
June 15, 2000
RT0369
Computer Science 13 pages

Research Report

A Single-Atomic Algorithm for Spin-Suspend Locking

Tamiya Onodera

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

A Single-Atomic Algorithm for Spin-Suspend Locking

Abstract

Locks for multithreaded applications are commonly implemented by augmenting suspend locking with spin

locking. This allows locking and unlocking operations in the absence of contention to be performed as highly

as spin locking, involving only a few instructions in the user space. However, as far as we know, all the existing

algorithms are double-atomic, requiring two atomic operations, one in locking and the other in unlocking, in

the uncontended path.

We propose a novel, single-atomic spin-suspend algorithm. It centers on a generalized technique for con-

verting a spin-wait loop into a suspend-wait loop, while the timing dependency cleverly created upon the

failing atomic operation guarantees that any suspend-waiting thread is eventually signaled. We also present

an intriguing variation for multiprocessor systems with relaxed memory models, which does not require an

additional memory barrier.

1 Introduction

Building applications with threads has already been a common practice, supported by almost all the commercial

operating systems through their thread libraries. Such a multithreaded application inevitably involves sharing

various data among threads, and needs locks to synchronize access to them.

Two basic algorithms for locks are spin and suspend locking. In either algorithm, a thread attempts to acquire

a lock by testing the availability and establishing the ownership. In modern architectures, the thread relies on a

hardware primitive, such as test and set and compare and swap, to atomically perform the availability test and

the ownership establishment.

Assume that the thread fails in the availability test. In spin locking, the thread repeatedly performs the

same steps until it eventually succeeds in lock acquisition. In suspend locking, the thread suspends execution,

and relinquishes control of processor. Since the failing test of availability and thread suspension must be done

atomically, a suspend locking is implemented tightly coupled with the operating system's scheduler.

While spin locks are dominantly used in multiprocessor operating systems, suspend locks are normally preferred

in multithreaded applications. Suspend locking for user applications can be e�ciently realized by hybridizing it

with spin locking. That is, a thread �rst attempts to acquire a lock with spin locking, but only spins at most a

certain number of times. Only when it continually fails in all the spins, the thread calls an operating system's

service for suspending itself.1 Thus, as long as no contention occurs, the thread can acquire the lock with a few

instructions in the user space; it does not have to make any expensive system calls.

This spin-suspend locking is �rst suggested by Ousterhout [21], and now widely employed in thread libraries,

although the details vary substantially. The upper limit on how many times precursory spins are attempted is

called spin threshold. While the threshold must obviously be one on an uniprocessor system, it is determined by

a spinning strategy on a multiprocessor system [14, 17].

1The service may be provided speci�cally for the thread library, heavily depending on its implementation details.

Machines Execution Times (msec) Ratios to Base
Base Write Cmpswp Write Cmpswp

RS/6000 Model 43P 19006 19510 36975 1.03 1.95
RS/6000 Model F50 15007 15413 33261 1.03 2.22

Table 1: Relative costs of atomic operations: The base program iterates 64 million times over a loop computing
the inner product of two three-dimentional vectors of the oating-point type. The write inserts an extra write
operation into the loop body, while the cmpswp program adds an extra compare-and-swap operation instead of
the write. The compare-and-swap is implemented on the PowerPC architecture with the instruction pair of load
and store with reservation. Each execution time represents the median of eleven runs. The RS/6000 Model 43P
contains a 133-MHz PowerPC 604e processor, while F50 contains four 332-MHz PowerPC 604e processors. The
PowerPC 604 processor includes a Branch Processing Unit, two Single-Cycle Integer Units, a Multi-Cycle Integer
Unit, a Load/Store Unit, and a Floating-Point Unit [12].

The primary concern about locking algorithms is the performance in the absence of contention, since experience

shows that contention is rare. Basically, the performance in the uncontended path correlates with the number

of atomic operations required, since the path is very short and atomic operations are heavy. In the absence of

contention, some algorithms require only one atomic operation, one in locking but none in unlocking, whereas

others need two atomic operations, one in locking and the other in unlocking. We call the former single-atomic

and the latter double-atomic.

In this paper we propose a single-atomic algorithm for spin-suspend locking. To our best knowledge, no

such algorithms have been known so far, while there are fairly straight-forward single-atomic algorithms for spin

locking. We believe that single-atomic algorithms are getting increasingly important for two reasons. The �rst

one is related to the application trend. It could be argued that contention-free locks are rarely a bottleneck in

applications. However, as more and more applications and libraries are becoming multithread-safe, many more

locks are getting involved in a single program, which may collectively have an impact on performance. For

instance, as reported in [2], a Java source-to-bytecode compiler executes 765,000 lock operations per second on a

high-performance virtual machine.

The second one is related to the architecture trend. In general, executing an atomic operation puts signi�cant

constraints on hardware optimizations performed by today's dynamic scheduling processors and memory systems,

whether it is realized as a single instruction or by the code sequence consisting of the load-linked and store-

conditional instructions. The negative e�ects by these constraints are getting larger as the hardware optimizations

are more aggressive, and as the system contains more processors.

Table 1 summarizes the results of a simple attempt to quantify this trend. We measured three arti�cial

programs, base, write, and cmpswp, on both one-way and four-way machines. The base program iterates over

a loop which computes the inner product of two vectors. The write program has one write operation arti�cially

inserted into the loop, while the cmpswp program adds a compare-and-swap operation instead of the write operation.

As shown in the �gure, although the processor could e�ectively hide the cost of one additional write operation, the

extra atomic operation in the loop has greatly increased the execution time; it more than doubles on the 4-way

machine.

The rest of the paper is organized as follows. Section 2 introduces a single-atomic spin locking, together with

the impact of memory models on locking algorithms. Section 3 presents our single-atomic spin-suspend locking

2

void spin_lock(int *lock){

while (compare_and_swap(lock, UNLOCKED, LOCKED)==0)

;

}

void spin_unlock(int *lock){

*lock=UNLOCKED;

}

Figure 1: Single-atomic spin locking

int compare_and_swap(Word* word,Word old,Word new){

if (*word==old){

word=new; return 1; / succeed */

} else

return 0; /* fail */

}

Figure 2: Semantics of compare-and-swap

algorithm. Section 4 deals with issues encountered when our algorithm is written in multiprocessor systems.

Section 5 shows preliminary results from an implementation. Section 6 discusses related work, and Section 7

presents our conclusions.

2 Single-Atomic Spin Locking

Single-atomic algorithms are well-known for spin-locking. Basically, the algorithms involve one word for repre-

senting whether or not the lock is available. They then attempt to acquire a spin lock by executing an atomic

operation for changing the word from the unlocked state to the locked state, but release the lock simply by writing

into the word the value for the unlocked state.

Figure 1 shows an example. It uses as an atomic operation a version of compare-and-swap, which atomically

performs the task represented by the pseudo-C code in Figure 2. Actually, we could use di�erent atomic operations,

and apply optimizations such as spin on read and exponential backo� [3].

Behind this algorithm we can see an important discipline for writing a single-atomic algorithm, which is called

the nonlockers' discipline. Assume that a thread needs to acquire a lock to access a set of shared data. Obviously,

this implies that, while a thread is holding the lock, the thread is allowed to modify the shared data without any

atomic operation, and no other threads are allowed to modify them in any way.

Extending this to a lock's data structure, the nonlockers' discipline states that, given a �eld of a lock, any

thread that is not holding the lock does not modify the �eld. If the discipline is obeyed for a lock �eld, the

lock-holding thread can then modify the �eld with a simple write.

Before we conclude this section, let us mention about a complication which arises in implementing a locking

algorithm on a multiprocessor system supporting a relaxed memory model [1]. Memory models of advanced

commercial architectures, including IBM PowerPC, Digital Alpha, and Sparc V9 RMO, are so relaxed that they

3

typedef struct {

int lock; /* initially, UNLOCKED */

int wcount; /* initially, 0 */

mutex_t mutex;

condvar_t condvar;

} tasuki_t;

Figure 3: Data structure

no longer guarantee the program-order execution of read and write operations.

While these models allow aggressive hardware optimizations to hide read and write latency, they pose a

challenge to writing a locking algorithm. For instance, assume that, using the above algorithm, a thread running

on a processor acquires a lock, performs memory operations to the corresponding shared data, and releases the

lock. The problem is that the write operation for the release might be made visible to other processors before the

memory operations to the shared data.

Normally, such a processor architecture provides one or more special hardware instructions, called memory

barriers, for enforcing program ordering. Thus, we could resolve the abovementioned problem by issuing a memory

barrier just before the lock release.

3 Our Locking Algorithm

We describe a novel, single-atomic algorithm for spin-suspend locking, called tasuki lock.2 Figure 3 shows the data

structure, while Figure 4 shows the tasuki lock and tasuki unlock functions which are placed in the user space.

As seen in Figure 4, the lock �eld is used much like the simple-atomic spin locking in the previous section.

The �gure also shows that the unlock function now includes a test of the wcount �eld, which indicates whether

or not the lock-holding thread needs to take some action on lock release for other threads having fallen back to

suspend-locking. As long as no contention occurs, the test fails, and the tasuki resume function is never called.

Furthermore, notice that this is just a simple test; it is not in a critical section. Thus, our algorithm is single-atomic,

only adding one extra test in the uncontended path in comparison with the fastest spin-locking algorithm.

Figure 5 describes the steps taken when tasuki lock falls back to suspend locking. Here we use as primitives

mutex variables and condition variables as de�ned by the POSIX threads interface [13]. Notice, however, that we

simply use them for the illustrative purpose. Actually, these two functions should be directly implemented in the

kernel space in a customized manner, rather than built upon a thread library.

As shown in Figure 5, the tasuki suspend function contains the while loop in which the calling thread

attempts to acquire the spin lock. However, this is not a spin-wait loop, but a suspend-wait loop. Obviously, the

algorithm must guarantee that any thread waiting at Line 21 will eventually be unblocked.

For this purpose, the algorithm keeps track of the number of currently suspend-waiting threads in the wcount

�eld. The counter is incremented and decremented under the mutex's protection. Thus, it is possible to correctly

know whether or not some thread is suspend-waiting, by checking the counter under the same protection. However,

2In Japan, tasuki are worn for tucking up sleeves, resulting in the shape of the letter `x' on the back. As we will see later, the most
important characteristic of our algorithm is that the shape is formed by the write/read dependency arrows of two �elds in the data
structure.

4

1 void tasuki_lock(tasuki_t *tsk){

2 if (compare_and_swap(&tsk->lock, UNLOCKED, LOCKED))

3 return; /* ok */

4 tasuki_suspend(tsk);

5 }

6

7 void tasuki_unlock(tasuki_t *tsk){

8 tsk->lock = UNLOCKED;

9 if (tsk->wcount)

10 tasuki_resume(tsk);

11 }

Figure 4: Tasuki locking algorithm { the user-space code

12 void tasuki_suspend(tasuki_t *tsk){

13 mutex_lock(&tsk->mutex);

14 while (1){

15 tsk->wcount++;

16 if (compare_and_swap(&tsk->lock, UNLOCKED, LOCKED)){

17 tsk->wcount--;

18 break;

19 }

20 else

21 condvar_wait(&tsk->condvar, &tsk->mutex);

22 }

23 mutex_unlock(&tsk->mutex);

24 }

25

26 void tasuki_resume(tasuki_t *tsk){

27 mutex_lock(&tsk->mutex);

28 if (tsk->wcount>0){

29 tsk->wcount--;

30 condvar_signal(&tsk->condvar);

31 }

32 mutex_unlock(&tsk->mutex);

33 }

Figure 5: Tasuki locking algorithm { the kernel-space code

5

the unlock function checks the counter without any protection, and may read a wrong value of the counter.

Nonetheless, our algorithm provides the abovementioned guarantee, as we soon show.

We �rst prove the following property, which states that the failing compare-and-swap has an important im-

plication. There are subtle issues related to this property on a multiprocessor system, which we will deal with in

Section 4.

Property 3.1 If a thread T suspend-waits at time t, there is always some other thread that signals after t.

Proof. Let t1 be the time at which T performs the compare-and-swap in the loop that fails and causes T to

suspend-wait. This implies that some thread S holds the lock at t1. Let s1 be the time at which S executes the

lock release at Line 8. Obviously, t1 before s1. Since T increments the counter before t1, and S tests the counter

after s1 in the tasuki unlock function, the test returns true. S thus calls the tasuki resume function.

The thread S then attempts to check the counter under the mutex's protection. It is only after t that S acquires

the mutex, since T needs to �rst release the mutex at t.

We then perform a two-case analysis. If S �nds the counter nonzero at Line 28, S does signal (after t).

Otherwise, it means that T already got out of the loop, in which case some other thread intervened and signalled

(still after t). In either case, we have the desired result.

Then, we can obtain the following property.

Property 3.2 If a thread T suspend-waits in the loop at time t, one or more threads continue to signal until T

has been unblocked.

Proof. By Property 3.1, some thread signals after t, which unblocks one waiting thread. If it is T , the property

holds. Otherwise, the unblocked thread S retries to acquire the lock in the loop. If it fails, S suspend-waits, and

Property 3.1 ensures that there is some thread which signals later. If it succeeds, S �nds the counter nonzero on

lock release, calls tasuki resume, and signals, as long as T is suspend-waiting. By repeating this process, we have

the conclusion.

In theory, T could never be unblocked since the condvar signal function might continue to choose one among

the other threads. Also, even if T is unblocked, T fails again in retrying the compare-and-swap. In theory, T could

continue to be unblocked and suspend-wait. Our algorithm lacks fairness. However, in practice, we could consider

that T eventually succeeds in the compare-and-swap in the loop, and acquires the lock.

3.1 Discussion

The algorithm presented shows how we can convert a spin-wait loop into a suspend-wait loop. The technique

simply requires one extra �eld in a lock structure, and one additional simple test in the uncontended path. It

further suggests that, by applying this tasuki conversion, we may be able to transform single-atomic spin locking

algorithms into spin-suspend locking algorithms without losing single-atomicity.

While we keep track of the number of the suspend-waiting threads in the wcount �eld, there is a variation

which records just whether or not some thread is suspend-waiting. This variation only requires one bit rather than

one �eld. However, the bit needs to be set inside the while loop and before the compare-and-swap, and that the

condvar broadcast needs to be called after the bit is reset in the if statement.

Considering that the lock �eld is only used to represent two states, it may be tempting to place the extra

�eld or the extra bit into the unused portions of the lock �eld. However, the nonlockers' discipline states that we

could no longer maintain single-atomicity.

6

int compare_and_swap_370(Word* word,Word *old,Word new){

if (*word==*old){

word=new; return 1; / succeed */

} else {

*old=*word; return 0; /* fail */

}

}

Figure 6: Semantics of the System/370-style of compare-and-swap

4 Multiprocessor Issues

The proof of Property 3.1 relies on the program-order execution of two pairs of memory operations; Line 8 and

Line 9 in the tasuki unlock function, and Line 15 and Line 16 in the tasuki suspend function. However,

as discussed in Section 2, the program-order execution is not necessarily guaranteed in modern multiprocessor

systems. Thus, the implementation of tasuki lock on these systems requires a memory barrier to be inserted after

the lock release at Line 8 and after the counter increment at Line 15.

In addition, the implementation requires a memory barrier to be inserted before the lock release for exactly the

same reason as in the multiprocessor version of single-atomic spin locking. This results in two memory barriers

being involved in the absence of contention.

In some multiprocessor systems, the execution of a memory barrier is very expensive. In such systems, we

can no longer consider that a single-atomic algorithm with two memory barriers outperforms a double-atomic

algorithm with one memory barrier in terms of the uncontended performance.

Here we show an interesting variation of tasuki lock for these systems, which requires only one memory barrier.

The lock �eld can now take a third state, UNLOCKING, while the suspend-wait loop uses the original style of

compare-and-swap as de�ned in IBM System/370 [11], which atomically performs the task represented by the

pseudo-C code in Figure 6.3

Figure 7 shows the version of tasuki unlock and tasuki suspend; the other two functions are the same as

before. The essential portions of the proof of Property 3.1 are now as follows.

Proof. Assume that the thread T suspend-waits. Let t1 be the time at which T performs the

System/370-style of compare-and-swap that fails and causes T to suspend-wait. This implies that

some thread S holds the lock at t1. Let s1 be the time at which the UNLOCKING value is visible to T .

Obviously, t1 before s1. Because of the memory barriers, T increments the counter before t1 and S

performs the simple test of the counter after s1. Thus, the test returns true.

The while loop now contains spin-wait as well as suspend-wait. However, a thread T running in the loop

spin-waits only while the write of UNLOCKING by the lock-holding thread is made visible to T , but the write of

UNLOCKED is not yet made visible. On multiprocessor systems, this kind of spin-waiting is very preferable, since

the lock will soon be released.

3The compare-and-swap was originally invented with this semantics in IBM System/370. It is available in many other architectures,
such as IA-32, while it can also be implemented using the load-linked and store-conditional instructions.

7

void tasuki_unlock_smp(tasuki_t *tsk){

tsk->lock = UNLOCKING;

MEMORY_BARRIER();

tsk->lock = UNLOCKED;

if (tsk->wcount)

tasuki_resume(tsk);

}

void tasuki_suspend_smp(tasuki_t *tsk){

mutex_lock(&tsk->mutex);

while (1){

int unlocked=UNLOCKED;

tsk->wcount++;

MEMORY_BARRIER();

if (compare_and_swap_370(&tsk->lock, &unlocked, LOCKED)){

tsk->wcount--;

break;

} else if (unlocked == UNLOCKING){

; /* spin-wait */

} else

condvar_wait(&tsk->condvar, &tsk->mutex);

}

mutex_unlock(&tsk->mutex);

}

Figure 7: Variation of tasuki lock for multiprocessor systems

5 Preliminary Results

In this section, we evaluate an implementation of our locking algorithm, using a substantially large multithreaded

program { a Java virtual machine [16]. Concretely, we use IBM Developer Kit and Runtime Environment for

AIX, Java Technology Edition, Version 1.2.2 [10]. The virtual machine includes the platform dependent layer of

synchronization facilities, called system monitors, which are basically used for two purposes.

First, language-level monitors are built on top of system monitors. Java's built-in support for multithreaded

programming is based on monitors, where every Java object is (logically) associated with its own monitor and could

be synchronized upon. Second, the internal locks inside the virtual machine are just system monitors. The virtual

machine requires mutual exclusion for many di�erent purposes, including thread management, heap management,

class linking, and self-modifying bytecode, just to name a few. Each of these results in its own system monitor

being allocated.

System monitors are then implemented upon a thread library provided by the underlying operating systems,

the AIX Pthreads library in our virtual machine, where the mutex variables are realized using a double-atomic

spin-suspend algorithm.

We implemented tasuki lock into the platform dependent layer of systemmonitors.4 Starting with the algorithm

as described in Figure 4 and 5, we added the support of recursive locking, and of long-term synchronization such

as notifying and waiting on a system monitor.

4It might be preferable to directly modify the pthreads library, and implement the mutex variables with tasuki lock. However, we
could not access the source code at the layer of the operating system.

8

Benchmarks Method Sizes Execution Times (msec) Improvements
(in bytecode) Original Tasuki Absolute Relative

f counter++g 6 bytes 41797 28595 13202 31.6%
StringBuffer.charAt 27 bytes 43806 30528 13278 30.3%
StringBuffer.getChars 79 bytes 50820 35651 15169 28.8%

Table 2: Results of micro-benchmarks

We ran all the programs under AIX 4.3.3 on an unloaded RISC System/6000 Model 43P containing a 133-MHz

PowerPC 604 with 128 megabytes of main memory. The JIT compiler was enabled for all of these measurements.

We took a median of eleven runs for each benchmark.

It is worthwhile to note that IBM JDKes include signi�cant optimizations of language-level monitors [4, 19],

which allow most monitor operations at this level to be performed without involving system monitors. The

language monitor falls to the backing system monitor only when it is being contented or being waited upon by

some other thread. Thus, there have already been no low-hanging fruits for our optimization of system monitors.

5.1 Micro-benchmarks

Each micro-benchmark involves two Java threads. One thread is waiting on a Java object, while another thread

calls a synchronized method against the object eight million times. Heavily depending on the particular implemen-

tation of language-level monitors in our virtual machine, the �rst thread e�ectively forces all the synchronizations

by the second thread to fall back to the corresponding system monitor. In addition, no thread contends with

the second thread. Thus, the benchmark exercises the uncontended path of entering and exiting from a system

monitor, which is optimized by tasuki locking.

Three benchmarks call synchronizedmethods of di�erent sizes; an one-expressionmethod, StringBuffer.charAt,

and StringBuffer.getChars. As Table 2 shows, our algorithm achieves improvements of around 30% in each

benchmark. Furthermore, the larger the method invoked, the more the absolute improvement. Since each bench-

mark enters the system monitors the same number of times, this is an evidence that the single-atomic algorithm

imposes fewer constraints upon hardware optimizations.

5.2 Macro-benchmark

We measured a business object benchmark for Java, called Portable BOB [5], which is expected to be included in

the SPEC Server benchmark suite. The benchmark creates warehouses and client terminals, gets the terminals

to generate transactions against warehouse data, and reports the throughput in transactions per second. We ran

Portable BOB by varying the number of warehouses, w, from 1 to 10; the more warehouses, the more concurrency

introduced. Figure 8 shows the results. As we see in the �gure, the virtual machine with tasuki lock constantly

outperforms the original in all the data points, with the maximal improvement of 3.37% at w = 1.

As we mentioned earlier, basically system monitors have not been a bottleneck in most Java applications. For

instance, the frequency of system monitor entries are one or two orders of magnitude lower in the tests of the

SPECjvm98 benchmark suite [22] than Portable BOB, so that the single atomic algorithm in this layer does not

make as much di�erence for them. However, we think that server applications as represented by Portable BOB

are gradually, though not at an amazing pace, making system monitors hotter. Furthermore, by applying the

9

Figure 8: Performance of Portable BOB for various numbers of warehouses

single-atomic algorithm in the layer of the thread library, we could capture many more locking operations in our

algorithm, not just from Java virtual machines but from other libraries and middleware systems, which we expect

to result in more improvements.

6 Related Work

There are a signi�cant number of papers and books on locks. Early work focuses on achieving mutual exclusion

using atomic read and write operations, leading to numerous algorithms, including Dekker's [7], Peterson's [20],

and Lamport's [15]. However, these quickly became obsolete with the prevailing hardware support of atomic

read-modify-write operations.

Anderson [3] studied the performance of various algorithms for spin locking, and discussed optimizations such

as spin on read and exponential backo�. Mellor-Crummey and Scott [18] proposed a sophisticated spin-locking

algorithm that performs e�ciently in shared-memory multiprocessors of arbitrary size. The key to the algorithm is

for every processor to spin only on separate locally accessible locations, and for some other processor to terminate

the spin with a single remote write operation.

Ousterhout [21] �rst suggested spin-suspend locking, leading to the subsequent work on the spinning strategy.

Karlin, Li, Manasse, and Owicki [14] empirically studied seven spinning strategies based on the measured lock-

waiting-time distributions and elapsed times, while Lim and Agarwal [17] derived static methods that attain or

10

approach optimal performance, using knowledge about likely wait-time characteristics of di�erent synchronization

types.

However, there is little literature which shows the full details of spin-suspend locking algorithms. Also, most

commercial operating systems provide thread libraries to support multithreaded programming, and are said to use

spin-suspend locking for implementing synchronization primitives such as critical sections and mutex variables.

The details are not disclosed, either, but we could con�rm that the algorithms used in the thread libraries of OS/2

and AIX are double-atomic.

Recently, Java [8] created renewed interest in locking algorithms, because of its prevailing use of monitors.

Bacon, Konuru, Murthy, and Serrano [4] proposed a locking algorithm for Java, called thin locks, which reserves a

24-bit �eld in an object and makes bimodal use of the single �eld. Initially, the �eld is in the spin-locking mode,

and remains in this mode as long as contention does not occur. When contention is detected, the �eld is put into

the suspend-locking mode, and the reference to a suspend lock is stored into the �eld. Thus, this is a spin-suspend

algorithm which is very space e�cient.

Thin locks are also single-atomic. However, it requires spin-wait in the spin-to-suspend mode transition (in-

ation), and does not support the suspend-to-spin transition (deation). Onodera and Kawachiya [19] proposed

another bimodal locking algorithm, which removes spin-wait from ination and supports deation. Keeping the

algorithm single-atomic, they converted the spin-wait into a suspend-wait by introducing an extra bit in an object

to indicate whether or not contention has occurred. Indeed, this bimodal algorithm for locking Java objects led

us to consider a single-atomic spin-suspend algorithm in a general context.

7 Concluding Remarks

We presented a single-atomic spin-suspend locking algorithm, called tasuki lock. Although hybridizing spin locking

with suspend locking is commonly practiced, the details of such algorithms are rarely published, and, as far as we

know, all the existing spin-suspend algorithms are double-atomic.

Our algorithm centers on a generalized technique of tasuki conversion for turning a spin-wait loop into a

suspend-wait loop. It uses an extra �eld which is separate from the lock �eld, and is tested in the uncontended

path without any protection. Nonetheless, the timing dependency cleverly created upon the failing compare-and-

swap guarantees that the algorithm does not lose an important liveness property.

We also described an intriguing variation for multiprocessor systems with relaxed memory models. With

two-step lock release, tasuki lock is now able to manage without any additional memory barrier.

Finally, we evaluated an implementation of our single-atomic algorithm in the platform dependent layer of

synchronization in the IBM Developer Kit 1.2.2 for AIX. The results have shown that the virtual machine with

tasuki lock achieves improvements of around 30% in the micro-benchmarks, while it constantly outperforms the

original in all the data points in a server benchmark. By applying the single-atomic algorithm directly to the layer

of the thread library, more locking operations could be captured in the algorithm, which is expected to result in

more improvements.

11

Acknowledgments

We thank Cathy May for giving us the bene�t of her expertise in the memory model of PowerPC architecture.

We also thank Kiyokuni Kawachiya, Anthony Cocchi, and Pat Gallop for invaluable discussions on tasuki lock for

multiprocessor systems.

References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory ConsistencyModels: A Tutorial. IEEE Computer

29(12), 1996, 66{76.

[2] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y.S. Ramakrishna, and Derek White. An E�cient

Meta-lock for Implementing Ubiquitous Synchronization. OOPSLA'99 Conference Proceedings, 1999, 207{

222.

[3] Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors. IEEE

Transactions on Parallel and Distributed Systems 1(1), 1990, 6{16.

[4] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin Locks: Featherweight Synchro-

nization for Java. Proceedings of the SIGPLAN '98 Conference on Programming Language Design and Im-

plementation, 1998, 258{268.

[5] Sandra Johnson Baylor, Murthy Devarakonda, Stephen J. Fink, Eugene Gluzberg, Michael Kalantar, Prakash

Muttineni, Eric Barsness, Rajiv Arora, Robert Dimpsey, and Steven J. Munroe. Java Server Benchmark-

s. IBM Systems Journal. 39(1), 2000, 57{81.

[6] David E. Culler and Jaswinder Pal Singh with Anoop Gupta. Parallel Computer Architecture. Morgan

Kaufmann, 1999.

[7] Edsger W. Dijkstra. Cooperating Sequential Processes, 43-112. Academic Press, New York, 1968.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-Wesley, 1996.

[9] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach, Second Edi-

tion. Morgan Kaufmann, 1995.

[10] IBM Corporation. IBM Developer Kit for AIX, Java Technology Edition.

http://www.ibm.com/java/jdk/aix/ (current April 10, 2000).

[11] IBM Corporation. IBM System/370 Principles of Operation. IBM Publication GA22-7000-9, 1983.

[12] IBM Microelectronics and Motorola. PowerPC 604: RISC Microprocessor User's Manual. MPR604UMU-

01(IBM order number), 1994.

[13] IEEE. Information Technology { Portable Operating System Interface (POSIX) { Part 1: System Application:

Program Interface (API) [C Language]. ISO/IEC 9945-1:1996.

12

[14] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical Studies of Competitive Spinning for

A Shared-Memory Multiprocessor. Proceedings of the 13th Annual ACM Symposium on Operating Systems

Principles, 1991, 41{55.

[15] Leslie Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems 5(1), 1987,

1{11.

[16] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-Wesley, 1996.

[17] Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in Large-Scale Multiproces-

sors. ACM Transactions on Computer Systems 11(3), 1993, 253{294.

[18] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors. ACM Transactions on Computer Systems 9(1), 1991, 21{65.

[19] Tamiya Onodera and Kiyokuni Kawachiya. A Study of Locking Objects with Bimodal Fields. OOPSLA'99

Conference Proceedings, 1999, 223{237.

[20] Gary L. Peterson. A New Solution to Lamport's Concurrent Programming Problem Using Small Shared

Variables. ACM Transactions on Programming Languages and Systems 5(1), 1983, 56{65.

[21] John K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proceedings of the 3rd International

Conference on Distributed Computing Systems, 1982, 22{30.

[22] Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.

http://www.spec.org/osg/jvm98/

13

