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Abstract

The singular value decomposition (SVD) has enjoyed a long and rich history. Recently, it is

being used in data mining applications and by search engines to rank documents in very large

databases, including the Web. The dimensions of matrices which appear in these applications

are becoming so large that classical algorithms for computing the SVD cannot always be used.

We present a new method to determine the largest 10%{25% of the singular values of matrices

which are so enormous that use of standard algorithms and computational packages will strain

computational resources available to most users. In our method, rows from the matrix are

randomly selected, and a smaller matrix is constructed from the selected rows. Next, we compute

the singular values of the smaller matrix. This process of random sampling and computing

singular values is repeated as many times as necessary (usually a few hundred times) to generate

a set of training data for neural net analysis. We demonstrate the power and accuracy of our

method through examples.
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1. Introduction

The singular value decomposition (SVD), i.e., the factorization of a matrix A into the product

A = U � V T (1)

of unitary matrices U and V and a diagonal matrix �, has a long and rich history, as chronicled in

a paper by Stewart [19]. A formal statement of the existence theorem for the SVD can be found

in standard texts on linear algebra, such as [7],[14]. Although it was introduced in the 1870's by

Beltrami and Jordan for its own intrinsic interest, it has become an invaluable tool in applied

mathematics and mathematical modeling. Singular value analysis has applied in a wide variety of

disciplines, most notably for least squares �tting of data [11]. Recently it is being used in data

mining applications and by some automated search engines, e.g., Alta Vista 5, to rank documents

in very large databases, including the Web [1],[2],[3],[9],[10],[12]. The dimensions of matrices in

mathematical models for these applications are becoming so large that classical algorithms for

computing the SVD cannot always be used. We present a new method to determine the largest

10%{25% of the singular values of matrices which are so enormous that use of standard algorithms

and computational packages will strain computational resources available to the average user. If

the associated singular vectors are desired, they must be computed by another means; we suggest

an approach for their computation.

This paper is organized as follows. In the remainder of this section we discuss how knowledge

of the singular values yields valuable information about a matrix, such as its norm, as well as

its sensitivity to roundo� errors during computations. Next, we explain how knowledge of the

singular values can be valuable for tuning the performance of two types of information retrieval

systems which are based on vector space models. Finally, we review some standard algorithms

for the computation of the SVD. In the second section, we present our method to determine the

top 10%{25% of the singular values of very large matrices. Variations of the method are also

presented. In the third section we present results from implementations of our method. A very

large matrix constructed using data from an industrial text mining study and some randomly

generated matrices are considered in our experiments. We conclude with a discussion on possible

directions for enhancing our method and open theoretical questions.
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1.1 Singular Values and Properties of Matrices

Accurate estimates of the largest 10%{25% singular values of a matrix are useful for under-

standing properties of the matrix from a theoretical perspective. For symmetric, positive de�nite

matrices, the singular values are the eigenvalues. For general rectangular matrices, singular values

can be used, among many things, to determine: the l2-norm of a matrix; the closest distance to

any matrix with rank N , whenever the N -th singular value can be estimated by our technique; and

a lower bound for the condition number of a matrix. We elaborate on these three points.

The largest singular value is the 2-norm of a matrix, where the 2-norm of a matrix represents

the maximum magni�cation that can be undergone by any vector when acted on by the matrix.

The N-th singular value of a matrix can be used to determine the closest distance to any matrix

of equivalent dimensions with rank N :

Theorem (Eckhart and Young [5]): Let the singular value decomposition of A be given by equation

(1) with r = rank(A) � p = min(m;n), and de�ne

Ak = Uk �k V
T
k (2)

(see Figure 1). Here �k is a diagonal matrix with k non-zero, monotonically decreasing diagonal

elements �1; �2; : : : ; �k, and Uk and Vk are matrices whose columns are the left and right singular

vectors of the k largest singular values of A. Unless speci�ed otherwise, the remaining entries of

Uk and Vk are zero. Then

min
rank(B)=k

kA�Bk2F = kA�Akk
2
F = �2k+1 + � � � + �2p :

The proof of the theorem is available in many texts, including [7],[14].

The condition number of a matrix A, which we denote by �(A), is one of the simplest and useful

measures of the sensitivity of the linear system associated with the matrix, i.e., Ax = b. Although

it is de�ned as the 2-norm of A times the 2-norm of the inverse of A, i.e.,

�(A) = kAk2 � kA
�1k2

for very large matrices, the computation of the inverse of A and its 2-norm may be too diÆcult. The

condition number is the largest non-zero singular value divided by the smallest non-zero singular
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value. The largest singular value for very large matrices can be estimated by our technique or the

power method (see Section 1.2). Computation of the smallest singular value of very large matrices

is very diÆcult. Although our technique cannot always be applied to compute the smallest non-zero

singular value, if we compute up to the N -th singular value, then the quotient Q = (�1=�N ) will

give a lower bound for the condition number of the matrix, i.e., �(A) � Q. If the matrix A is huge,

then a an accurate estimate of �N may be costly to compute, however, it is not as expensive to

compute a reliable upper bound for �N (details are given in Section 3). The upper bound for �N

can be used to compute a lower bound for Q and the condition number �(A). Knowledge of a lower

bound for �(A) is useful if it is large, since it implies that computations with the matrix A may be

very sensitive to roundo� errors. If an estimated lower bound for �(A) is small, we have not gained

any new information.

1.2 Singular Values and Information Retrieval

As mentioned earlier, the SVD is being used in some automated search and retrieval systems

to rank documents in very large databases [3], and more recently, the algorithm has been extended

to retrieval, ranking and visualization systems for the Web [1],[2],[10]. These systems are based on

a vector space model of document-query space [18]. The relationship between documents and their

attributes (e.g., keywords, time stamp information, frequency of updates and access) is represented

by an m-by-n matrix A, with ij-th entry aij, i.e., A = [aij]. The entries aij consist of information

on whether attribute i occurs in document j, and may also include weighting information to take

into account speci�c properties, such as: the length of the document; the relevance of a keyword

in the document; and the frequency of the keyword term in the document. Ideally, only those

which can help in distinguishing documents are incorporated in the attribute space. A is usually

a very large, sparse matrix, because the number of attributes in any single document is usually a

very small fraction of union of the attributes in all of the documents. In the simplest retrieval and

ranking systems, each query is also modeled by a vector in the same manner as the documents. The

ranking of documents with respect to a query is determined by its \distance" to the query vector.

A frequently used yardstick is the angle de�ned by a query and document vector. It is impractical

for very large databases.

One well-known algorithm known as latent semantic indexing (LSI) uses the SVD to reduce
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the dimension of the document-attribute matrix to expedite the retrieval and ranking process by

constructing a modi�ed matrix Ak, from the k largest singular values and their corresponding

vectors, as shown in Figure 1.

Ak = Uk �k V
T
k :

Here we follow the notation use in the Theorem by Eckhart and Young given earlier. Queries are

processed in two steps: query projection followed by matching. In the query projection step, input

queries are mapped to pseudo-documents in the reduced query-document space by the matrix Uk,

then weighted by the corresponding singular values �i from the reduced rank, singular matrix �k

as follows.

q �! q̂ = qT Uk ��1k ;

where q represents the original query vector and q̂ the pseudo-document. In the second step,

similarities between the pseudo-document q̂ and documents in the reduced term document space

V T
k are ranked by measuring the cosine of the angle between the query and the modi�ed document

vectors, i.e., by computing the inner product of the normalized vectors

Although a variety of algorithms based on document vector models for clustering to expedite

retrieval and ranking are available, e.g., [6],[8],[17], LSI usually leads to more accurate results since

it takes into account synonymy and polysemy. Synonymy refers to the existence of equivalent or

similar terms which can be used to express an idea or object in most languages, and polysemy

refers to the fact that some words have multiple, unrelated meanings. Absence of accounting for

synonymy may lead to many small, disjoint clusters, some of which should be clustered together,

while absence of accounting for polysemy may lead to clustering together of unrelated documents.

Information on the spread of the singular values of the document-query matrix, i.e., the relative

changes in the singular values when moving from the largest to the smallest can be used to determine

an appropriate dimension of a reduced subspace for modeling document-keyword space. Currently,

two methods are most commonly used to set the dimension of the subspace:

1. decide apriori how many singular values can be computed and set the dimension to be equal

to this number, or
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2. decide on an acceptable range for the dimension, e.g., dmin � dimension � dmax, and deter-

mine a precise value based on whether there is a big relative jump in the distance between

two consecutive singular values in the range, i.e., set the dimension to be i 2 [dmin; dmax] if

�i � �i�1 � �i+1 � �i.

Before making a �nal decision on the dimension of the subspace, we can estimate whether breakdown

of a program due to memory overow or paging will occur. It might be possible to make some

rough estimates of computational costs and time delays associated with paging.

The singular value decomposition appears in a modi�ed form in another promising ranking and

retrieval technique for very large databases described in [12]. The method uses principal component

analysis to reduce the dimensionality of the document-attribute space. The retrieval and ranking

problem is projected into the subspace spanned by the eigenvectors associated with the largest

5%{20% eigenvalues of the covariance matrix of the document vectors a database. (Note that the

covariance matrix is a symmetric, positive semi-de�nite matrix so its eigenvalues are its singular

values.) This algorithm can be implemented to run eÆciently without explicit computation of

the covariance matrix, with a simple means to update the matrix to take into account changes

in the entries of the database. Before the eigenvectors are computed (using, e.g., standard linear

algebra algorithms for symmetric matrices, or neural nets), knowledge of the eigenvalues is helpful

for deciding on the dimension of the subspace. The dimension is determined based on the distances

between eigenvalues, in a manner analogous to singular value analysis in LSI.

1.3 Standard Approaches to Computing the SVD

In this subsection, we review three approaches which are widely used to compute the SVD of

matrices.

Method 1: Householder Reections and Givens Rotations Computation of the SVD of

moderate-sized matrices (on the order of a few hundred by a few hundred) is not diÆcult. If a

matrix A is quite small and not necessarily sparse, a reasonable approach is to use Householder

reections to bidiagonalize A. Next, apply sequences of plane rotators to zero the superdiagonal

elements �i. Plane rotators (also called Givens rotators and Givens transformations) are matrices

in which all non-diagonal entries are naught and diagonal entries are unity. Exceptions occur at
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the four entries, for which:

A(i; i) = A(j; j) = cos � and A(i; j) = �A(j; i) = � sin � ;

where � denotes the angle of rotation (see Chapter 5 of [7]). Note that when the rotator is a 2-by-2

matrix, it reduces to the standard rotation matrix in a 2-dimensional plane. When Givens rotations

are used to zero an entry on the superdiagonal, it normally creates a new non-zero entry on the

subdiagonal. For instance, zeroing the (1,2) entry causes re-computation of the (2,1) entry. When

another Givens rotation is used to zero the new subdiagonal (2,1) element, a new nonzero entry

is normally created in the super-super diagonal (1,3) entry. This process of using a sequence of

Givens rotations to eventually remove each superdiagonal entry of a bi-diagonal matrix is called

\chasing" or \zero chasing" (see Figure 2) [11]. A sequence of Givens rotations or zero chasing must

be performed to zero each (i; i+ 1)th element of the bidiagonal matrix, beginning with i = 1, then

i = 2; 3; : : :. Use of Householder transformations followed by Givens for computing the SVD will

normally: destroy special features of the matrix A, including sparsity; require signi�cant memory;

and be computationally slow.

Method 2: the Power Method and Subspace Iteration If a matrix A is very sparse and

only a few of the singular values and singular vectors of A are needed for an application, a good

method for computing the SVD may be subspace iteration followed by modi�ed Gram-Schmidt.

Subspace iteration is based on the power method { an even simpler algorithm, which is used in

many scienti�c applications to determine the largest eigenvalue and the associated eigenvector of

a matrix A. One drawback is these methods work best when the singular values are distinct and

spaced well apart. In both the power and subspace iteration methods, we consider the matrix

products

AT � A and A �AT ;

then set the matrix with smaller dimension to be B. The eigenvalues �i of B are the square of the

singular values �i of A, i.e., �i = �2i . Eigenvalue determination for our problem is not as diÆcult

as for general matrices. Since B is symmetric, positive semide�nite, its eigenvalues are real, and

all of its Jordan boxes are 1-by-1. In general eigenvalue �nding programs, a substantial portion of

extra code is devoted to tests for determining the (possible) existence of multiple roots and the size
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of associated Jordan boxes. It is very diÆcult to write fail-safe, fast code which processes multiple

and very close roots.

In the power method we begin with an arbitrary vector v of unit length [7], and assume the

vector has a non-trivial component in the direction of the eigenvector v1 associated with the largest

eigenvalue �1. (Even if the starting vector has essentially no component in the direction of v1,

round-o� errors will usually accumulate during the iterative computations to generate a component

in the direction.) Then we compute the limit of the Rayleigh quotient of the matrix B, de�ned as

�1 = lim
m!1

vTBm+1v

vTBmv
:

To determine the second largest eigenvalue, we select a starting vector of unit length with no

component in the direction of the eigenvector v1. Subsequent eigenvalues �n, can be determined

by using a starting vector with no component in the directions of the (n � 1) largest eigenvectors

v1; v2 : : : ; vn�1, corresponding to the (n � 1) largest eigenvalues �1; �2; : : : ; �n�1. After several

iterations during the computation of �n, round-o� errors usually begin to contribute components

in the direction of v1; v2 : : : vn�1. Orthogonalization with respect to these vectors needs to performed

every several steps to ensure orthogonality with respect to vn.

In principle, as many eigenvalues as desired can be computed this way so long as the eigen-

values are distinct and are spaced well apart; if two or more eigenvalues are very close in values,

it is very diÆcult to separate them during the iterative process. This \sequential" approach of

determining progressively smaller eigenvalues using the power method is not used in practice. The

standard practice is to compute the desired number of eigenvalues simultaneously, using subspace

or simultaneous iteration followed by modi�ed Gram-Schmidt to ensure orthogonality of the re-

covered eigenvectors [7]. Use of the modi�ed, rather than clasical, Gram-Schmidt is recommended

since numerical roundo� often leads to poor results when the classical method is used.

Method 3: Lanczos Algorithms for Symmetric, Positive Semi-De�nite Matrices A

good algorithm for computing some, but not all, of the singular values and the associated singular

vectors of a large, sparse matrix A is the symmetric Lanczos applied to B = ATA. Note that

B is computed implicitly to minimize the use of memory Since B is symmetric, positive de�nite,

Lanczos tridiagonalization will convert it to a symmetric matrix without many of the diÆculties

associated with the Lanczos for more general matrices. A fast, reliable and parallelizable, eigenvalue
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routine, such as the Sturm sequence method can be used to compute the eigenvalues of B [7],[14].

Unfortunately, the associated eigenvectors must be computed separately.

2. Sampling Algorithm for Determining Singular Values

In this section we present three versions of an algorithm to estimate the eigenvalues of a sym-

metric, positive, semi-de�nite matrix and then discuss possible variations. The best variation to

use in a given situation depends on the special properties of the matrix, its size and available

computational resources.

Algorithm 1 Let A denote a very large M -by-N matrix whose singular values �i cannot be

computed due to the enormity of its size. Construct a smaller matrix A(1) by randomly selecting P

(P < M) rows from the very large matrix. Compute the singular values �
(1)
i of this smaller matrix

A(1) using any standard method, such as the Lanczos Method followed by Sturm sequencing [14].

Repeat this process 50 times (or any number of times which is suÆciently large to allow statistical

analysis), i.e., construct matrices A(i) ; i = 1; 2; 3; : : : ; 50 by taking di�erent random samples of

rows of A each time. For each A(i), compute the largest singular value �
(i)
1 , the second largest

singular value �
(i)
2 , the third largest singular value �

(i)
3 , and so forth until however many singular

values are desired. To estimate �k, the k
th singular value of the original, full matrix A, plot the

statistical spread of the �
(i)
k { i.e., the singular values of the A(i) { and compute the mean P�k.

Next, vary P , the number of randomly selected rows, and repeat this process. Finally, plot P

versus P�i. The graph will be a smooth curve, which can be used to obtain a good estimate of �i

by estimating the value of �i when P =M through extrapolation. Extrapolation can be performed

manually, by a human or with a software tool, such as neural nets, see, e.g., algorithms in [13].

Note that if P �M and P � N , a standard random number generator available on a system

library can be run to select the rows to generate the small matrix. This allows for the small

possibility that the same row may be selected twice. If P is not extremely small compared to M

and N , then is better to run a program after the random number generating program to check

that the row has not already been selected. This note also applies to Algorithms 2 and 3 described

below. We used the standard deviation as a guide for the estimated error, however, we do not know

how inherent errors in our method will a�ect the accuracy of our estimates.
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Algorithm 2 Let A denote a very large M -by-N matrix whose singular values �i cannot be

computed due to the enormity of its size. Construct a smaller matrix PA by randomly selecting P

(P < M) rows from the very large matrix. Compute the singular values P�i of this smaller matrix

PA using any standard method. Carry out this process for a series of P , e.g., P = 20; 21; 22; : : : ; 120.

For each �i, plot P versus the estimates P�i. Compared with the data from the �rst algorithm, The

graph will be a curve with considerable noise, however, it can be used to obtain a good estimate of

�i through extrapolation since there are so many sampling points. Extrapolation can be performed

manually, by a human, or with a software extrapolation tool, such as neural nets. If we use neural

nets, there are many more points to be input for training and more noise in the data (since we did

not take many samples for each P to compute an average estimate for P�i), so the quality of the

results compared with those from the �rst algorithm will is not known. What is certain is that

signi�cantly more computation will be needed to train the neural net for the second algorithm.

Algorithm 3 A hybrid of Algorithms 1 and 2 can be used to generate a curve for estimating

the singular values. Let A denote a very large M -by-N matrix whose singular values �i cannot be

computed due to the enormity of its size. Construct a smaller matrix PA by randomly selecting P

(P < M) rows from the very large matrix. Compute the singular values P�i of this smaller matrix

PA using any standard method. Carry out this process for a series of P evenly or unevely spaced.

If we carry out the process more than once for some P , we take the average of the singular values.

For each �i, plot P versus the estimates P�i. The graph can be used to obtain an estimate of �i

if we use extrapolation. To obtain a nice estimate, we would like to either have estimates for the

singular values for many values of P or many runs for each P or an intermediate value of both.

Extrapolation can be performed manually, by a human, or a software extrapolation tool, such as

neural nets or generalized linear regression.

3. Numerical Experiments

We implemented our algorithm using two di�erent types of data:

1. a matrix constructed from industrial text mining data; and

2. randomly generated positive semi-de�nite, square matrices.
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To �t the output from the algorithms to a curve for extrapolation, we used a neural net algorithm

called Multiple-Layer Feedforward Network (MLFN) and program in [13]. Details of the MLFN

algorithm, variations and enhancements are given in [4]; it is based on the Conjugate Gradient

Method, Direct Line Minimization, and Stochastic Optimization (Simulated Annealing).

3.1 Text Mining Matrix

In the �rst set of experiments, we considered a 36; 403-by-10; 000 matrix from a text mining

problem. The matrix represents data to be input into an automatic retrieval system based on

a variation and enhancement of LSI. It is suÆciently small that we can use a software package

we wrote based on the Lanczos algorithm to compute all of the singular values and vectors and

compare results with our statistical estimation method.

We took random samples of the rows of the matrix and computed the largest 5 singular values

of the (smaller) matrix constructed from the randomly sampled rows. We repeated the process 100

times and computed the mean and the standard deviation for two types of experiments:

1. rows were allowed to be selected more than once when constructing a small matrix out of

randomly sampled rows from the full document-keyword matrix; and

2. rows were not allowed to be selected more than once when constructing a small matrix out

of randomly sampled rows from the full document-keyword matrix.

Results from our experiments are given in Figure 3 for the �rst set of experiments and Figure 4 for

the second set. The corresponding numerical data given in Tables 1a-e and Table 2, respectively.

In experiment 1, we sampled from 15% up to 110% of the rows and plotted the results together

with the exact singular values. Note that sampling 110% of the rows means that some rows will

be sampled at least twice. Although our primary motivation for using this technique is to reduce

the size of the matrix involved in computations, we decided to sample more than the original size

matrix out of curiosity, i.e., just to observe what happens. Our experimental results match very

well with the actual singular values; the �rst and fourth singular values lie on the curve. They

are surprisingly good when we consider that we allow rows to be selected twice { which is what

occurred when we took 40; 000 rows at random.
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3.2 Randomly Generated Symmetric, Positive Semi-De�nite Matrices

In a second set of experiments, we generated random symmetric, positive, semi-de�nite matrices

and used it to test our method. The matrices were generated by taking the product of a rectangular

matrix (for which one dimension was 500) and its transpose, where the entries of the the matrices

were generated at random using the rand(�) function provided in standard C libraries. In our

estimation experiments for a matrix, we took random samples of the rows of the matrix and

computed the largest 5 singular values. We repeated the process 100 times and computed the mean

and the standard deviation. Typical results from our experiments using neural networks for curve

�tting and extrapolation are given in Tables 3a-d. They show that error for the predicted values

are at most 5%, usually at most 3% and sometime well below 1%. Data from Table 3a are plotted

in Figures 5 and 6; data for estimating the �rst �ve singular values are shown in Figure 5 and a

close-up of the curves for the second to �fth singular values is shown in Figure 6. The plots show

fairly typical behavior of the singular values of a matrix, i.e., the largest singular value is usually

well separated from the other singular values; and singular values tend to clump together, making

estimation of all but the largest singular value more diÆcult.

3.3 Application of Experimental Results to Information Retrieval

As we noted earlier in section 1.1.1, to obtain an estimate for a lower bound for the condition

number of a huge matrix (which cannot be easily manipulated due to its size), one could compute

an estimate for the largest eigenvalue using the power method and check it with our method. We

can �nd an upper bound for the smallest nonzero singular value �min using data from our method.

We use the fact that the estimation curve for any singular value always lies below any line tangent

to the curve. Take the curve for the smallest singular value for which we have data and use linear

extrapolation, i.e., a tangent line, to �nd a bound M � �min.

We found that even very crude implementations of our algorithm with very few points allow

accurate determination of clustering patterns of the singular values of a matrix. It has been observed

that singular values of matrices tend to be unevenly distributed; they usually cluster around several

values. Furthermore, a good approximation of a singular vectors can usually be computed by

orthogonalizing only with respect to those singular vectors whose corresponding singular values

are in the same cluster [15],[16]. Knowledge of the clustering patterns of the singular values will
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allow more accurate estimation of computations which need to be performed to compute singular

triplets (i.e., singular values and their associated pairs of singular vectors) of a matrix. A user can

decide how many singular triplets to compute based on the availability of memory and computing

resources.

4. Future Directions for Research

There are many possible directions for future study associated with the work we presented in

sections 1-3 of this report. In this section we elaborate on some straightforward tasks and open

theoretical questions.

Our experimental results seem to indicate that when two consecutive singular values �i and �i+1

are relatively close, our method tends to underestimate the larger singular value and overestimate

the smaller singular value, i.e.,

�i (estimated) < �i (actual) and �i+1 (estimated) > �i+1 (actual) :

More data needs to be collected to see if mixing of neighboring singular values occurs during our

estimation process and if so, why. A complete explanation for the mixing should include details on

what factors (e.g., the spread in singular values and the magnitude of the singular values) inuence

the extent of mixing.

A second topic for follow-up studies is the choice of the interpolation, i.e., whether neural

nets are a good choice or whether a simpler method exists. The choice of the neural net also

needs to be studied. We selected MLFN because it is well-known and over-the-counter software is

readily available, however, we do not know if a better neural net exists; better in terms of ease of

use, computational requirements, or results (i.e., reliable and accurate predictions). The optimal

format for data to input for training needs to be investigated. For instance, it is not clear how

many data points are needed for statistical averaging (for Method 1) or if noisy data but more

training data points (for Method 3) is better or if a hybrid of Methods 1 and 3 (i.e., Method 2) is

best. If a hybrid looks promising, �ne tuning the mix needs to be examined.

A third topic for further study is error analysis. Currently we do not have a means for computing

sharp error bounds for our estimates of singular values. We have taken the standard deviation to

be the error in the singular values of the matrices comprised of rows sampled from the original,
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full matrix, and it appears to yield reasonable error bars for the points in our graphs. Errors from

interpolation using MLFN need to be understood.

A major challenge well worth attempting is to develop an accurate and inexpensive method for

estimating the singular vectors associated with the singular values computed using our sampling

method for LSI; we would like to avoid carrying out Lanczos-based computations. One approach

may be to compute the singular vectors of the sampled matrices to see if they converge to the

singular vectors. Unfortunately, even if this method works, it would require considerable computa-

tional work because we would have to perform multidimensional interpolation. Furthermore, since

we sample either rows (or columns), we would only be able to estimate just the left (or just the

right) singular vectors. To estimate both the left and right singular vectors, we would have to carry

out the process twice { �rst sampling rows and carrying out multi-dimensional interpolation, then

sampling columns for multi-dimensional interpolation.

For retrieval and ranking based on principal component analysis, computations of the eigen-

values of covariance matrices associated with very large databases can be carried out by several

algorithms. Requirements on the databases which can be processed by the techniques (e.g., the

maximum number of documents and keywords, properties of the eigenvalues of the associated

covariance matrix) needs to be investigated.
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Table 1a: �1 of a document-query matrix

no. docs estimated standard std. dev. as a

sampled singular value deviation % of sing. val.

5000 161.540 1.48158 0.9172

10000 228.516 1.28316 0.5615

15000 279.560 1.35796 0.4857

20000 322.758 1.58687 0.4917

25000 360.770 1.47101 0.4077

30000 395.405 1.44595 0.3657

35000 426.768 1.34821 0.3159

36403 435.24� 0 0

40000 456.208 1.28724 0.2822

� actual value of �1

Table 1b: �2 of a document-query matrix

no. docs estimated standard std. dev. as a

sampled singular value deviation % of sing. val.

5000 84.7095 1.69861 2.0052

10000 119.331 1.50119 1.2580

15000 145.622 1.78570 1.2262

20000 168.087 1.58000 0.9447

25000 187.996 1.65415 0.8798

30000 205.775 1.72897 0.8402

35000 222.130 1.67498 0.7541

36403 230.74� 0 0

40000 237.510 1.51121 0.6363

� actual value of �2
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Table 1c: �3 of a document-query matrix

no. docs estimated standard std. dev. as a

sampled singular value deviation % of sing. val.

5000 79.1119 1.85479 2.3445

10000 111.990 1.69140 1.5103

15000 137.308 1.50624 1.0970

20000 157.945 1.71470 1.0856

25000 177.098 1.50329 0.8488

30000 193.911 1.76334 0.9094

35000 209.351 1.65003 0.7882

36403 209.897� 0 0

40000 223.837 1.54668 0.6910

� actual value of �3

Table 1d: �4 of a document-query matrix

no. docs estimated standard std. dev. as a

sampled singular value deviation % of sing. val.

5000 66.5506 1.10516 1.6613

10000 93.5245 0.910262 0.9733

15000 114.257 0.877629 0.7681

20000 131.759 0.974438 0.7396

25000 147.268 0.834012 0.5663

30000 161.239 0.847771 0.5258

35000 174.042 0.828651 0.4761

36403 178.821� 0 0

40000 186.166 0.831076 0.4464

� actual value of �4
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Table 1e: �5 of a document-query matrix

no. docs estimated standard std. dev. as a

sampled singular value deviation % of sing. val.

5000 62.6745 2.18304 3.4831

10000 89.0226 2.29186 2.5747

15000 108.730 2.75832 2.5368

20000 125.721 2.45171 1.9501

25000 140.036 2.61187 1.8651

30000 153.438 2.66805 1.7388

35000 165.746 2.65614 1.6025

36403 175.75� 0 0

40000 177.134 2.85345 1.6108

� actual value of �5

Table 2: Estimates for singular values of a document-query matrix

no. docs % of est. for est. for est. for est. for est. for

sampled docs �1 �2 �3 �4 �5

3640 10% 137.885 72.451 67.6975 56.8654 53.4614

7280 20% 194.670 101.748 95.4731 79.6399 75.6355

10920 30% 238.387 124.199 116.824 97.3973 92.5838

14560 40% 275.452 143.469 135.096 112.486 107.040

18200 50% 307.790 160.052 150.843 125.528 119.603

21840 60% 337.201 175.377 165.372 137.502 131.113

25480 70% 364.202 189.472 178.743 148.400 141.214

29120 80% 389.343 202.348 191.060 158.715 151.038

32760 90% 413.009 214.713 202.692 168.301 160.030

36403� 100% 435.240� 230.740� 209.897� 178.821� 175.753�

� actual values
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Table 3a: singular values of a randomly generated matrix (433 rows)

% docs �1 �2 �3 �4 �5

sampled

20 0.72723 0.44620 0.43252 0.42267 0.413197

30 0.84923 0.46738 0.45406 0.44405 0.435080

40 0.95757 0.48519 0.47275 0.46237 0.453525

50 1.05398 0.50147 0.48858 0.47823 0.470148

60 1.14197 0.51450 0.50179 0.49197 0.483833

100e 2.91868 0.79740 0.78693 0.76865 0.763555

100p 2.91829 0.78334 0.78460 0.77399 0.773992

error +0.01% +1.79% +0.30% -0.69% -1.35%

Table 3b: singular values of a randomly generated matrix (408 rows)

% docs �1 �2 �3 �4 �5

sampled

20 5.57267 3.75887 3.66296 3.59168 3.52545

30 6.41632 3.90178 3.80677 3.73416 3.67511

40 7.18334 4.02225 3.93523 3.86842 3.80911

50 7.84493 4.13141 4.04578 3.98116 3.91956

60 8.46411 4.23245 4.14977 4.08335 4.02310

100e 20.6324 6.17368 5.97194 5.89014 5.83628

100p 20.7545 6.19614 6.07404 5.98334 5.89627

error -0.59% -0.36% -1.68% -1.56% -1.02%

100e = exact value

100 p = predicted value
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Table 3c: singular values of a randomly generated matrix (414 rows)

% docs �1 �2 �3 �4 �5

sampled

20 5.83888 3.84466 3.73697 3.65872 3.59012

30 6.75588 4.00356 3.90652 3.82936 3.76324

40 7.55936 4.13097 4.03432 3.96119 3.89693

50 8.29249 4.24866 4.15304 4.07951 4.01612

60 8.94493 4.35504 4.25637 4.18587 4.12149

100e 22.085 6.41339 6.24698 6.19425 6.18721

100p 21.971 6.36723 6.22210 6.12456 6.03742

error +0.52% +0.72% +0.40% +1.14% +2.48%

Table 3d: singular values of a randomly generated matrix (50 rows)

% docs �1 �2 �3 �4 �5

sampled

10 3.33885 2.45437 2.22538 2.03553 1.86694

15 3.83106 2.70773 2.45462 2.28319 2.09810

20 4.27363 2.90072 2.66843 2.47278 2.31086

25 4.69209 3.09658 2.83547 2.64588 2.46873

30 5.07048 3.26885 3.00324 2.79438 2.61056

100e 6.33911 3.78967 3.65209 3.40648 3.14792

100p 6.37887 3.81820 3.53673 3.27863 3.19311

error -0.62% -0.75% +3.26% +3.90% -1.41%

100e = exact value

100 p = predicted value
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Figure 1: Construction of Ak, the closest rank-k approximation to A, through modi�cation of the

singular value decomposition of A. The colored portions of A, U , � and V T remain intact, and

entries of the white portions of the matrices are set to zero to construct Ak, Uk, �k and V T
k .
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Figure 2: Example of \zero chasing" using Givens rotations on a 6-by-6 bidiagonal matrix.
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Figure 3: Curves for approximating the largest �ve singular values of a matrix allowing for the

possibility of duplicate sampling.
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Figure 4: Curves for approximating the largest �ve singular values of a matrix with no duplicate

sampling.
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Figure 5: Curves for approximating the largest �ve singular values of a randomly generated matrix

(433 rows); Corresponding numerical data given in Table 3a.
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Figure 6: Curves for approximating the second to �fth largest singular values of a randomly gen-

erated matrix (433 rows); Corresponding numerical data given in Table 3a.
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