compared with devirtualization by a recompilation approach. A recompilation 
approach does not require backup paths instead of a recompilation of a whole method. To solve the problems, we attempt to di-
rectly devirtualize these sites without backup paths by using preexistence analysis and flow-sensitive type analysis that will be ex-
plained in the next sections. 

3.2 Flow-Sensitive Type Analysis 
Flow-sensitive type analysis [10, 11, 12] computes a type for every object reference point in an entire method. The compiler 

does this by performing data flow analysis on the control flow for the entire method. It computes the data flow information on 
static types with signatures and class instantiations (call to new()) at each object reference point. The analysis determines a set of 
classes reachable at each object reference point. This analysis has several advantages. 

If the type analysis proves that all class instantiations that reach the receiver expression of the dynamic method call have the 
same definition, then the dynamic method call can be directly devirtualized without a backup path. 

Type analysis can also recover missing type information. This loss can occurs when translating source code into bytecode [8] 
(i.e. during a compilation by javac or jikes [24] (version 1.06)). We here explain it using Example 4. The source code of the 
method m() indicates that the method call a.equals() invokes the method equals() in the class A. The javac compiler em-
beds the class Object and the method equals() as static types in the a class file. The compiler may recover the more precise 
type A of the receiver through an interpretation like the bytecode verification process [25]. The missing type information causes the 
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class hierarchy analysis to fail at the method call a.equals(). Without type analysis, the compiler checks whether Ob-
ject.equals() is a single implementation rather than A.equals(). This always fails because the method in the class 
String that is never invoked by the method call a.equals() overrides the method equals(). 

In practice, the missing type information frequently occurs at call sites involving the methods equals() and hashCode()
that are declared in the class java.lang.Object. As a result, type analysis improves accuracy of class hierarchy analysis. 

class Object { boolean equals(Object o) { ... }; }

class String extends Object {
boolean equals(Object o) { ... }; // Overrides equals()

}

class A extends Object { ... } // Does not override equals()

class X {
void m(A a) {

a.equals();
}

}
 

Example 4: An example of missing type information at a call site 

The methods, hashCode(), toString(), and equals(), are declared as part of an object’s nature in the class 
java.lang.Object. These methods are frequently called with the class java.lang.Object as a static type. The hash-
Code() method  in several primitive classes such as java.lang.Integer and java.lang.String overrides these decla-
rations from the class java.lang.Object. However, since these implementation are very simple and declared as final, if 
type analysis proves the static type of a dynamic method call is one of them, the compiler can inline these methods directly. Unfor-
tunately, the static type of a dynamic method call equals()is frequently ambiguous. In that case, the compiler directly devirtual-

izes the method call by inlining simple callee code. 

The method hashCode() in the class java.lang.String caches the calculated hash value in each instance. If type 
analysis proves that the object java.lang.String reaches only a receiver expression of the method call, it allows the compiler 
to inline the code of the callee method partially. Partial inlining is a technique to inline a part of a method that will be executed 
frequently. We have found a good practical example in the method hashCode()in the class java.lang.string. We show 

an example in Example 5. 

public final class String {
private char value[];
private int offset;
private int count;

:
/* Cache the hash code for the string */
private int hash = 0;
public int hashCode() {

int h = hash;
if (h == 0) {

int off = offset, len = count;
char val[] = value;
for (int i = 0; i < len; i++) h = 31*h + val[off++];
hash = h;

}
return h;

}
}

a) Implementation of the method hashCode() in the class java.lang.String

Object o; Object o
o = (String)o.value; o = (String)o.value;

h = o.hashCode(); h = o.hash;
if (h == 0) h = o.hashCode(); // call a method once

before partial inlining after partial inlining

b) An example of partial inlining for the method hashCode() in the class java.lang.String
 

Example 5: An example of partial inlining using the results of type analysis 
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In our system, the object layout is derived from the Sun SDK reference implementation. This is shown in Figure 1 a) and b). 
Though the headers for scalar objects and array objects are the same size, the difference is that the scalar object has a vtable pointer 
instead of the array length. This requires that a dynamic method call of an array object must be treated as special case. For this pur-
pose, an invokevirtualobject_quick instruction in the bytecode is prepared [25]. If a constant pool reference is resolved 
and a dynamic method call refers to a method in the class java.lang.Object or array class is the target of the reference, then 
an invokevirtual instruction is rewritten by an invokevirtualobject_quick instruction. At runtime, the receiver 
object must be checked to see whether it is an array type. If it is an array object, the vtable of the class java.lang.Object is 
used. If type analysis proves that an array class never reaches a receiver expression of a method call, the compiler can generate a 
dynamic method call without checking the array type and reduce the runtime overhead. On the other hand, every object in HotSpot 
[17], Marmot [26], and Jalapeno [27] has a vtable pointer and a status field as its first two fields shown in Figure 1 c) and d). Only 
an array object has an extra field to store the length. In their system, though there is no concern with the vtable problem, an array 
object requires one extra word. In our system, the header length is same for scalar and array objects to save storage, since type 
analysis reduces the overhead of the invokevirtualobject_quick method call. 

 
vtable pointer

Status field

a) A scalar object in
our system

Array length

Status field

b) An array object in
our system

: :

::

vtable pointer

Status field

c) A scalar object in
other systems

vtable pointer

Status field

d) An array object in
other systems

: Array length

::

 

Figure 1: Object layout in Java implementations 

3.3 Preexistence Analysis 
The concept of preexistence [8] is that if the receiver object for a method call has been allocated before the invocation of a 

caller method, then the method will not be overridden during the execution of the caller. Then, the property can be used to directly 
devirtualize a dynamic method call without a backup path. It requires that the caller method must be recompiled with class 
hierarchy analysis at the next invocation in which the target method is overridden. However, it guarantees that such recompilation 
does not require on-stack replacement. This removes inefficiency of generated code. 

We have implemented invariant argument analysis [8] to check for the preexistence of a receiver expression. If a receiver ex-
pression of a directly devirtualized method call is shown preexistence and the method call has only a single target by CHA at a 
compilation time, the compiler can directly devirtualize the dynamic method call without the backup path. It has two advantages. 
One is that it enables code motion involving potentially excepting instructions or instructions with side effects. The other is that the 
results of flow-sensitive type analysis is more accurate, because the merge point that creates the union type is removed from the 
control flow graph, and the return type of the inlined code is known. To directly devirtualize a dynamic method call without a 
backup path, the compiler has to record that the caller method must be recompiled at the next invocation when the callee method to 
be inlined is overridden, instead of patching code at a caller site. Another solution for more precise flow-sensitive type analysis is 
message splitting [28]. It may increase the code size significantly because it requires copying parts of the control flow, and there-
fore, we did not explore this alternative. 
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3.4 Class Tests and Method Tests 
In previous research, most systems that use guarded devirtualization have the inlined code with a class test verifying that the re-

ceiver has a particular class. In pseudo-machine code, the code generated at an inlined call site shown in Example 6 a). 

The class test [2, 3] imposes the reasonable requirement that each object contains a pointer to its class information. The method 
test [8] imposes a further assumption that the class information includes a vtable. These assumptions are satisfied in our object lay-
out. The generated code for a method test at an inlined call site appears in Example 6 b). 

r0 = <receiver object> r0 = <receiver object>

r1 = load(r0 + <offset-of-vtable-ptr-in-object>) r1 = load(r0 + <offset-of-vtable-ptr-in-object>)

r2 = load(r1 + <offset-of-method-in-vtable>)

if (r1 == <address-of-paticular-class>) { if (r1 == <address-of-inlined-method>) {

<inlined code> <inlined code>

} else { } else {

r2 = load(r1 + <offset-of-method-in-vtable>) call r2

call r2

} }

a) pseudo code of a class test b) pseudo code of a method test
 

Example 6: Pseudo code for class test and method test 

Method test is more accurate than class test. Even when a class that does not override a method is tested by a class test, if the 
class is different from the particular class of the inlined method, the test fails and a dynamic method call is invoked. In a similar 
situation involving method invocation, the method test may succeed and inlined code can be executed. Therefore, we have used 
method test at call sites that have multiple implementations with class hierarchy analysis at compilation time. The overhead of 
method test is slightly more expensive than that of class test. Our JIT compiler requires two loads to get a vtable entry and a 
method block for the intermediate representation. This method allows us to include these instructions in the scope of optimizations 
such as common subexpression elimination and code motion, and this can hide the overhead of method test. 

We have used a class test for optimizing recursive methods, because the compiler predicts that most of the method invocations 
will be with the same called object. When a recursive call is invoked by a dynamic method call, the compiler provides two copies 
of the method. At the method entry point, a class test with the receiver object is generated to determine which copy is executed. 
Two versions of the method are then generated: one for a true recursive call is unrolled, and the other version is for the general case 
as it appeared in the original code. 

4. Experiments 
In this section, we evaluate the characteristics and effectiveness of the devirtualization techniques in our system. Section 4.1 

explains the system used in our experiments. Section 4.2 gives an overview of the programs used in our experiments. Section 4.3 
shows the characteristics of the non-devirtualized programs. Section 4.4 shows the results as performed using devirtualization. Sec-
tion 4.5 discusses the evaluation of the results. Section 4.6 shows the performance results.  

4.1 System 
Our experiments were performed using a prototype version of the IBM Developers Kit for AIX, Java Technology Edition, Ver-

sion 1.3. We have implemented the devirtualization techniques that we described here in a Just-In-Time Compiler. The JIT com-
piler is a highly optimizing compiler that uses a register-based intermediate representation. Register-based representations provide 
greater flexibility for code transformations than stack-based representations. The JIT compiler performs static method inlining, 
devirtualization, data flow optimizations, loop optimizations, and low-level optimizations. Data flow optimizations are copy 
propagation, constant propagation, dead code elimination, common subexpression elimination, and elimination of redundant excep-
tion checks. The loop optimization uses loop versioning. Low-level optimizations are register allocation, instruction scheduling, 
and shrink wrapping [29]. 
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The JIT compiler inlines methods except when they have exception handlers and are larger than the maximum size. It inlines 
methods with both static and dynamic calls until the call hierarchy tree is four levels deep. Here, dynamic method calls mean vir-
tual and interface method calls. Since the JVM in the Sun SDK reference implementation must be able to traverse the original call 
stack in order to get the caller class at runtime, we have implemented a subset of the scope descriptor [9] just to recover the original 
call stack from the inlined call stack. This allows the compiler to inline methods extensively. Though the JIT compiler has a selec-
tive compilation mechanism, all measurements except one were performed with compiling all methods. 

The measurements were performed on an IBM RISC System 6000 Model 7044-170 (containing a 333-MHz POWER3-II with 
1024 MB of RAM) running AIX 4.3.3. 

4.2 Overview of the Programs 
Table 1 shows sixteen Java programs used to evaluate our devirtualization techniques. The programs cover a wide spectrum of 

programming styles and application categories such as computational benchmarks, transaction processing, a parser, browsers, 
graphical applications, a word processor, and a Web server. Note that the results in SPECjvm98 [30] do not follow the official 
SPEC rules. 

Program Description 

compress LZW compression and decompression in SPECjvm98 Run a benchmark with size = 100. 
jess NASA’s CLIP expert system in SPECjvm98. Run a benchmark with size = 100. 

db Search and modify a database in SPECjvm98. Run a benchmark with size = 100. 

javac Source to bytecode compiler in SPECjvm98. Run a benchmark with size = 100. 

mpegaudio Decompress audio file in SPECjvm98. Run a benchmark with size = 100. 

mtrt Multi-threaded image rendering in SPECjvm98. Run a benchmark with size = 100. 

jack Parser generator generating itself in SPECjvm98. Run a benchmark with size = 100. 

pBOB [31] Transaction processing benchmark. Version 2.0k. Run a benchmark with a number of warehouse = 1. 

XML parser [32] IBM’s XML parser. XML4J version 2.0.13. Run a sample program to parse an XML file. 

Java Server [33] Java Server Web Development Kit 1.0.1. Run a Web server and access it with running some servlets. 

swing GUI components version 1.1.1 written in pure Java. Run a demo application including many components. 

Java2D 2D graphics library. Run a demo application including many components. 

jfig [34] A Java version of the xfig drawing program. Version 1.38b. Run an application and open a document. 

ICE Browser [35] Simple Internet browser version 5.01. Run an application and open a Web page 

HotJava [36] HotJava browser version 1.1.5. Run an application and open a Web page. 

Ichitaro Ark [37] Word processor written in pure Java. Run an application and open a document. 

Table 1: Descriptions of the programs used in our experiments 

4.3 Characteristics of Method Calls 
For each program, Table 2 details the characteristics of both static and dynamic method. S-Call is the total number of static 

calls and V-Call is the total number of virtual method calls. V-Mono means the percentage of virtual method calls that are called at 
monomorphic call sites. Java means they are within Java class libraries. App means they are within the application. If-Call means 
the total number of interface method calls. If-Mono means the percentage of interface method calls that are called at monomorphic 
call sites. 

An average of 75.8% (ranging from 33.4% to 99.9%) of the virtual method call are monomorphic. The results show higher us-
age of that dynamic method calls in programs without GUIs (compress, jess, db, javac, mpegaudio, mtrt, jack, pBOB, XML 
parser, and Java Server), though compress and Java Server are monomorphic within application classes. Programs with GUIs 
(swing, Java2D, jfig, ICE Browser, HotJava, and Ichitaro Ark) are monomorphic within the Java class libraries. The results 
also show the programs except mpegaudio are surprisingly monomorphic. It shows we have many opportunities to perform devir-
tualization. On the other hand, the program compress is not expected to be much affected by devirtualization techniques, since the 
number of virtual calls is extremely small. Note that pBOB is a benchmark program to measure throughput in a constant time. The 
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better compilation results in more executions and therefore more calls, but this result cannot be compared directly with the other 
results. This characteristic differs from the other programs. 

V-Mono % If-Mono % Program S-Call V-Call 
Java App 

If-Call 
Java App 

compress 225975805 12039 49.6% 25.0% 446 41.3% 58.7% 

jess 78375454 36872088 0.2% 83.8% 706505 0.0% 0.7% 

db 52992991 52529114 0.1% 97.1% 14931539 0.0% 100.0% 

javac 57019624 48408808 5.1% 62.2% 3379096 0.0% 99.8% 

mpegaudio 99702499 9853620 0.2% 33.2% 182220 0.1% 99.9% 

mtrt 17406471 269740419 0.3% 90.7% 402 46.3% 53.7% 

jack 24400198 25219092 20.3% 59.5% 4155315 0.0% 55.0% 

pBOB 56775910 72595733 16.7% 79.8% 1618994 0.1% 99.9% 

XML parser 5108864 3451279 0.4% 99.5% 5463833 0.0% 100.0% 

Java Server 337899 74901 67.9% 11.9% 3118 65.7% 28.8% 

swing 3143213 1754935 57.4% 0.3% 177638 49.8% 0.1% 

Java2D 17956992 6490662 72.6% 4.1% 1446333 49.3% 0.1% 

ifig 1274203 296283 67.4% 0.0% 33006 51.0% 0.5% 

ICE Browser 1732313 261235 62.1% 10.3% 47519 67.8% 10.2% 

HotJava 1882711 504321 78.8% 0.0% 55523 64.2% 0.3% 

Ichitaro Ark 4960087 2421789 23.7% 32.2% 806600 16.4% 16.4% 

average  75.8% 73.5% 

Table 2: The characteristics of static and dynamic method calls 

4.4 Results of Devirtualization 
In this section, we show the results of performing these optimizations in four categories. We perform each optimization cumu-

latively. At first, we start guarded devirtualization. Secondly, we add direct devirtualization with code patching. Thirdly, we add 
type analysis. At last, we perform preexistence analysis cumulatively. 

Each dynamic method call is applied the devirtualization techniques to as shown in Figure 2. 

 Method calls

Class test

Method test

Direct Devirtualization
with backup paths

Direct Devirtualization
without backup paths

V-Call

If-Call

S-Call

Dynamic method calls

Devirtualization Techniques

 

Figure 2: Applicable categories of devirtualization techniques 

4.4.1 Guarded Devirtualization 
We here started by performing test on guarded devirtualization by class and method tests together. Table 3 shows the character-

istics of programs with guarded devirtualization. M-Test means the total count of method tests. C-Test means the total count of 
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class tests. Inlined execs for each kind of test is the percentage of the actually executed inline code. We apply class test only to 
method calls that are recursive calls, and apply method test to virtual method calls that have a single or multiple targets at compila-
tion time only for code that can be inlined. We do not apply method test to method calls that can be replaced with direct method 
calls. Even if we did such testing, the cost of the test and the actual method call would be the same as that without method test in 
the base Java implementation. If a method call has multiple targets, one of the methods defined in a leaf class is inlined. 

We adopted method test for guarded devirtualization, even though the cost of method test is slightly higher than that of class 
test as presented in Section 3.3. This is because when we attempted to apply class test to mtrt, the success percentage of the inlin-
ing was only 70%. Moreover, we can hide this overhead by using compiler optimizations. 

As is shown in the following table, the percentages of actually executed inline code at the call sites devirtualized by method test 
vary range from 50.7% to 100% (an average of 92.7%). 

Program V-Call If-Call M-Test M-Test 
inlined execs

C-Test C-Test 
inlined execs 

compress 9967 446 2040 97.2% 6 100.0% 

jess 12212470 706505 24660863 100.0% 4547 100.0% 

db 46680205 14931539 5833525 100.0% 6 100.0% 

javac 41274813 3381204 7973933 90.9% 39930 100.0% 

mpegaudio 6821177 182220 3037975 99.8% 6 100.0% 

mtrt 75811042 402 193929371 100.0% 6 100.0% 

jack 17683893 4155315 7529626 100.0% 4375 100.0% 

pBOB 12130906 1605136 60062063 100.0% 24 95.8% 

XML parser 1726616 2733183 7163 100.0% 65 100.0% 

Java Server 40952 2960 19961 99.1% 283 94.3% 

swing 1249252 176796 498142 86.9% 691 99.9% 

Java2D 4813273 1453963 2153279 50.7% 1523 100.0% 

jfig 205157 33616 96697 86.9% 549 100.0% 

ICE Browser 162833 45118 93499 92.0% 186 100.0% 

HotJava 346182 56558 108735 90.2% 3877 100.0% 

Ichitaro Ark 1558901 594341 663773 90.2% 2285 100.0% 

Table 3: Characteristics of programs with guarded devirtualization 

4.4.2 Direct Devirtualization with a Code Patching Mechanism 
For the next tests, we added direct devirtualization with a code patching mechanism. This is applied to virtual method calls that 

have only a single target at a compilation time and to interface method calls that are implemented by a single class. We also ap-
plied it to method calls only that will be inlined, but to be replaced with direct method calls. 

Table 4 shows the characteristics of these directly devirtualized programs. CP-Dev means the total execution count of directly 
devirtualized call sites with the code patching mechanism. CP-Dev inlined execs refers to the percentage of the actually executed 
inline code. Invalidation sites means the number of call sites where the code patching is performed when a class is loaded and a 
method is overridden during the execution of a program. As is shown in the following table, the percentages of actually executed 
inline code at directly devirtualized call sites vary from 88.8% to 100% (an average of 98.2%).  
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Program V-Call If-Call M-Test M-Test 
inlined execs

C-Test C-Test 
inlined execs

CP-Dev CP-Dev 
inlined execs 

Invalidation
sites 

compress 9796 443 657 91.2% 6 100.0% 1596 97.7% 18

jess 10790816 701785 10798 82.9% 4659 100.0% 26083410 100.0% 22

db 46557413 14931536 5082 99.2% 6 100.0% 5951271 100.0% 18

javac 29161105 3379389 2157383 66.0% 39930 100.0% 18349878 99.0% 32

mpegaudio 6804623 395 31908 82.4% 6 100.0% 3204602 100.0% 18

mtrt 7244261 399 1667 95.0% 6 100.0% 262494525 100.0% 18

jack 16317679 2624376 33849 99.6% 4375 100.0% 10925027 99.4% 22

pBOB 8133725 1577179 201156 99.9% 22 100.0% 62757008 100.0% 4

XML parser 3442303 2589055 279 100.0% 65 100.0% 2882788 100.0% 13

Java Server 40292 2753 2215 92.3% 283 94.3% 18943 99.0% 44

swing 1251871 164057 222752 63.3% 663 99.8% 373117 94.2% 199

Java2D 5038999 1422935 1504829 20.0% 1588 100.0% 1130901 88.8% 77

ifig 167970 28230 28055 57.6% 547 100.0% 72518 99.1% 43

ICE Browser 144733 37185 11245 47.6% 186 100.0% 96555 99.3% 79

HotJava 316788 47202 19416 52.5% 4067 95.0% 111078 96.5% 158

Ichitaro Ark 1446609 575172 120782 38.6% 4806 100.0% 641550 97.7% 215

Table 4: Characteristics of directly devirtualized programs 

4.4.3 Type Analysis 
Next, we added in flow-sensitive type analysis. Table 5 shows the characteristics of programs using flow-sensitive type analysis. 

As is shown in the following table, the percentages of actually executed inline code at directly devirtualized call sites vary from 
84.1% to 100% (an average of 97.4%). 

Program V-Call If-Call M-Test M-Test 
inlined execs

C-Test C-Test 
inlined execs

CP-Dev CP-Dev 
inlined execs 

Invalidation
sites 

compress 9585 443 657 91.2% 6 100.0% 1282 97.2% 16

jess 7895376 701785 10798 82.9% 4659 100.0% 24978943 100.0% 20

db 46557233 14931536 5082 99.2% 6 100.0% 5950246 100.0% 16

javac 27540151 3381201 2157387 66.0% 39186 100.0% 19816214 92.6% 54

mpegaudio 6804397 395 31908 82.4% 6 100.0% 3204247 100.0% 16

mtrt 7244059 399 1667 95.0% 6 100.0% 245247103 100.0% 16

jack 12322620 2624376 33849 99.6% 4375 100.0% 13443883 99.5% 20

pBOB 8463698 1626697 211100 99.9% 22 100.0% 64800581 100.0% 3

XML parser 3441954 2589055 279 100.0% 65 100.0% 2880904 100.0% 13

Java Server 38941 2753 2215 92.3% 279 94.3% 16624 98.9% 35

swing 1209389 163713 212813 66.6% 683 99.9% 362306 94.0% 210

Java2D 4802108 1392895 1435134 20.8% 1653 100.0% 1110593 84.1% 91

ifig 181572 29796 28117 57.3% 547 100.0% 68222 99.0% 47

ICE Browser 155810 46080 15774 45.0% 188 100.0% 92482 98.9% 68

HotJava 333557 47946 20206 53.3% 4063 95.0% 102599 96.2% 157

Ichitaro Ark 1374676 542976 102232 39.2% 4814 100.0% 576341 97.5% 217

Table 5: Characteristics of programs using flow-sensitive type analysis 

4.4.4 Preexistence Analysis 
Finally, we also performed preexistence analysis. Table 6 shows the characteristics of programs including preexistence analysis. 

Recompilation candidate methods means the number of method recompilation candidates when a class is loaded during the 
execution of a program and the method is later overridden. As is shown in the following table, the percentages of the actually exe-
cuted inline code at the directly devirtualized call sites vary from 81.5% to 100% (97.0% on average). 
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Program V-Call If-Call M-Test M-Test 
inlined 
execs 

C-
Test 

C-Test 
inlined 
execs 

CP-Dev CP-Dev 
inlined 
execs 

Invalidation 
sites 

Recompilation candi-
date methods 

compress 9585 443 669 89.5% 6 100.0% 1059 97.7% 10 6

jess 7895376 701785 10822 82.7% 4659 100.0% 18261070 100.0% 14 6

db 46557233 14931536 5085 99.2% 6 100.0% 5950061 100.0% 10 6

javac 27704969 3379221 2461630 57.9% 39186 100.0% 18199383 91.8% 50 10

mpegaudio 6804397 395 31959 82.2% 6 100.0% 2173264 100.0% 10 6

mtrt 7244059 399 1678 94.3% 6 100.0% 191710141 100.0% 10 6

jack 12322620 2624376 33887 99.5% 4375 100.0% 9314605 99.2% 14 6

pBOB 9727441 1887573 243493 99.9% 21 100.0% 59533300 100.0% 3 0

XML parser 3441954 2589055 279 100.0% 65 100.0% 2880183 100.0% 13 0

Java Server 38949 2753 2215 92.3% 279 94.3% 12500 98.6% 35 0

swing 1266590 163528 221685 64.5% 767 99.9% 279771 93.6% 180 26

Java2D 4783173 1418776 1410625 21.8% 1549 100.0% 919675 81.5% 75 16

ifig 165701 28043 21452 50.0% 547 100.0% 44622 98.8% 28 13

ICE Browser 136834 36675 10212 46.4% 182 100.0% 67071 99.2% 67 2

HotJava 321514 47553 16913 50.0% 5263 96.1% 72835 94.5% 144 16

Ichitaro Ark 1451855 577285 121842 39.9% 4789 100.0% 459639 97.3% 196 22

Table 6: Characteristics of programs including preexistence analysis 

4.5 Evaluation and Breakdown of the Results 
Figure 3 summarizes the reductions of each operation on some programs applied all devirtualization techniques corresponding 

to Section 4.4.4. We use “(a)” to denote all optimizations are performed. All values are given in relative execution counts against 
non-devirtualized version corresponding to Section 4.3. 
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Figure 3: Percentages of total number of each operation 

Table 7 also shows details of the reduction of execution counts of each operation. Here, the reductions of pBOB are excluded. 
The reason is that optimizations increases the number of executed instructions and we cannot show the reductions since this 
benchmark measures throughput in a constant time, as we pointed out in Section 4.3. In some programs, the reductions for method 
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and class tests are negative. The reason is that the compiler can replace more dynamic method calls with method tests or class tests 
by using extensive devirtualization. 

reduction % 
from non-inlined to preexistence 

reduction % 
from guarded devirtualization to preexistence

reduction % 
from a code patching mechanism to preexistence

Program 

V-Call If-Call average M-Test inlined execs C-Test inlined execs CP-Dev inlined execs 

compress 20.4% 0.7% 19.7% 70.6% 0.0% 35.2%

jess 78.6% 0.7% 77.1% 100.0% -2.5% 30.0%

db 11.4% 0.0% 8.9% 99.9% 0.0% 0.0%

javac 42.8% 0.0% 40.0% 82.1% 1.9% 8.9%

mpegaudio 30.9% 99.8% 32.2% 99.1% 0.0% 32.2%

mtrt 97.3% 0.7% 97.3% 100.0% 0.0% 27.0%

jack 51.1% 36.8% 49.1% 99.6% 0.0% 15.4%

XML parser 0.3% 52.6% 32.4% 96.1% 0.0% 0.1%

Java Server 48.0% 11.7% 46.5% 89.8% 7.1% 35.0%

swing 27.8% 7.9% 26.0% 71.3% -10.9% 29.8%

Java2D 26.3% 1.9% 21.9% 85.7% -1.7% 33.7%

ifig 44.1% 15.0% 41.2% 88.9% 0.4% 39.2%

ICE Browser 47.6% 16.8% 43.2% 94.7% 0.5% 31.1%

HotJava 36.2% 14.4% 34.1% 92.2% -30.5% 38.0%

Ichitaro Ark 40.1% 28.4% 37.1% 92.7% -109.6% 30.3%

average 40.2% 19.2% 40.4% 90.8% -9.7% 25.7%

Table 7: Reduction of execution count for each program 

A number of interesting observations can be made from the above results. 

The results from Table 2 show a trend that dynamic method calls in programs with GUI (such as AWT and Swing) tend to be 
monomorphic within the common class libraries that Java provides. The programs use extensible and reusable common class li-
braries, but they use them monomorphicly. This usage pattern based on the experiments with real Java programs is very encourag-
ing. It increases the opportunity for devirtualization without creating a burden for programmers. 

As is shown in Table 7, we have measured the reductions of dynamic method calls ranging from 8.9% to 97.3% (an average of 
40.4%). The program where we measured the highest reduction in virtual method calls is mtrt. Mtrt has a hotspot loop that calls 
some small methods to get instance variables very frequently. Devirtualization with the code patching mechanism can eliminate 
almost all virtual method calls, and furthermore 25.7% of them can be directly devirtualized without their backup paths. We have 
attempted to execute mtrt compiled with eliminating all backup paths. Even in the extremely case, its version is about 6% faster. 
The overhead of the existence of backup paths usually may be smaller. 

As can be seen from Table 4, Table 5, and Table 6, an average of CP-Dev inlined execs decreases from 98.2% to 97.0% with 
type analysis and preexistence analysis. It shows that direct devirtualization without backup paths are actually performed. Table 7 
also shows a reduction with an average of 25.7% of CP-Dev inlined execs with type analysis and preexistence analysis. We can-
not measure execution counts of directly devirtualized sites without backup path since a highly optimizing compiler moves or re-
moves individual instructions of devirtualized call sites freely. The results also show that direct devirtualization by type analysis 
and preexistence covers only 25.7% of direct devirtualization with a backup path by a code patching mechanism. The capability of 
devirtualization by recompilation approach is same as that by a code patching mechanism. 

The benchmark for which we measured the worst rate of executing inlined code at directly devirtualized call sites is Java2D. 
As can be seen from Table 6, 19.5% of the executions invoke the original dynamic method calls. We are interested in the causes of 
this behavior. What method calls invokes the original dynamic method calls? Since our JIT compiler provides a selective compila-
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tion mechanism, we have measured the percentages of executing inlined code at directly devirtualized call sites with a variety of 
threshold values to start a compilation. The JIT compiler also starts to compile a method when it defects loops in the method. 

Table 8 details the characteristics of Java2D with a variety of compilation threshold values. The result shows that the saturated 
successful rate is 90% and some recompilation candidate methods remain even when the threshold value is large. It means that 
10% of devirtualized code are executed at slow paths in hotspot methods and some hotspot methods are required recompilations. 
Since the JIT compiler uses part of an application’s runtime resources, the overall performance may be degraded. Recompilation 
approach is better for quality of generated code related to methods without recompilations. According to our experiment, almost all 
recompilation target methods are within Java AWT and Java2D class libraries. If the compiler knows this property and applies the 
code patching mechanism to GUI libraries, we believe that a hybrid approach using both code patching and recompilation mecha-
nisms may be better to minimize runtime overhead and improve performance. 
Compilation 
threshold 
value 

M-Test M-Test 
inlined execs 

C-Test C-Test 
inlined execs

CP-Dev CP-Dev 
inlined execs

Recompilation candidate methods (by preexistence)

0 1410625 21.8% 1549 100.0% 919675 81.5% 58(16)

2 500061 68.7% 157721 100.0% 563932 81.0% 37(6)

5 474910 68.5% 156726 100.0% 560701 79.9% 33(6)

10 504298 74.7% 156753 100.0% 581531 79.4% 27(3)

20 429620 77.0% 156720 100.0% 558680 81.0% 27(1)

30 450785 77.0% 156593 100.0% 570122 81.5% 22(1)

40 439788 78.8% 156641 100.0% 601561 84.8% 19(1)

50 426514 78.0% 156675 100.0% 579187 84.3% 18(1)

75 444315 79.4% 156712 100.0% 613827 84.2% 18(1)

80 430211 79.7% 156460 100.0% 557131 90.0% 16(1)

100 419284 79.7% 156576 100.0% 544530 90.1% 16(1)

250 420098 88.2% 155902 100.0% 539297 90.0% 16(0)

300 227553 88.1% 155908 100.0% 390761 90.7% 13(0)

400 396661 96.1% 155520 100.0% 512271 89.0% 11(0)

500 381212 96.3% 155326 100.0% 485028 88.9% 10(0)

1000 368031 97.2% 154600 100.0% 438773 88.1% 10(0)

5000 261480 99.0% 150586 100.0% 371151 86.2% 8(0)

10000 368031 97.2% 154600 100.0% 438773 88.1% 10(0)

Table 8: Characteristics of Java2D with a range of compilation threshold value 

Finally, we are also surprised that the number of interface method calls is almost unchanged in db. We have investigated the 
reason using the statistics. The count of interface method calls is dominated by call sites in the method set_index() in the class 
spec/benchmarks/_209_db/Database and the method equals() in the class 
spec/benchmarks/_209_db/Entry. At these call sites, the interface method calls are used as shown in Example 7. In JDK 
1.1, the method elements() in the class java.lang.Vector is declared as final. In Java 2, however, the method is not 
declared as final. This causes type information for variables to be missing, for example the receiver expression e in the method 
foo(). If it is not declared as final, another target method may be invoked since type analysis returns the Enumeration class 
as an ambiguous type (i.e. the compiler determines the call site is polymorphic). The Enumeration class is always implemented 
by few classes. If the method is declared as final, the method can be directly inlined and the return type is known as an inner 
class. Therefore, type analysis can only prove an inner class that is never overridden is certain to reach the receiver expressions e 
of the interface method calls. As a result, we can translate interface method calls into virtual method calls or inlined code. In that 
case, we can still get a huge reduction for 99% of the interface method calls in db. Since the receiver expression is not assigned by 

arguments, specialization and customization are not effective. Message splitting [28] can help in this situation. However, message 
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splitting increases the code size by duplicating loop structures completely. This apparently accidental change of sealed classes 
loses an opportunity for the performance improvement. 

public class Vector {
protected Object elementData[];
protected int elementCount;

public Enumeration elements() { // in JDK 1.1, this method is declared as final
return new Enumeration() {

int count = 0;
public boolean hasMoreElements() {

return count < elementCount;
}

public Object nextElement() {
synchronized (Vector.this) {

if (count < elementCount) return elementData[count++];
}
throw new NoSuchElementException("Vector Enumeration");

}
}

}
}

class Sample {
Vector v;
Object o[];
void foo() {

int i = 0;
Enumeration e = v.elements();
while (e.hasMoreElements()) // interface method call

o[i++] = e.nextElement(); // interface method call
}

}
 

Example 7: A sample of the usage of interface method calls 

4.6 Performance Results 
We measured the execution time of the eight non-interactive programs (compress, jess, db, javac, mpegaudio, mtrt, jack, 

and pBOB). The other programs were difficult to measure because of their interactive nature and dependencies within AWT. 
Figure 4 shows the performance improvements resulting from the cumulative optimizations. Here, all measurements are performed 
by compiling all methods. All values are given in relative speed up against non-devirtualized versions. Each of the bar shows cu-
mulative effects including prior optimizations. For each of the bars, the following combinations of techniques are used: 

�� base (not shown in the figure): All optimizations except the devirtualization techniques that we described in Section 4.1 
are performed (corresponding to Section 4.3) and static method inlining are performed. 

�� +guarded dev: Base optimizations and guarded devirtualization (i.e. class and method tests) are performed  (corresponding 
to Section 4.4.1). 

�� +direct dev: Base optimizations, guarded devirtualization, and direct devirtualization with the code patching mechanism 
are performed  (corresponding to Section 4.4.2). 

�� +type analysis: Base optimizations, guarded devirtualization, direct devirtualization with the code patching mechanism, 
and flow-sensitive type analysis are performed  (corresponding to Section 4.4.3). 

�� +preexistence: Base optimizations, guarded devirtualization, direct devirtualization with code patching mechanism, flow-
sensitive type analysis, and  preexistence analysis are performed  (corresponding to Section 4.4.4). 

On average, we have measured a speedup of 4% by guarded devirtualization with class tests and method tests. Direct devirtu-
alization with the code patching mechanism improves the performance by 18% on average. It especially improves the performance 
of mtrt that calls some small methods very frequently. 

 Type analysis also improves the performance of jess, javac, mpegaudio, and jack. These programs include parsers and ex-
pert systems that manipulate many string objects using the methods hashcode(), equals(), and toString(). In these pro-
grams, the reductions of method calls with invokevirtualobject_quick instructions by type analysis are higher. These 
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method calls are a part of V-Call. We have measured the reductions of the total number of method calls with invokevirtu-
alobject_quick instructions such as jess with 43.9%, mpegaudio with 11.6%, and jack with 88.4%. We have also measured 
the higher reduction with javac with 36.3%. 

Using all of the optimizations presented in this paper, we have measured a speedup of 19% on average. The degradation of a re-
sult of pBOB with preexistence analysis is strange, but we cannot find a reason. 
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Figure 4: Speed-up measurements for the non-interactive benchmarks 

5. Conclusions 
We have presented devirtualization techniques that we have implemented here. We evaluated them based on various statistics 

collected by running a set of real programs in widely different application categories. We have found a reduction of dynamic 
method calls ranging from 8.9% to 97.3% (an average of 40.4%) by using these devirtualization techniques. We have shown that 
the direct devirtualization technique that we propose in this paper can remove almost all class and method tests generated by 
guarded devirtualization, and be applied to a wide range of dynamic method calls. The runtime overhead of this approach is 
smaller than that of a recompilation-based approach. This approach introduces backup paths that prevent some compiler optimiza-
tions, but the overhead of its existence may be small in practice. Furthermore, we have shown type analysis and preexistence 
analysis can directly devirtualize only 25.7% without backup paths of the directly devirtualized sites with backup paths. And over-
all we have reported performance improvements ranging from -1% to 122% (an average of 19%).  

For a specific application program that is not effectively accelerated by these devirtualization techniques, we have also investi-
gated the behavior of the program with a variety of threshold values of selective compilation. This encourages us to consider adopt-
ing a hybrid approach for direct devirtualization. We have also pointed out some problems such as non-sealed class library and 
missing type information that introduce performance degradation in a Java runtime environment. Now we are beginning to investi-
gate compilation policies to decide which methods should be applied to by a hybrid approach between code invalidation and re-
compilation-based approaches. 
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