Research Report

Rough Quadrilateralation of Triangular Meshes via Belt-like Subregioning for Surface Reconstruction

Takayuki ITOH, Atsushi YAMADA, Tomotake FURUHATA, Keisuke INOUE, and Kenji SHIMADA

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Di vision

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice

This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or copies of the article legally obtained (for example, by payment of royalities).

Rough Quadrilateralation of Triangular Meshes via Belt-like Subregioning for Surface Reconstruction

Takayuki Itoh* Atsushi Yamada* Tomotake Furuhata**
Kcisuke Inoue* Kenji Shimada***
* IBM Research. Tokyo Research Laboratory, \{itot, ayamada, inove \}@trlibm.co.jp
${ }^{* *}$ IBM Japan, Yamato Software Laboratory, furuhata@jp.ibm.com
${ }^{* * *}$ Mechanical Engineering, Carnegie Mellon University, shimada@cmu.edu

Abstract

Surface reconstruction is a technique for converting fine geometric models such as triangular meshes or unorganized points into a smaller number of curved surface patches. Here, the topology of surfice patches should be taken into considerution, because the smoothness and continuity of the patches depend on their topology. This paper reports a method for forming the topology of surface patches for surface reconstruction methods, given an initial fine triangular mesh. It first clusters the triangular elements into several belt-like subregions along the mesh domain boundary, and then subdivides the subregions into rough elements. The rough elements can be used as surface paches by fining them to the input triangular mesh. The topology of rough elements is suitable for surface reconstruction, because they are well-aligned along the domain boundary.

Keywords: surface reconstruction, advancing front, quadrilateral meshing.

1. Overview

Surface reconstruction of geometric models [Bajp5] [Eck96] [Kri96] is an active rescarch area in computer graphics (CG) and computer aided design (CAD). The technique is useful in the CG area, because it reduces the data size of geometric models. It is also useful in CAD arta, since it converts polygonal meshes or unorganized points into surface models, which are generally used in commercial CAD systems.
Figure I shows an outline of the surface reconstruction process in our implementation [Yam99b). Given fine triangular meshes or unorganized points, our implementation first forms the topology of a set of rough surface palches, and then fits the patches to the input mesh or points.

Eigure 1. Outline of our surface reconstruction method.
Our previous report [Yam99b] focused on the filting process of surface patches to unorganized points, but the construction of a topology of surface putches is also important, because the smoothness and continuity of the surface patches strongly depends on their topology. There have been various approaches for constructing the topology of
surface panches, however, it is still a vital problem.
We think that the following conditions are desirable for a topology of surface patches:
Condition 1: The patches are quadrilateral.
Condition 2: The patches are significantly larger than the input triangular elements.
Condition 3: The angles of the vertices of the patches are close to 90 degrets. To satisfy it it is better that vertioes on the domain boundary are adjacent to two patches, if the boundary should be Gl continuous around the verfices. It is also better that vertices inside the geometry are aljacent to four panches. Experimentally we have found that the topology along the domain boundary is more important.
Conditions I and 3 are very similar to the requirements for quadriateral meshes for numerical simulations such as the finite element method (FEM), so we think it is worthwhile to adapt quadrilateral meshing methods to develop surface patches topology construction methods.

The advancing front method [Bla91] [Ca96] [Ras97] [Whi97] [Zhu91), a popular quadrilateral meshing method for numerical simulations, is one of the most worthwhite methods to follow. It first generates elements along the domain boundary, and then continues generating elements along the boundary of the empty region in order, until the elements fill the whole domain. Quadrilateral meshes generated by the method are usually well-aligned along the boundary, and therefore the resulting topology is usually preferable for numerical simulations.

This paper reports a method for generating "rough" meshes from "fine" triangular meshes. The rough meshes generated by the method are well-aligned along the domain boundary, similar to the meshes generated by advancing front method.
Figure 2 shows the outline of the method. Given a fine triangular mesh shown in Figure 2(a), the method first generates triangle strips as shown in Figure 2(b). It then clusters them into several belt-like subregions with userspecified thickness, as shown in Figure 2(c). It finally generates rough elements by subdividing the subregions, us shown in Figure 2(d). Our method does not guarantee that all patches and vertices satisfy the above-mentioned conditions, but in this paper our experimental tests show that most of the patches and vertioses will satisfy them.

(c) L: subregion (b) R; outpue rough mesh.

Eigure 2. Outline of our topology construction method.

2. Implementation

This paper assumes that the data structure of an input triangular mesh, $M_{j}=(Y, T, \Delta T, B, S, R, L)$, and an
output quadrilateral mesh, $M_{\mathrm{v}}=(W, E, Q)$, consist of the following orderod lists:
(1) vertices of $M_{1}, V=\left(v_{1}, \ldots, v_{N}\right)$.
(2) triangular elements of $M_{1}, T=\left(t_{1}, \ldots, t_{u}\right)$.
(3) adjacent elements of $T, \Delta T=\left(\Delta r_{1}, \ldots, \Delta r_{m}\right)$, which give at most three adjacent triangles for each triangle,
(4) mesh domain boundary loops. $B=\left(b_{1}, \ldots, b_{4}\right)$, which give a set of continuous triangular element edges on the mesh domain boundary.
(5) triangle strips, $S=\left(\left(s_{1,2}, s_{2,1}, \ldots\right),\left(s_{1,2}, s_{2,2}, \ldots\right), \ldots\left(s_{1,}, s_{2, L}, \ldots\right)\right)$, which give a set of adjacent triangles alignod along B,
(6) subregions, $R=\left(r_{1}, \ldots, r_{K}\right)$, which give a set of adjacent triangle strips,
(7) outer and inner loogs of $R, L=\left(\left(l_{1, O}, l_{2}\right),\left(l_{2, a}, l_{2, t}\right)_{1} \ldots,\left(l_{L, Q}, l_{L}, i\right)\right.$, which give a set of verices of M_{i} on the outer and inner boundaries of subregions,
(8) vertices of $M_{q}, W=\left(w_{i}, \ldots, w_{p}\right)$,
(9) edges of $M_{q}, E=\left(e_{1}, \ldots, e_{Q}\right)$, and
(10) quadrilateral elements, $Q=\left(q_{1}, \cdots, q_{R}\right)$.

2.1 Triangle strip generation

This process first forms the mesh domain boundary loops B. The process firs extracts edges of M_{1}, which are adjacent to only one triangular element. It then traverses the extracted odges through their adjacency. The traversal necessanily arrives at the starting edge, and the visited edges during the traversal forms a loop. The process registers the set of visited edges into a boundary loop b_{1} and forms B by similarly traversing all the extracted edges through the aljacency of edges.

The process then extracts triangular elements adjacent to B. It extricts those triangles where at least one vertex lies on the boundary loop b_{i}, and registers the set of extrseted triangles into a triangle strip s_{u}. It repeats the process until it extracts all those triangles where at least one vertex lies on B, and registers them into triangle strips. The process then extracts unregistered those triangles where at least one vertex lies on the triangle strip $s_{1, d}$, and regisers the triangles into a uriangle suip s_{2}. Similarly in extracts unregistered those triangles where at least one vertex lies on a triangle strip $x_{\text {ad }}$, and registeres the triangles into a triangle strip $x_{\text {trath }}$. The process is repeated until all triangles are registered into a triangle strip.
Finally, the process generates a triangle strip gruph, as shown in Figure 3, by mapping triangle strips to graphnodes, and their adjacency to graph-ares.

2.2 Subregioning by the simplification of a triangle strip graph

This process forms subregions R by simplifying the triangle strip graph, as shown in Figure 4. It assumes that each subregion r, has the following values:
(1) triangle strips that r_{i} contains,
(2) triangles that r, contains, and
(3) adjacent subregions.

The process initially defines that one subregion is mapped to each graph-roode of the triangle strip griph. It then merges adjacent subregions into larger subregions, until all suhregions become thick enough to generute rough
elements inside them. Many of subregions form belt-like shapes along outer or inner boundaries of the mesh domain. The merge process consists of the following two steps.

22. Merger of subrealons which bave only one adjacent cubregion

This step first extracts subregions that have only one adjecent subregion, and sort them according to the number of triangle strips that the subregions contain. The prooess then checks the numbers of triangle strips of the extracted subregions and their adjacent subregions in the surted coder. If the total of the number of uriangle strips of an extracted subregion and its adjacent subregion is not too large, the process merges them into a larger subregion.

2.2.2 Merger of other mall subrezions

This step first extracts subregions that contain small numbers of triangle strips or triaggles, and sorts them according to the number of triangle strips or triangles that the subregions contain. The process then shecks the numbers of triangle strips or triangles of the extracted subregions and their adjacent subregions in the sorted order. If the sum of the number of triangle strips or triangles of an extracted subtregion and its adjacent subregion is not too large, the process merges them into a larger subregion.

Eigure 3. Triangle strípgraph.

Eigure 4. Simplifieation of the triangle strip graph.

2.3 Rough element generation by subdividing subregions

This process generates rough elements by subdividing subregions. In this process cach subregion is regarded as a
donut-like domain which topologically has one hole, as shown in Figure S(a). If the subregion has no holes, or more than one hole, it is topologically modified before subdividing. The detail of the topology modification process is describal in Section 2.4.

The rough element generation process consists of the following four steps:
[Step 1] outer and inner loop generation,
[Step 2] edge generation on the outer loop,
[Step 3] edge generation comnaeting the outer and inner loops, and
[Step 4] edge generation on the inner loop.
Fugure 5 shows the four steps the in rough element generation process. The detail of each step is described in the following sections.

(a) Slepl: Outer and inner lsops. (b) Step2. Edges on the suter logas
(c) Step 3: Edges connecting outer and inner loogs. (d) Step 4: Edges on the inner loop.

Figure 5. Rough element gencration.

23.1 Outer and inner lone generation

This process first selects an unprocessed subregion r_{1}, and extracts triangle edges that are on the mesh boundary or adjacent to a different subregion. It then traverses the extracted edges through their adjacency. The traversal necessarily arrives at the starting edge, and the visited edges during the traversal forms a loop. If r_{x}, contains a hole, two loops are to be generated. The larger loop is registered as an outer loop $l_{\text {rep }}$, and the other is registered as an inner $\operatorname{lomp} l_{\text {ar }}$.

23.2 Edge generation connecting the outer and inner loops

Next, the process selects some vertices of M, on the outer boundary $I_{\text {no }}$, with user-specified inderval. It then generates vertices of $M_{q}, w_{i+1 i}, \ldots, w_{j}(i<j)$, at the selected vertices of M_{8}. It then connects the vertices of M_{*}
 some edges of M_{v} are shared with the adjacent subregion.

Figure f. (a) Traversal of triangles. (b) Replace of a vertex on the inner loops. (c) Three patterns of rough clements.

23.3 Edec beocration connectingenter and inner loges

Next, the process gencrates edges of $M_{2}, f_{\text {on }},+\ldots, e_{e}(b<c)$, which connect $I_{x, 0}$ and $I_{2,}$, It generates the edges starting from the vertices on $l_{2}, W_{j}, W_{G+1}, \ldots, w_{j}$, toward $l_{x,}$. As shown in Figure 5 (c), it gencrates vertices $w_{(j, 1,+\ldots,} w_{l}(j<k)$ on $l_{\text {s, }}$, while it generates the edges of M_{q}.
To generate an edge which connects l_{50} and $l_{n, r}$, it traverses triangles in the subregion starting froma veriex w_{n} on $f_{x, 0}$, along a vector that equally-divides the angle between two edges adjacent to w_{d}. When the traversal arrives at a triangle adjacent to $l_{s, r}$, a vertex of the triangle on $I_{\text {arr }}$ is selected, and a veriex w_{s} is generated at the selected vertex. An edge of M_{4}, which connects w_{u} and w_{b}, is then generated. Figure $G(a)$ represents an example of the trangle traversal process. The doted arrow line denotes the vector, and the polygonal arrow line denotes the traversal of triangles.

It is possible that the traversal does not amive at $l_{2, i}$, In this case the process selects a vertex of M, on $l_{2, i}$, which is the closest from w_{8}, and then generates an edge of M_{4}. It is also possible that the edge generated by abowementioned process intersects previously generated edges. In this case, w_{p} on $l_{h, l}$ is replaced by a vertex of the intersected edye, as shown in Figure 6(b).

The above-mentioned process is skipped if the angle α_{d} between two edges on $l_{L O}$ adjacent to w_{a} is not enough large.
Consequently, these four sieps generute the following three patterns of rough elements, as shown in Figure 6(c):
[Element pattern 1] a quadrilateral clement formod by two vertices on $t_{2,0}$ and two vertices on $t_{2,}$.
[Element pattern 2] a triangular element formed by two vertices on $l_{, b}$ and one vertex on $l_{\text {, }, ~ \text {. It is generated if an }}$ edge which connects $I_{n, s}$ and $l_{2,}$ shares a vertex on $I_{s, 7}$ with previously generated odges,
[Element pattern 3] a quadrilateral element formed by three vertices on $t_{2,0}$ and one veriex on $t_{x, i}$. It is generated if Step 3 is skipped.

2.3.4 Eder generation on the inner loge

Next, the process generutes edges of $M_{v}, c_{i,+1, \ldots,} \zeta_{d}(c<d)$, on $I_{8,}$, It gencrates the edges by connecting $w_{(j+10}+\ldots . . W_{i}$, which are generuted in Siep 3. The process finally subdivides r_{n} into several rough elements, as shown in Figure 5(d).

2.4 Topology modification for non-donut-like subregions

Zero-urca loop

Eigure 7. Topology modification. (a) Rough elements with a central wertex.
(b) Rough edements with some interior vertics, (c) Rough dements with multiple hoks

Above-mentioned rough element generation method supposes thut every subregion has one inner loop. Otherwise, the method modifies the topology of a subregion using the following algorithm.

If there is no hole in a subregion r_{x}, the process generntes a zero-area hole in r_{x}. After generating vertices of M_{4} on the outer $\operatorname{loop} I_{\text {zip }}$, the process first extracts a central vertex of M, in a subregion, and then generates a vertex of M_{q}, w_{a}, at the central vertex. It then calculates distances between w_{a} and each vertex on $l_{s, 0}$. If all of the calculated distances are small enough, the process generates edges connecting w_{*}, and each vertex on $l_{\text {e }}$, , wi shown in Figure 7(a). If some vertices on $l_{x, 0}$ are too distant from w_{n}, the process first generates edges from the disuant vertices on $t_{s, o}$ by using a triangle traversing process, similar to the traversal process shown in Figure f(a). It then generates vertices w_{p}, w_{1}, \ldots, , at the ends of the generated edges, and they are connected, as shown in Figure 7(b). The set of connections of inner vertices is treated as a zero-area loop, l_{2}, . The process then genenates edges connecting $t_{2,}$ and $t_{2,}$, using the algorithm described in Section 23.
If there is more than one hole in r_{s}, the process generates a large inside loop that connects all holes. The process
first extracts closest two vertices, w_{s} and w_{b}, on the boundaries of the two boles. The process then generates a segment that connects w_{n} and w_{A}, using a triangle traversal process similar to the process shown in Figure $6(a)$. This process is repeated until all holes are connected, and finally the process generates a loop by traversing all the segments and the inner boundaries of all of the holes, as shown in Figure 7(c). The process then genemtes rough elements using the algorithm described in Section 2.3.

2.5 Post-processing

Some post-processesing can improve the topology of a rough mesh. We implemented a function that converts two adjacent triangles into a quadrilateral, as shown in Figure 8(a). We also implemented a function that converts a triangle, whose only vertex is on the domain boundary, into a quadrilateral by adding a vertex on the boundary, as shown in Figure 8(b).

Figure 8, (a) Two triangles coupling, (b) Triangle to quadrilateral conversion.

3. Related works

Our surface patch construction method receives a fine triangular mesh as input and outputs a rough quadrilateral mesh. Various methods for generating rough triangular meshes or fine quadrilateral meshes have recently been proposed, however, our method is different. This section discusses some of them and compares them with our method.

3.1 Triangular to Quadrilateral Mesh Conversion

Mesh conversion is one way to generate a quadrilateral mesh, given a triangular mesh. Most of the mesh conversion methods [Bor96] [Hei83] [Tto98] [Joh91] [Lo89] [Shi95] first couple adjacent triangular elenents and then convert the couples into quadrilateral elements. However, they cannot generate "rough" quadrilateral elements from "finer" triangular elenents. Though it is possible to use the quadrilateral elements generated by the mesh conversion method as surface patches, this does not satisfy the second condition, because they are not larger than the input triangular elements.

3.2 Simplification of Triangular Meshes

Mesh simplification [Gar97] [Hop93] [Sch92] [Tur92] is anocher way to generate a rough mesh, given a fine triangular mesh, and is often applied to surface reconstruction applications. Most of them generate a coarse triangular mesh by culling off the input mesh by using various algorithms, such as vertex removal, edge and face collapse, vertex re-allocation, and $\$ 0$ on. Though it is possible to use the coarse elements as triangular surface patches, most applicutions work better with quadrilateral surface patches rather than triangular patches. It is also possible to generate coarse quadrilateral surface patches by using triangular to quadrilateral mesh conversion methods after the simplification process, but it appears difficult to optimize the topology of the quadrilateral patches in such a conversion process.

3.3 Quadrilateral meshing for numerical simulations

Quadrilateral meshes are preferred for numerical simulation methods such as FEM, and various quadrilateral
meshing algorithms have therefore been developed. The advancing method [Bla91] [Cas96] [Ras97] [Whi97] [Zhu91] is a famous algorithm for generating quadrilateral meshes well-aligned along the domain boundary. It is preferred in FEM since the domain boundary is often numerically important. It also seems that quadrilateral meshes generated by the method satisfy the above-mentioned conditions for surface patches. However, most of the advancing fromt methods gencrate meshes only from wireframe or surface models It is posibibe to generate wireframe models from mesh domain boundaries; however, the method does not always generate proper meshes from geometrically complicaked triangular mesher.

3.4 Topology construction of surface patches in conventional surface reconstruction methords

Various approaches of topology construction have boen proposed for surface patches in conventional surface reconsuruction methods. Krishnamurhy et al developed a user inmerface for manuaily constructing surface puches [Kri96]. Eck et al reponted an automated implementation by uxing a combination of mesh simplification and triangle to quadrilateral conversion methods [Eck96]. Bajaj et al reported an automated implementation that constructs surface patches by using cross sections of a tetrabodral mesh generuted from a set of given unorganizad points [Bajaj95].

4. Experimental results

The method reporied in this paper has been impleanented in C and C++ on UNIX (mainly IBM AIX 4.2 and SGI IRIX 6.5), and Windows95/98/NT. We have applicd the method to our automated blending surface generation system. Figure 9 (a) shows an example of an inpur geomerric model for the system. The model consists of three large planar surface patches, and three thin curved surface patches smoothly connecting the planar surfaces. It still contains a gap between the six surfaces; bowever, it is offen difficult to manually create surface patches filling the gup and smoothly connecting the given surface patches with conventional commercial CAD systems. The target of our system is automated gencration of such surface patches, so called fillets. The system first generates a triangular mesh filling the gap, and then deforms the triangular mesh by the mesh fairing method [Yam99a]. The method proposed in this paper then generates the topology of surface patches, and finally the system fits the patches to the triangular meshes by a least-square-hased fitting method [Yam99b]. Figure 9 (b) shows an example of surfaces generated by the syxtem.

The left-hand images of Figures 10, 11, and 12 show the topology of surface paches generated by our method with input triangular meshes. The right-hand images of Figures 10,11 , and 12 show the result of fitting the patches to triangular meshes. Table I shows measurement metries of the quality of the resulting models. Here, we calculated the value $\varepsilon_{r}=N_{t r} / N_{e}$ to measure the ratio of the number of triangular patches to the final patches, where N_{v} denotes the number of triangular patches, and N_{τ} denotes the total number of patches. We also calculated the value $\varepsilon_{i}=N_{i v} / N_{v}$, where $N_{i v}$ denotes the number of vertices that do not satisfy the third condition as described in Section 1, and N_{γ} denotes the total number of vertices. These results show that our method satisfies the first and third conditions. Also the figures show that our method satisfies the second condition, because the sizes of the surface patches are much larger than the sizes of the input triangular ciements.

5. Conclusion

This paper reported a method to generute rough meshes from fine triangular meshes for the purpose of surface reconstruction. If generates surface patches well-aligned along the domain boundary, since it first generntes belt-like subregions along the boundary and then subdivides them.

Ore of the possible future works is the analysis of the smoothness and continuity of the surface patches generated by our system. Such amalysis may suggest other conditions besides the method and criteria proposed in this paper.

Ancther future work is an application of the method to closed triangular meshes. Our current target was the
conversion of open triangular meshes, because that method has been applied to filling gaps in geometric modelsOther consideration for closed triangular meshes may be necessary so that the method can be applied in the general computer graphics arta.

References

[Baj95] Bajab C. L. Benmardini F., and Xu G., Automatic Reconstruction of Surfaces and Scalar Fiblds from 3D Scans, Proceatings of SIGGRAPH '95, pp. 109-118 (1995).
[Blagl] Blacker T. D, and Siphonson M. B., Piving: A New Apprcach to Automated Quadrilsteral Mesh Goncration, Intemational Joumal for Numerical Methods in Engineering. Vol. 32, pp. 811 -847 (199)).
[Bor90] Borouchaki H., Frey P J., and Gerges P. L., Unstructured Triangle Quadrilacral Mesh Generation, Application to Surfice Mexting Proceodings of 5° Intemusional Mohing Roundable, pp. 220.242 (1990).
[CasÓf] Cass R. J., Benzley S. E. Meyers R. J. and Blacker T. D., Generating 3-D Paving: An Automnerd Quadriluenal Surface Meah Generation Algaritim, Intemutional Joumal of Numerical Mechatism Engincoring, Vol. 39, pp. 1475-1489 (1990).
[Eck96] Eck M, and Hoppe H., Automatic Reconstruction of B-Spline Surfaces of Adtitrary Topological Type, Procecalings of SIGGRAPH 'Ki, pp. 325-334 (1996).
[Gar97] Garland M., and Heckbert P. S. Surface Simplifictrico Using Quadric Emor Metrics, Proosedings of SIGGRAPH '97, pp. 209-216 (1997)
[Heik3] Heighway E. A. A Mesh Gencrior for Automasially Suhdiviing Imegular Polygons into Quadribterals, IEFE Transactions on Magnetics, Vol. Mag-19, pp. 2535-2538 (1983).
[Hop93] Happe H., DeRose L. Ductamp T., McDonald L_ and Stuetzle W_ Mesh Optimizabion. Proceedings of SIGGRAPH '93. pp. 19-26 (1993).
Itwos] Itwh T. Shinsada K. Incue K. Yannala A., and Furuhata T. Aubumated Conversion of 2 D Triangular Mesh into Quadribteral Mesh with Directionality Consol, Procoedings of 7^{3} Intemational Meshing Rounduble, pp. 77-86 (1998)
Jokis1| Johnson B. P. Sullivan J. M. and Kwasnik A., Automuric Conversion of Thiangular Finite Element Meshes to Quadrilderul Elements, Irsernutional Joumal for Numerical Methods in Enginocring. Vol. 31, pp. 67-84 (1991).
[Kri96] Krishnamyithy V.. and Levoy M., Fitling Smooth Surfaces to Dense Polygon Meshes, Proccolings of SIGGRAPH '\%, pp. 313-324 (1996).
[Lo89] Lo S. H. Gencraing Quadrilateral Elements on Plane und over Carved Surfaces, Computer and Structures, Vol. 31.No. 3. pp. $421-436$ (1989)
[Ras97] Res M., Combining Quadriacenl and Triangular Meshing Using the Advancing Front Approach, Proceodings of 6^{*} Intematicoal Meshing Roundtuble, pp. 337-348 (1997).
[Scr92] Schrveder W. J., Zarge J. A., and Leensen W. E., Decimakion of Triangle Meshes, Proocodings of SIGGRAPH '92. p1.65-70(1992).
[Shi95] Shimada K., and Boh T., Automated Conversion of 20 Triangular Mesh into Quadriabenal Mesh. Frocoodings of Intemational Conference on Computational Engincering Science 95, pp, 350-355 (1995).
TTur921 Turk G., Re-iling Polyzonal Surfaces, Proceedings of SIGCRAPH ${ }^{\text {² }} 92$, pp 5 55-64(1992).
[Whi97] White D. R., and Kinney P. Redesign of the Paving Algorithm: Robusuess Enhuncemexss through Element by Element Meshing. Procuadinges of $6^{\text {t }}$ Inienxational Meshing Roundable, pp, 323-335 (1997)
[Yam29a] Yamada A., Shimada K., Furuhuata T, and Hou K., A Discrete Spring Model for Generuing Fuir Curves and Surfaces, Procenfings of Pasific Graphics '99 (1999).
[Yam59] Yarmide A, Furuhaza T, ftoh T, and Shimada K., Curve and Surface Fitting to Scattered Points Based on a Discrete Spring Model, IPSI Grephies \& CAD technical report, 99-CG-96, pp. 31-36, in Japanese (1999).
[Zhu91] Zhu J. Z, Zienkiewicz O. C., Hinton E, and Wu J., A New Approach to the Developmext of Autommic Quadrilaneral Mesh Gensution, International Joumal for Numerical Mehods in Enginering. VaL. 32, pp, $849-866$ (1991).

Eigure9. Example of an input geometry and output surface patches in our system.

Figure 10. Result (1).

Lixure 1. Result (2)

Figure 12. Result (3).

Table_1. Measurement values of surface patches,

value	$\boldsymbol{\varepsilon}_{\boldsymbol{r}}$	$\boldsymbol{\varepsilon}_{\boldsymbol{r}}$
Result (1)	0.0000	0.2000
Result (2)	0.0417	0.0500
Result (3)	0.0273	0.1321

