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Abstract

We present a new algorithm for eliminating null pointer checks from programs written in JavaTM. However, the same

approach should work for any languages requiring null checking. Our new algorithm moves null checks backwards and

eliminates redundant null checks. This increases the opportunities for other optimizations to be applied by eliminating many

null checks that impede code motion. In a separate pass, it moves null checks forwards and converts many null checks to

hardware traps in order to minimize the execution costs for the remaining null checks. This algorithm has been implemented in

the IBM Java Just-in-Time (JIT) compiler. Our experimental results show that our approach improves performance by up to

71% for jBYTEmark and up to 10% for SPECjvm98 over previously known algorithms.

1. Introduction

The Java language[9] has a powerful exception-handling mechanism, which is useful for error handling, program control, and

safety preservation. However, any instruction capable of throwing an exception inhibits a compiler's ability to optimize the

program. In general, a program written in Java tends to have many such instructions, which become barriers to code motion and

thus significantly reduce the scope of optimizations. For example, null pointer checks are required for every instance variable

access, method call, and array access. In fact, these operations are quite common in typical Java programs.

In general, the implementation of null checking can take advantage of hardware traps[10, 13, 14]. For typical operating systems,

accessing the zero address (page) will throw an exception to the application, and thus no explicit instruction has to be generated

to check the null pointer. Even with such implementation, null check elimination is still important for two reasons. The first is

that null checks become barriers to optimizations even with hardware trap support and thus significantly reduce the scope of

optimizations. The second is that all the null checks cannot necessarily rely on the hardware support mechanism.  For example,

some operating systems does not raise an interrupt when the offset of the address is larger than a certain size. As another

example, AIX does not raise an interrupt for the case of reading the zero address. A more subtle example is that, when

devirtualization[8, 10, 15, 16] is applied, an explicit null check instruction must be generated for an object access to the method table

since this object access will be eliminated by transforming the dynamic (virtual) call to a static (non-virtual) call or inlining its

method body. Here, the execution cost of the generated null check instruction may not be negligible since the inlined method

body can often be as small as a few instructions.

To convert null checks to hardware traps in earlier phases of compilation inhibits other optimizations, since any instruction
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capable of throwing an exception becomes a barrier to code motion and thus significantly reduces the scope of optimizations.

Our null check optimization is split into two phases in order to solve this issue. In the first phase, as an architecture independent

optimization, a partial redundancy elimination algorithm is employed to reduce null checks in order to increase the opportunity

for applying other optimizations in a wider region. Previous null check optimization techniques, such as forward data-flow null

check elimination, cannot maximize other optimizations' effect, since the null check does not move and remains a barrier to

code motion. In the second phase, as an architecture dependent optimization, null checks will be converted to the hardware

traps available for the target hardware and operating system in order to minimize the execution cost of null checking. To the

best of our knowledge, this is the first algorithm to optimize null checking in two phases and to provide such powerful null

check elimination.

We implemented our new algorithm in the IBM cross-platform Java Just-in-Time (JIT) compiler. Our JIT compiler supports

Intel IA32, PowerPC, and S/390, and our algorithm is applicable for all these architectures. We conducted experiments by

running jBYTEmark and SPECjvm98 benchmark programs on both a Pentium III 600MHz machine (with Windows NT 4.0

and IBM Developer Kit for Windows(R), Java Technology Edition, Version 1.2.2) and a PowerPC 604e 332 MHz machine

(with AIX 4.3.1 and IBM Developer Kit for AIX, Java Technology Edition, Version 1.2.2). Our preliminary performance

results show significant improvements over previous approaches.

1.1 Our Contributions

� A New Null Check Elimination Algorithm: Our two-phase null check optimization algorithm can maximize the effect of

other compiler optimizations, unlike previously known algorithms, and yet it can take full advantage of the hardware trap

mechanism. Although we have implemented our algorithm for Java, it is also applicable for other languages requiring null

checking.

� Empirical Evaluation: Our experimental results show that our approach improves performance by up to 71% for

jBYTEmark and up to 10% for SPECjvm98 over previously known algorithms. It also shows that our approach increases

JIT compilation time an average of only 2.3%.

The rest of the paper is organized as follows. Section 2 summarizes previous work. Section 3 gives an overview of our

approach. Section 4 presents the details of our algorithms. Section 5 shows the performance results obtained in our

experiments. Section 6 offers some concluding remarks.

2. Previous Work

2.1 Implementation of Null Check

Some JIT compilers, such as the Jalapeño Dynamic Optimizing Compiler[14] from the IBM T.J. Watson Research Center,

LaTTe JIT compiler[13], and the previous version of our JIT compiler[8, 10] utilize hardware traps and the associated OS support

functions for null check implementation. Jalapeño's object layout was designed in order to trap in hardware for memory reads
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and writes, although the target architecture (AIX on PowerPC) can trap only for writes to memory in the first page. If the

pointer to an object is null,  Jalapeño accessed the contents of the object using a negative address. The designers relied on the

fact that reading from the last page triggered this hardware trap. LaTTe (the target architecture is SPARC) relied on all memory

reads or writes causing hardware traps. They assumed that all null checks caused hardware traps. However, such an assumption

can not be used in applying some code transformations, such as method inlining by devirtualization. Our JIT compiler for

Windows on Intel IA32 partly used such an implementation. Our JIT compiler for AIX on the PowerPC could use such an

implementation for the memory writes, but we have not implemented it yet. Instead, we used a conditional trap instruction (it

requires only one cycle if it is not taken) to check null pointers for all memory reads and writes, and we applied speculation for

memory reads. That is, we moved memory reads speculatively above the original location where the trap instruction is placed

to catch the null pointer.

2.2 Null Pointer Check Elimination using Forward Data-Flow Analysis

Previous JIT compilers, such as the Jalapeño compiler[1] or the previous version of our JIT compiler[8, 10], eliminate null

pointer checks by using forward data-flow analysis. This algorithm eliminates null checks that have already been checked

somewhere along the data-flow. However, there are two drawbacks to this approach:

� Forward data-flow analysis cannot move loop invariant null checks out of the loop. For example, when the first object access

lies inside of the loop, the null check for it must remain in the loop body. Such null checks become barriers to optimizations

and thus significantly reduce the scope of optimizations.

� This elimination algorithm does not take into account the utilization of hardware support.

3. Overview of Our Approach

This section describes how we solve the issues described in Section 2.2. Section 3.1 describes the high-level flow diagram of

our null check optimization. Section 3.2 describes an overview of architecture independent optimization, which solves the first

issue in Section 2.2. Section 3.3 describes an overview of architecture dependent optimization, which solves the second issue in

Section 2.2.

3.1 High-level Flow Diagram of Null Check Optimization

We begin by explaining the high-level flow diagram of null check optimization using Figure 1. Our null check optimization

is split into two phases; the first is an architecture independent optimization (1), the second is an architecture dependent

optimization (5). The architecture independent optimization (1) moves null checks backwards and eliminates redundant null

checks. This optimization increases opportunities for array bound checking optimization (2) and scalar replacement (3), and

these optimizations also increase opportunities for null checking optimization; therefore some iterations (4) achieve more

optimization. An architecture dependent optimization (5) moves null check forwards and minimizes the execution costs of null

checking by utilizing the hardware trap.
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Null check optimization
(architecure independent)

Null check optimization
(architecture dependent)

Scalar Replacement

Figure 1: High-level flow diagram of nullcheck optimization

(1)

(2)(4)

(5)

Array bound check
optimization

(3)

3.2 Architecture Independent Optimization

We enhance partial redundancy elimination (PRE)[2, 3, 4] in order to eliminate partially redundant null checks and also to move

null checks out of the loop.

Nullcheck a
t += a.field1

1) Before Optimization

Nullcheck a
t += a.field2

2) After Optimization

Figure 2:  Partially-Redundant Nullcheck

Nullcheck a
t += a.field1

t += a.field2

Nullcheck a

Figure 2 shows an example of partially redundant null checks. In Figure 2 (1), the null check located at the junction cannot

be eliminated without code motion, because the right path does not include any null check. Therefore, a null check will be

executed twice along the left path. This optimization inserts a null check in the right basic block and eliminates the null check

at the junction. As a result, a null check will be executed only once along each path.
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(assumption : 'a' and 'i' are local variables)

Figure 3:  The architecture independent null check optimization and scalar replacement

6) After Scalar
    Replacement

nullcheck a;
b = load [a.B];
nullcheck b;
c = load [b.C];
d = load [b.D];
do {
    i += c + d;
} while(some cond);

5) After Null check
    Optimization

nullcheck a;
b = load [a.B];
nullcheck b;
do {
    s1 = load [b.C];

    s2 = load [b.D];

    i += s1 + s2;
} while(some cond);

4) After Scalar
    Replacement

nullcheck a;
b = load [a.B];
do {
    nullcheck b;
    s1 = load [b.C];

    nullcheck b;
    s2 = load [b.D];

    i += s1 + s2;
} while(some cond);

3) After Null check
    Optimization

nullcheck a;
do {
    s1 = load [a.B];
    nullcheck s1;
    s1 = load [s1.C];

    s2 = load [a.B];
    nullcheck s2;
    s2 = load [s2.D];

    i += s1 + s2;
} while(some cond);

1) original program

do {
   i += a.B.C + a.B.D;
} while(some cond);

2) Intermediate
    Representation

do {
    nullcheck a;
    s1 = load[a.B];
    nullcheck s1;
    s1 = load[s1.C];

    nullcheck a;
    s2 = load [a.B];
    nullcheck s2;
    s2 = load [s2.D];

    i += s1 + s2;
} while(some cond);

Figure 3 shows an example where the architecture independent null check optimization and scalar replacement assist each

other. The first "nullcheck a" in (2) cannot be eliminated by the previous approach using forward data-flow analysis, because

the outer path does not include any null check. However, our approach moves "nullcheck a" out of the loop in (3). The result of

(4) cannot be achieved without the null check optimization in (3), since the null check becomes a barrier against backward

movement of related memory accesses. The result of (5) also cannot be achieved without the scalar replacement in (4), since

writes of an object becomes a barrier to moving its null check; therefore these optimizations are particularly effective for loop

invariant code motion.

3.3 Architecture Dependent Optimization

We enhance partial redundancy elimination (PRE) in order to reduce the execution costs of null checking by utilizing the

hardware traps.

3.3.1 Implicit Null Check and Explicit Null Check

We first explain our implementation of the null checks. We define two kinds of null checks:

� Implicit Null checks, which do not need to generate actual checking code, but rely on the hardware traps.

� Explicit Null checks, which need to generate actual checking code.

To implement null checking, we use implicit null checks wherever possible. However, in some cases we have to use an

explicit null check in order to maintain conformance to the Java language specification. For example, when an instruction

requiring null checking does not cause a hardware trap, its null check must be an explicit null check.
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Hardware Trap
Area only
for Write

NULL

Figure 4: Examples of explicit null check required

(2) OS detects trap only for memory write

explicit_nullcheck a;
i = a[0];
implicit_nullcheck b;
b[0] = i;

Hardware Trap
Area for

Read and Write

NULL
(1) Offset is not within the trap area

implicit_nullcheck a;
i = a.SmallOffset;
explicit_nullcheck b;
b.BigOffset = i;

SmallOffset

BigOffset

For Figure 4 (1), the offset of a memory access is not within the (protected) trap area, so its null check must be an explicit

null check. Fortunately, this case is rare for Java language. For any array access in Java, the array length is required for bound

checking and its offset is typically zero from the top of the object, though, this depends on the implementation of the object

layout. For a field access, its offset is usually within the trap area. In extreme cases the offset can be larger than the trap area

since it can be as large as 512 KB (which is 65534 * 8 = 524272 based on the Java Virtual Machine Specification[12]).

For Figure 4 (2), if the operating system detects hardware traps only for memory writes to the (protected) trap area, the null

check for a memory read must be an explicit null check. However, such an operating system has an advantage in that the

compiler can apply speculation to memory reads. If a memory read with a null pointer is guaranteed not to cause a hardware

trap, it can move across its null check speculatively. Furthermore, it can be moved out of the loop as a loop invariant

instruction.

Figure 5 shows an example of such case. In (2), "nullcheck b" cannot move across the memory write, "a.I = S2." However, if

the operating system does not throw the trap for memory reads, "arraylength b" can move up across "nullcheck b." Finally  

"arraylength b" can be moved out of the loop as shown in (3).

(assumption : 'a', 'b', and 'total' are local variables)

Figure 5:  An example of speculation

3) Optimization Result

explicit_nullcheck a;
i = a.I;
bl = arraylength b;
do {
    s1 = i;
    i = i + 1;
    a.I = i;
    explicit_nullcheck b;

    boundcheck s1, bl;
    s1 = b[s1];
    total += s1;
} while(some cond);

1) original program

do {
   total += b[a.I++];
} while(some cond);

2) Intermediate Representation

do {
    nullcheck a;
    s1 = a.I;
    s2 = s1;
    s2 = s2 + 1;
    nullcheck a;
    a.I = s2; // barrier of nullcheck
    nullcheck b;
    s2 = arraylength b;
    boundcheck s1, s2;
    s1 = b[s1];
    total += s1;
} while(some cond);

As another example, when method inlining of a dynamic method call is applied to a call site by devirtualization, an explicit

null check needs to be generated as shown in Figure 6.
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(Italic denotes the actual exception sites.)

Figure 6:  Explicit nullcheck with method inlining

3) Optimization Result

if (a < 0){
   explicit_nullcheck obj;
   result = a;
} else {
   implicit_nullcheck obj;
   result = obj.field;
}

1) Before inlining

result = obj.func(a);

int func(int s1) {
   if (s1 < 0){
      return s1;
   } else {
      return this.field;
   }
}

2) After inlining

explicit_nullcheck obj;
if (a < 0){
   result = a;
} else {
   result = obj.field;
}

If the explicit_nullcheck in Figure 6(2) is replaced by an implicit_nullcheck, the content of obj is not always accessed.

Therefore, if obj is a null pointer and 'a' has a negative value, no exception occurs and execution continues. This violates the

Java language specification. Explicit null checks with method inlining appear frequently in typical Java programs, and thus,

explicit null check elimination is a particularly effective optimization. We can minimize the execution cost for the null check as

shown in optimization result (3).

3.3.2 Overview of the Architecture Dependent Optimization

nullcheck a

nullcheck a
t = a.field1

c)

Figure 7:  Architecture dependent optimization

a)

b)

1) Before Optimization
2) After The Architecture
     Independent Optimization

(Italic denotes the actual exception sites)

3) After The Architecture
     Dependent Optimization

implicit_nullcheck a
t = a.field1 explicit_nullcheck ac)

a)

b)

nullcheck a

t = a.field1 c)

a)

b)

We explain the algorithm using Figure 7. At the beginning, we treat all null checks as explicit null checks in input code. In

the first phase, the architecture independent optimization (as explained  in Section 3.2) cannot delete the null check in (a), but

only the null check in (b). This is because the null check in (a) is the first point at which the contents of the object are accessed.

Therefore, a null check remains in (a). In the second phase, the architecture dependent optimization moves explicit_nullchecks

forward. If it reaches an instruction that accesses the content of an object and that is known to cause a hardware trap, then the

explicit_nullcheck is replaced by an implicit_nullcheck (which does not generate actual code). The instruction following an

implicit_nullcheck should be the actual exception site, and therefore we must mark such an instruction as an exception site.

This is to prevent instruction-level optimizations (such as code scheduling) from applying code motion illegally beyond the

exception site in the later phase. As the result, we can get optimization result (3), and can reduce the execution cost along the

left path.

As another example, if this optimization is applied against result of Figure 3 (6), all null checks are replaced by implicit null
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checks.

4. Outlines of Our Algorithms

This section describes the outlines of our algorithms for null check optimization. Section 4.1 describes two transformations

for architecture independent optimization. Section 4.2 describes two transformations for architecture dependent optimization.

4.1 Algorithm for Architecture Independent Optimization

4.1.1 Algorithm for Null Check Insertion

The purpose of this stage is to compute the first checkpoints of null checks in the region where null checks can be moved

backwards. Out_bwd(n) is the set of movable null checks at the exit point of the basic block. This set is computed by solving

the backward data-flow equations given below.

Gen_bwd(n)  : The set of movable null checks at the entry of basic block n. Only null checks are included in the set.

Kill_bwd(n) : The set of null checks that cannot be moved beyond the basic block n in the backward direction. The specific

instructions that can be candidates for the kill set are as follows:

� Any instruction that overwrites a variable that is used in null check.

� Any instruction that causes side effects, such as raising other kinds of exceptions or writing to memory.

Out_bwd(n) =         In_bwd(m)�

             m  = Succ(n)

In_bwd(n) = (Out_bwd(n) - Kill_bwd(n))   Gen_bwd(n)�

Next, Earliest(n) is calculated as the set of the first points for null checks in the region where null checks can be moved

backwards. This set is computed by means of the following equation.

                          
Earliest(n) = (         Out_bwd(m) )   Out_bwd(n)� �

                        m  = Pred(n)

Earliest(n) has insertion points for null checks at the end of basic block. A null check is not yet inserted at this time, since the

next optimization might eliminate some insertion points for null checks.

4.1.2 Algorithm for Null Check Elimination

The purpose of this stage is to eliminate null checks that have already been checked somewhere along the data-flow.

In_fwd(n) is the set of available null checks at the entry of the basic block. This set is computed by solving the forward

data-flow equations given below.

Gen_fwd(n) : The set of available null checks at the exit of basic block n. Both null checks and accesses of the contents of

objects are included in the set.

Earliest(n)   : The set of null checks that will be inserted at the end of basic block n. This set was computed by Section 4.1.1.
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Kill_fwd(n) : The set of null checks that cannot be moved beyond the basic block n in the forward direction. The specific

instruction that can be candidates for the kill set is a definition of a variable used in null check.

Non_null(m, n) : The set of null checks that are known to be non-null by either a succeeding conditional branch or a "this"

object in the original Java program at the entry of the basic block n from basic block m. More specifically, the

followings are the candidates for this set:

� null checks on the edge from m to n can be determined as non-null by ifnull, ifnonnull, or

instanceof-if<cond>

� the first basic block for the "this" object for an instance method

In_fwd(n) =         (Out_fwd(m)   Earliest(m)    Non_null(m, n) )� � �

         m  = Pred(n)

Out_fwd(n) = (In_fwd(n) - Kill_fwd(n))   Gen_fwd(n)�

The set of available null checks at each point inside a basic block n is determined from In_fwd(n). A null check C is

eliminated if we determine that there is an available null check that can reach C.

Next, we delete unnecessary insertion points from Earliest(n) by computing the following equation, and insert null checks at

the end of the basic block from the computed Earliest(n).

Earliest(n) = Earliest(n) - Out_fwd(n)

4.2 Algorithm for Architecture Dependent Optimization

4.2.1 Algorithm for Null Check Insertion

The purpose of this stage is to compute the last points in the region for which each null check can be moved forwards.

In_fwd(n) is the set of movable null checks at the entry of the basic block. This set is computed by solving the forward

data-flow equations given below.

Gen_fwd(n)  : The set of movable null checks at the entry of basic block n. Only null checks are included in the set.

Kill(n)  : The set of null checks that cannot be moved beyond the basic block n in the forward direction. The specific

instructions that can be candidates for the kill set are as follows:

� Any instruction that overwrites a variable that is used in null check.

� Any instruction that accesses the contents of an object, where it is known that the access will cause a hardware

trap if the object is null.

� Any instruction that causes side effects, such as raising other kinds of exceptions, or writing to memory.

In_fwd(n) =        Out_fwd(m)�

         m  = Pred(n)

Out_fwd(n) = (In_fwd(n) - Kill(n))  Gen_fwd(n)�

Next, Latest(n) is calculated as the set of the last points for null checks in the region where the null checks can be moved

forwards. This set is computed by means of the following equation.
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Latest(n) = (         In_fwd(m))    In_fwd(n)� �

                     m  = Succ(n)

Latest(n) has insertion points for null checks at the entry point of the basic block. The insertion points inside a basic block n

are determined from Latest(n) by means of the following algorithm.

for (each I from the first instruction to the last instruction in the basic block n) {
if (I is a null check ) {

C = null check by instruction I;
Latest(n) = Latest(n) C;�

} else {
if (I accesses contents of object && I will cause hardware trap if object is null) {

C = null check for instruction I;
if (C Latest(n)) {�

Insert implicit null check for C before I; // this transaction is optional.
Mark I as exception sites;
Latest(n) = Latest(n) - C;

}
}
if (I might cause other kinds of exceptions || I might write to memory) {

for (each C Latest(n)) {�

Insert explicit null check for C before I;
}
Latest(n) = ;�

} else if (I overwrites a local variable which has object) {
C = null check of the local variable;
if (C Latest(n)) {�

Insert explicit null check for C before I;
Latest(n) = Latest(n) - C;

}
}

}
}
for (each C Latest(n)) {�

Insert explicit null check for C at the end of basic block n;
}

4.2.2 Algorithm for Explicit Null Check Elimination

The purpose of this stage is to eliminate explicit null checks wherever possible if the following instructions that require null

checks can be used as substitutes for the explicit null checks. Out_bwd(n) is the set of substitutes for null checks at the exit of

the basic block. This set is computed by solving the backward data-flow equations given below.

Gen_bwd(n):  The set of substitutes for null checks at the entry of basic block n. Both null checks and accesses of the contents

of objects are included in the set.

Kill(n) :  The set of null checks that cannot be moved beyond the basic block n in the backward direction. This set is the same

as Kill(n) in Section 4.2.1.

Out_bwd(n) =         In_bwd(m)�
               m  = Succ(n)

In_bwd(n) = (Out_bwd(n) - Kill(n))  Gen_bwd(n)�

The set of substitutes for null checks at each point inside a basic block n is determined from Out(n). An explicit null check C

is eliminated if we determine that a substitute for the null check can reach C in the backward direction.
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5. Experimental Results

We chose two benchmark programs for the evaluation of our optimization: jBYTEmark version 0.9 from BYTE Magazine

and SPECjvm98[6]. For SPECjvm98, the measurements were performed in test mode (not in SPEC-compliant mode) with a

count of 100, as specified for the SPEC-compliant mode. All the experiments described in Section 5.1 through 5.3 were

conducted on an IBM IntelliStation M Pro (Pentium III 600MHz with 384 MB of RAM), Windows NT 4.0 Service Pack 5, and

IBM Developer Kit for Windows, Java Technology Edition, Version 1.2.2. The experiment described in Section 5.4 was

conducted on a PowerPC 604e 332MHz with 128 MB of RAM, AIX 4.3.1.

We disabled null check optimization and always generated explicit null checks (that is software checks only) for all null

checks (denoted as "No Opt. with Software Check" in Table 1 and Table 2) to show the effectiveness over the enabled null

check optimization (denoted as "New Null Check Optimization" in Table 1 and Table 2). To compare the performance

improvement over previous approach, we implemented Whaley's algorithm[1] (denoted as "Old Null Check Optimization" in

Table 1 and Table 2) for null check elimination. To compare the effectiveness of implicit null checks (that is with the hardware

trap) over explicit null checks, we disabled null check optimization and utilized the hardware trap (denoted as "No Opt. with

Software Check" in Table 1 and Table 2). To compare with another Java system, we also measured these benchmarks by using

a HotSpotTM Server VM 2.0 beta[11] under the same software environment.

Table 1:  Performance for jBYTEmark v.0.9 (Larger numbers are better)

106.6288.87145.2425.69114.748.06206.56234.0044.73207.13HotSpot

112.57116.81134.4062.99107.8722.68163.87227.859.08156.94No Opt. with
Software Check

119.91130.42151.8863.14125.3122.74170.18245.1349.58157.01No Opt. with
Hardware Trap

158.31130.82156.0863.27130.1022.74186.12245.2549.87160.78Old Null Check
Optimization

205.90200.50159.3367.46207.4122.75219.64258.8654.41201.96New Null Check
Optimization

LU
DecompositionNeural NetHuffman

Compression
IDEA

encryptionAssignmentFourierFP
EmulationBitfieldString SortNumeric

Sort(unit : index)

        Table 2:  Performance for SPECjvm98 (Smaller numbers are better)

17.509.2514.7824.6120.136.535.73HotSpot

15.1710.0212.0025.3318.708.257.38No Opt. with
Software Check

14.339.8011.3924.7117.557.957.09No Opt. with
Hardware Trap

14.309.7711.3324.7017.497.867.05Old Null Check
Optimization

14.189.3911.3224.4217.387.676.44New Null Check
Optimization

javacjackmpegaudiodbcompressjessmtrt(unit : sec)

New Null Check Optimization: New null check optimization is applied utilizing hardware traps.
Old Null Check Optimization: Use Whaley's algorithm[1] for null check elimination. It utilizes hardware traps.
No Opt. with Hardware Trap: Disable null check optimization. However, implementation of null check utilizes the hardware traps.
No Opt. with Software Check: Disable null check optimization. All null checks are explicit null checks.
HotSpot: HotSpot Server VM 2.0 beta
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5.1 Improvement from Our Null Check Elimination

Figure 8 shows the percentage of performance improvement over our baseline (No Opt. with Software Check) achieved for

jBYTEmark v.0.9 by the new null check optimization described in section 4. We found that architecture independent

optimization is very effective for Assignment, Neural Net, and LU Decomposition. This is because these benchmarks use

multidimensional arrays, and therefore null check optimization, array bound check optimization, and scalar replacement assist

each other. Some loop invariant array accesses are moved out of loops and performance is greatly improved.
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Figure 8:  Improvement for jBYTEmark v.0.9

Figure 9 shows the percentage of performance improvement over our baseline (No Opt. with Software Check) achieved for

SPECjvm98 by the new null check optimization. We found that our explicit null check elimination is particularly effective for

mtrt after method inlining is performed. This is because mtrt has small methods (to access data in a class) which are called

frequently and many explicit null checks associated with these calls can be eliminated only after they are inlined.
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Figure 9:  Improvement for SPECjvm98
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5.2 Performance Compared with HotSpot

Figure 10 shows the performance comparisons for jBYTEmark, comparing our JIT compiler including new null check

optimizations with HotSpot. Our JIT compiler shows better performance for almost of all benchmarks, and the average relative

performance of our JIT compiler is 169% better than HotSpot.
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Figure 10:  Performance Comparison for jBYTEmark (HotSpot=100%)

Figure 11 shows the performance comparisons for SPECjvm98, comparing our JIT compiler including new null check

optimizations with HotSpot. Our JIT compiler shows slightly better performance, since the average relative performance of our

JIT compiler is 106% compared to HotSpot.
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Figure 11:  Performance Comparison for SPECjvm98 under Test Mode (HotSpot=100%)
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5.3 JIT Compilation Time

In this section, we compare the JIT compilation time in our approach with that of the previous approach. We could not

measure compilation time for jBYTEmark because it was very short. We assume that the difference between the first run and

the best run of SPECjvm98 is essentially due to compilation time. Table 3 shows the time for the first run, best run, and the

assumed compilation time of our JIT compiler and HotSpot. This shows that our JIT compiler performs very fast compilation

when compared with HotSpot, if our assumption about compilation time is correct. Figure 12 shows the percentage of the our

JIT compilation time over the whole execution time (that is, the time spent for the first run). In summary, javac is the

benchmark that the JIT compiler took the most time to compile.

Table 3:  JIT compilation time (seconds)

39.88 (69.50%)12.63 (57.72%)4.45 (23.14%)2.19 (8.17%)0.62 (2.99%)11.53 (63.84%)5.77 (50.17%)compilation
time

17.509.2514.7824.6120.136.535.73best run

57.3821.8819.2326.8020.7518.0611.50first run

HotSpot

8.15 (36.50%)2.56 (21.42%)1.24 (9.87%)0.20 (0.81%)0.05 (0.29%)2.70 (26.04%)3.03 (32.00%)compilation
time

14.189.3911.3224.4217.387.676.44best run

22.3311.9512.5624.6217.4310.379.47first run

Our JIT

javacjackmpegaudiodbcompressjessmtrt

mtrt jess compress db mpegaudio jack javac
0

10
20
30
40
50
60
70
80
90

100
( % ) Running time JIT compilation time

Figure 12:  Percentage of our JIT compilation time (100% = time spent for the first run)

We further measured the breakdown of our JIT compilation time by using a trace tool available in AIX, and computed the

compilation time by taking into account platform differences. Table 4 and Figure 13 show the results. We were not able to

measure the breakdown of the compilation times for compress, db, and jess because they were very short. The new null check

optimization itself takes about 3 times longer in compilation time than the old one, and it also slightly increases the compilation

time of other optimizations. This is because the new null check optimization also increases opportunities for other

optimizations, such as scalar replacement, to be applied.
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Table 4:  Breakdown of our JIT compilation times (seconds)

7.86 (96.44%)0.06 (0.74%)OLD

7.98 (97.91%)0.17 (2.09%)NEW
javac

2.49 (97.27%)0.02 (0.78%)OLD

2.50 (97.66%)0.06 (2.34%)NEW
jack

We could not measure the breakdown because the
compilation time was very short.mpegaudio

We could not measure the breakdown because the
compilation time was very short.db

We could not measure the breakdown because the
compilation time was very short.compress

2.62 (97.04%)0.02 (0.74%)OLD

2.64 (97.78%)0.06 (2.22%)NEW
jess

2.93 (96.70%)0.02 (0.66%)OLD

2.96 (97.69%)0.07 (2.31%)NEW
mtrt

OthersNull check
optimization
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Figure 13:  Breakdown of JIT compilation times

Table 5 shows the increase in the compilation time in our new approach relative to the compilation time in the old one. In

summary, the enhancements described in this paper increased the total compilation time by approximately 2.3% (on average).
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Table 5:  Increases in JIT compilation time in our approach

2.82%0.23javac

1.95%0.05jack

2.22%0.06jess

2.31%0.07mtrt

Increase in total
compilation time (%)

Increase in total compilation
time (second)

5.4 Relative Effectiveness of Speculation versus Implicit Null Check

As we described in Section 2.1, we have used conditional trap instructions available for the PowerPC to detect null pointers

associated with memory reads and writes on AIX. For memory reads, we used speculation. To compare the effectiveness of

speculation (denoted as "Speculation" in Table 6 and Table 7), we disabled speculation (denoted as "No Speculation" in Table

6 and Table 7) in the scalar replacement phase. To compare the effectiveness of implicit null checks (denoted as "Implicit Null

Check" in Table 6 and Table 7), we applied the architecture dependent null check optimizations for Intel to the optimizations

for AIX. We note here that this violates the Java language specification since a NullPointerException may not be thrown

correctly on AIX. This is purely for experimentation purposes. To find the effectiveness of the overall performance gain over

the baseline (denoted as "No Opt. with Software Check" in Table 6 and Table 7), we disabled the whole phase of our null

check optimization.

Table 6:  Performance for jBYTEmark v.0.9 on AIX (Larger numbers are better)

79.9873.9397.1444.6881.7113.2379.8983.4228.17173.92No Opt. with
Software Check

91.6675.9497.2045.1494.7613.2586.1683.6529.77181.09No Speculation

92.0886.0397.3545.1496.4713.2687.4684.4530.01186.12Speculation

92.6677.35100.7445.6095.6613.2586.6284.4029.91183.28Implicit Null Check

LU
DecompositionNeural NetHuffman

Compression
IDEA

encryptionAssignmentFourierFP
EmulationBitfieldString SortNumeric

Sort(unit : index)

   Table 7:  Performance for SPECjvm98 on AIX (Smaller numbers are better)

47.3445.3620.4272.8544.2526.2821.00No Opt. with
Software Check

47.2644.6620.3372.3944.2126.2820.56No Speculation

47.1444.5620.1672.0843.8025.9220.34Speculation

46.9044.7119.8771.8643.7526.0919.94Implicit Null Check

javacjackmpegaudiodbcompressjessmtrt(unit : sec)

Implicit Null Check: Apply architecture dependent optimizations for Intel, assuming memory accesses cause hardware traps.
Speculation: Enable speculation as our current JIT compiler including new null check optimization. We use conditional trap in order to check null.
No Speculation: Disable speculation in our current JIT compiler.
No Opt. with Software Check: Disable null check optimization. All null checks are software checks.

Figure 14 shows the percentage of performance improvement over our baseline (No Opt. with Software Check) achieved for

jBYTEmark v.0.9. We found that speculation is very effective for Neural Net. This is because four instructions were moved

out of the innermost loop (across its null checks) with speculation, and this made a significant improvement.
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Implicit null checking for Neural Net is least effective among all the benchmarks when the results are compared on the Intel

platform. This is because the input code to the null check optimization on the PowerPC was different. On the Intel platform, the

method java.lang.Math.exp was inlined, but it was not inlined on the PowerPC. This is because our JIT compiler for Intel

converts this method to an exponential instruction. However, our JIT compiler for the PowerPC does not, since the PowerPC

does not have such an instruction. Therefore, this method call became a barrier for scalar replacement, and the improvement

from implicit null checking is particularly limited for the PowerPC relative to other benchmarks.
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Figure 14:  Improvement for jBYTEmark v.0.9 on AIX

Figure 15 shows the percentage of performance improvement over our baseline (No Opt. with Software Check) achieved for

SPECjvm98. It has been noticed that implicit null checks are especially effective for mtrt. This is also true for Intel, though the

improvement is smaller on the PowerPC platform than for the Intel platform. This is because the original execution costs for

null checks (using conditional trap) are smaller than that on the Intel platforms.
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Figure 15:  Improvement for SPECjvm98 on AIX
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6. Conclusions

In this paper, we have presented a new algorithm for null pointer check elimination, which has been implemented in the IBM

Java Just-in-Time compiler. An architecture independent optimization moves null checks backwards and eliminates redundant

null checks. This optimization maximizes other optimizations' effectiveness. Then an architecture dependent optimization

converts null checks to hardware traps in order to minimize the execution cost of null checking. Preliminary performance

results show a significant performance improvement over the previous approaches. Our algorithm can apply not only for Java,

but also for other languages requiring null checks. We expect the importance of the techniques presented in this paper to grow

further.
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