
July 13, 2000
RT0371
Security 9 pages

Research Report

ProPolice: Protecting from stack-smashing attack

Hiroaki Etoh and Kunikazu Yoda

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

ProPolice: Protecting from stack-smashing attacks

Hiroaki Etoh and Kunikazu Yoda
IBM Research Division, Tokyo Research Laboratory,

1623-14 Shimotsuruma, Yamato, Kanagawa 242-8502, Japan
{etoh,yoda}@jp.ibm.com

June 19, 2000

Abstract

A stack-smashing attack is an attack method
that causes services to be stopped and also al-
lows an attacker to intrude into a system. It
uses a well-known vulnerability of applications
called the buffer overflow vulnerability. The
stack-smashing attack is the most common at-
tack method reported in UNIX security news re-
ports. In 1999, the vulnerability of IIS 4.0, the
popular web server for the Microsoft Windows
operating system, was reported. There were
more than 1.5 million systems attacked through-
out the world.
This paper presents a systematic solution to

the problem of buffer overflow attacks. Our ap-
proach called ProPolice provides a protection
method that automatically inserts protection
code into an application at compilation time.
The main characteristics of ProPolice are low
performance overhead of the protection code,
protecting against different varieties of stack-
smashing attacks, and supporting various pro-
cessors.

1 Introduction

A stack-smashing attack is an attack method
that causes services to be stopped and also al-
lows an attacker to intrude into a system. It
is based on the vulnerability of an application
called the buffer overflow vulnerability. It is
the most common vulnerabilities reported from
UNIX security news announcements. In 1999, a
vulnerability in IIS 4.0, the popular web server
for the Microsoft Windows operating system,
was exploited by eEye[4]. There were more
than 1.5 million systems attacked throughout
the world.

Most applications written in C use a buffer,
which is a memory block that holds several in-
stances of the same data type, normally char-
acter arrays, on the stack to temporarily hold
the intermediate results of string operations. A
stack-smashing attack overflows such a buffer
by providing a longer string than the actual
size of the buffer. This causes the destruction
of the contents beyond the buffer, where such
contents may include the return address of the
caller function and function pointers.

This paper presents a systematic solution to
the problem of buffer overflow attacks. Our
approach called ProPolice is based on a pro-
tection method that automatically inserts pro-
tection code into an application at compilation
time. The main characteristics are low perfor-
mance overhead of the protection code, protect-
ing against different varieties of stack-smashing
attacks, and supporting various processors. Es-
pecially important is that there is little overhead
during the execution of numerical operations.
These are CPU intensive tasks, so people want
to avoid any overhead for the sake of protection.

Section 2 classifies attack methods to pro-
vide background for explaining how our method
protects against the attack. Section 3 de-
scribes related work for defense against stack-
smashing attacks. Section 4 provides the protec-
tion method and explains how it optimizes the
performance overhead. We’ll show some exper-
imental results in Section 5. Finally, Section 6
presents conclusions and discusses issues for fu-
ture work.

1

2 Attack Scenarios and

their Classification

The buffer overflow vulnerability appears where
an application needs to read external informa-
tion such as a character string, the receiving
buffer is relatively small compared to the possi-
ble size of the input string, and the application
doesn’t check the size. The buffer allocated at
run-time is placed on a stack, which keeps the
information for executing functions; such as lo-
cal variables, argument variables, and the return
address. The overflowing string can alter such
information. This also means that an attacker
can change the information as he wants to. For
example, he can inject a series of machine lan-
guage commands as a string that also leads to
the execution of the attack code by changing the
return address to the address of the attack code.
The ultimate goal is usually to get control of a
privileged shell by such methods.
Figure 1 shows a typical stack structure after

a function is called. The stack pointer points
at the top of stack, which is at the bottom in
the figure. The programming language C uses
the area from the top of the stack in the follow-
ing order: local variables, the previous frame
pointer, the return address, and arguments of
the function. This data is called the frame of
the function, which represents the status of the
function. The frame pointer locates the current
frame and the previous frame pointer stores the
frame pointer of the caller function.
The function foo (see Figure 2) is a vulnera-

ble function, which produces the stack structure
such as shown in Figure 1. It reads the content
of the environment variable “HOME” into the
“buffer” which has a size of 128 bytes. Since
the function strcpy doesn’t check the size of the
output, it can copy more than 128 bytes of data
to the “buffer”. Imagine the “HOME” variable
has this string: 128 bytes of 41, 1, 1, 1, 1, 2,
2, 2, 2, 3, 3, 3, and 3. This will assign 128
character ’A’s, 0x01010101, 0x02020202, and
0x03030303 into the “buffer”, “lvar”, the pre-
vious frame pointer, and the return address re-
spectively. (We assume that 32-bit variables are
used by default and that C language notation is
used.) When the function foo finishes it’s op-
erations and returns to the caller based on this
memory arrangement, it will go back to the ad-
dress 0x03030303, which isn’t the caller address.
If malicious code is located at the address, it is

executed with the same privilege level as the ap-
plication.

void foo()
{

long *lvar;
char buffer[128];
.......
strcpy (buffer, getenv ("HOME"));
.......

}

Figure 2: Sample function having Buffer Over-
flow Vulnerability

We will now introduce a classification of at-
tack methods, how an attacker acquires control
of the application. In the first category the tar-
get of the attack is to show in the stack. The
following lists the data stored in this area and
describes the attack method used.

• return address
It is the most popular point of attack by
changing the value of the return address to
the address of malicious code.

• local variables
• argument variables
The function pointer variable is a another
target for acquiring the control. Assigning
the function pointer variable of an argu-
ment or a local variable to the attack code
is a typical attack method. In this case, the
vulnerable place can be found by checking
the source program.

There is a third attack method using redi-
rection. Assume that a variable is declared
as the pointer of the structure that holds
a function pointer. This is vulnerable to
attack, but it is hard to find it without
traversing the pointer. However , an at-
tacker can create a fake structure that has
the same contents as the original except for
the function pointer.

There is a possibility that changing a
pointer variable which is not a function
pointer variable will acquire the control of
the application. In the case of the func-
tion foo from Figure 2, the pointer variable
“lvar” can be changed to point to the lo-
cation of the return address. If there is a

2

↑ string growth
arguments

return address
frame pointer−→ previous frame pointer

local variables
buffer

stack pointer−→ ↓ stack growth
Figure 1: Stack Structure

statement that modifies the value pointed
to by “lvar” after the “strcpy” statement,
changing the return address may be possi-
ble.

• previous frame pointer
Attacking the previous frame pointer can
also take the control of the application.
The connection between the previous frame
pointer and the return address is based on
the following dependencies:

– the location of the return address is
determined by the frame pointer.

– the frame pointer is assigned to the
value of the previous frame pointer at
the time of function return.

An attacker can create a fake frame that
has the return address pointed to attack
code. He can also change the previous
frame pointer to the address of the fake
frame. When the function returns to the
caller function, the frame pointer will point
to the fake frame according to the second
dependency. It means that the return ad-
dress could be changed by the attacker.

3 Related works

Several projects have addressed the buffer over-
flow problem with different approaches. One
approach[10] is to eliminate vulnerable code
from a source program and to help the appli-
cation be made safe from the problem. For ex-
ample, there is an auditing tool that helps au-
tomate source code review for security[10]. It
helps to eliminate the use of dangerous func-
tions: such as strcpy, gets, etc., but the tool
has the limited vulnerability detection in that it
can’t check the boundaries by a pointer variable.
Another approach provides protection meth-

ods against the potential vulnerability of pro-

gram code. We have defined four categories ac-
cording to how they protect against an attack.

1. Avoidance of leakage from an array

Array bounds checking for C [7] and mem-
ory access checking [6] are protection meth-
ods that prevent access outside the re-
gion allocated for an array. Therefore,
these methods are the most secure meth-
ods. However, the protection overhead is
expensive compared to non-protected code;
a slowdown of more than two times in com-
parison to optimized code is common.

2. Prohibition on the execution of attack code

“Solar Designer” developed a Linux
patch that makes the stack region non-
executable [3], so that attack code stored
on the stack cannot be executed. This
approach has the advantages of no per-
formance overhead and no source code is
required. However, it has drawbacks in
that it relies on the features of the operat-
ing system and the processor, specifically
the capability of marking the stack region
as non-executable. It doesn’t protect every
regions described in Section 2, so there
is still a possibility that an attacker can
take control, by putting the attack code
somewhere besides into the stack, such
as into a statically allocated buffer and
changing the return address to point to the
code.

Janus [5] designed a secure environment
for confinement of applications by restrict-
ing the programs’ access to the operating
system. It protects the privileged opera-
tions, such as executing /bin/sh in privi-
leged mode, from attack code not just on
the stack, but also in static regions. It also
relies on the features of the operating sys-
tem, which must provide debug information
such as strace.

3

3. Protection not to pass the control of execu-
tion to code that has been attacked

Snarskii has developed a FreeBSD patch [9]
that implements a stack integrity check
to detect buffer overflows. This is a
non-portable implementation embedded in
libc.

StackGuard [2], StackShield [11], and lib-
safe [1] provide a portable, general protec-
tion method. Libsafe provides a solution,
which is based on a middleware software
layer that intercepts all function calls made
to library functions that are known to be
vulnerable; such as gets, strcpy, so on.

StackGuard is the base system of our sys-
tem, it detects and defeats stack smashing
attacks by protecting the return address on
the stack from being altered. The “XOR
Random canary” method places the xor
value of the return address and a random
number next to the return address when a
function is called and check if the value is
preserved before the function returns.

StackShield copies the return address in an
unoverflowable location, the beginning of
the static data, when the function begins
execution and check if the two values are
preserved before the function returns.

We will compare each of these techniques
and our method in Section 4.5.

4 Stack Protection Method

As described in the previous section, there are
four areas that should be protected from a stack-
smashing attack: the location of the arguments,
the return address, the previous frame pointer,
and the local variables.
A guard variable is introduced for prevent-

ing change in the first three areas. This tech-
nique was originally devised in the StackGuard
project [2] and it is designed to insert the guard
immediately after the return address. The dif-
ference in our method is the location of the
guard and the protection of function pointers.
The guard is inserted next to the previous frame
pointer and it is prior to an array, which is the
location where an attack can begin to destroy
the stack.
We’ll illustrates the method using a source

code translation only for the purpose of a concise

explanation. Given the source code of a func-
tion, a preprocessing step will insert the follow-
ing fragments of code into the appropriate po-
sitions: declaration part of local variables, the
entry points, and the exit points respectively.

• declaration part of local variables

volatile int guard;

• the entry point

guard = guard_value;

• the exit point

if (guard != guard_value) {
/* output error log */
/* halt execution */

}

The modified source program appears as Fig-
ure 3. Note that the guard must be located be-
fore a string buffer. The entry statement stores
a value that is not known by the attacker and
the exit statement verifies it. Unless the guard
is preserved, it will cause an alert to the system
and record information in the logging database.

void foo()
{

volatile int guard;
char buf[128];

guard = guard_value;
.......
strcpy (buf, getenv ("HOME"));
.......
if (guard != guard_value) {

/* output error log */
/* halt execution */

}
}

Figure 3: After the Protection Code has been
Added

We introduced the source code translation to
explain how the protection is done. In fact, it it
difficult to implement, because a function usu-
ally has many exit points and the guard must
be located before the string buffer on the stack.
We have implemented our system using the in-
termediate code translator of the gcc compiler.

4

According to the specifications of the interme-
diate language, there is only one exit point per
function and the location of each variables has
been decided.
T main requirement of the guard value is that

it must be a value that an attacker can’t know.
If he knows the value, the attacker could fill the
part of the stack between the “buffer” and the
previous frame pointer with the value. This
would pass the verification test of the guard
value, and then he could change the return ad-
dress.
We chose a random number as the guard

value. The random number is calculated at the
initialization time of the application, which can-
not be discovered by a non-privileged user. The
number must be an unpredictable random num-
ber. Linux has a random number generator.
It is implemented as a device, which name is
/dev/urandom or /dev/random. It uses envi-
ronmental noise to generate the number; thus,
it is suitable to supply an unpredictable number.

4.1 Safety Function Model

We introduce a safety function model, which in-
volves a limitation of stack usage 4 in the fol-
lowing manner:

• the location (A) has no array or pointer
variable

• the location (B) has arrays or structures
that contains an array

• the location (C) has no array

arguments (A)
return address

frame pointer−→ previous frame pointer
guard

arrays (B)
local variables (C)

stack pointer−→ ↓
Figure 4: Safe Frame Structure

This model has the following properties:

1. The memory locations outside of a function
frame cannot be damaged when the func-
tion returns.

The location (B) is the only vulnerable lo-
cation where an attack can begin to destroy

the stack. Damage outside of the function
frame can be detected by the verification of
the guard value. If damage occurs outside
of the frame, the program execution stops.

2. An attack on pointer variables outside of a
function frame will not succeed.

The attack could only succeed if the fol-
lowing conditions were satisfied: (1) the
attacker changes the value of the function
pointer, and (2) he calls a function using
the function pointer. In order to achieve
the second condition, the function pointer
must be visible from the function, but our
assumption says this information is beyond
the function scope. Therefore, the second
condition can’t be satisfied, and the attack
will always fail.

3. An attack on pointer variables in a function
frame will not succeed.

The location (B) is the only vulnerable lo-
cation for a stack-smashing attack, and the
damage goes away from area (C). There-
fore, the area (C) is safe from the attack.

4.2 Pointer protection

Figure 5 shows another vulnerable function,
which an attacker may use to take control by
replacing the function pointer with the address
of attack code.

void bar(void (*func1)())
{

void (*func2)();
char buf[128];
.......
strcpy (buf, getenv ("HOME"));
(*func1)(); (*func2)();

}

Figure 5: Attack Against a Function Pointer

In order to protect function pointers from
stack-smashing attacks, we change the stack lo-
cation of each variables to be consistent with the
safe function model.
The ”C” language doesn’t have restrictions

on the order of local variables, but it doesn’t
allow changing the location of arguments. The
restriction on arguments can be addressed by
making a new local variable, copying the argu-
ment “func1” to it, and changing the reference

5

to “func1”to use the new local variable. Figure 6
shows the result of the translation.

void bar(void (*tmpfunc1)())
{

char buf[128];
void (*func2)();
void (*func1)(); func1 = tmpfunc1;
.......
strcpy (buf, getenv ("HOME"));
(*func1)(); (*func2)();

}

Figure 6: Protection from Function Pointer At-
tack

4.3 Optimization

In this section, we’ll discuss optimization tech-
niques for reducing the overhead of the guard
implementation. The following assumptions are
introduced for that purpose. When these as-
sumptions are met, some guard code can safely
be removed.

Assumption 1 The source code has the proper
type declarations and follows the type con-
version rules.

For example, an integer variable always
stores integer values, and does not store
string values. Such erroneous operations of-
ten causes memory protection errors during
the execution of a program.

Assumption 2 Only character arrays can
cause the buffer overflow.

The buffer overflow happens during the as-
signment operation to an array without a
boundary check. The operation commonly
uses a terminator for the detection of the
boundary. Most terminators are used only
by string functions; examples are a null
character or a newline character for the
gets function.

If Assumption 2 is met in addition to Assump-
tion 1, the guard protection can be omitted ex-
cept for the functions that declare string buffers
as local variables or as arguments. This is ex-
pected to reduce the overhead, especially for nu-
merical processing, because those functions usu-
ally use numerical arrays and a few functions are
called many times in a short period.

4.4 Limitation

The stack protection method is achieved by the
program translation, which converts a vulnera-
ble function to a non-vulnerable function. The
conversion can’t be always successful in some
cases.

If a structure includes both a pointer variable
and a character array, the pointer can’t be pro-
tected, because changing the order of structure
elements is prohibited.

There is another limitation on keeping pointer
variables safe. It is when an argument is de-
clared as a variable argument, which is used by
a function with a varying number of arguments
of varying types. The usage of pointer variables
can’t be determined at compilation time, but it
can be determined only during execution.

4.5 Comparison of Protection
Techniques

Figure 7 shows the comparison of protection
techniques, which prevent to pass the control
of execution to code that has been attacked.

The protection effectiveness describes the pro-
tection coverage of the protected region for the
stack and the coverage against string functions
causing buffer overflow. The entry marked “No”
in the protected region means that the particu-
lar region cannot be protected and vulnerable
programs could be found in the future. For
example, the exploit program for the program
called “SuperProbe 2.11” attacks the function
pointer variable pointed at from the argument
variable, so StackGuard cannot block the at-
tack and the attacker can gain access to the root
shell.

Libsafe doesn’t protect all of the string func-
tions, nor does it from protect from the string
operations that are using pointers directly; for
example, the exploit program for the program
called “xterm distributed with RedHat5.2” uses
a buffer overflow in the tgetent() function of
libtermcap.

The implementation characteristics shows
that only our system provides a protection
mechanism for a variety of operating systems
and processors.

6

Description None ProPolice libsafe StackGuard StackShield
Protection Effectiveness
return address No Yes Yes Yes Yes1

prev. frame pointer No Yes Yes No Yes1

argument No Yes Yes No No
local variable No Yes2 No No No
string operation coverage No All Not all All All
Implementation characteristics
OS independence – Yes No3 Maybe4 Maybe4

Processor independence – Yes Yes No No
Other Characteristics
performance overhead None Very low Very low Low Low
source code needed – Yes No Yes Yes

1 Protects only the function within a limited depth of function calls

2 It cannot protect a pointer variable in a structure that contains a vulnerable string

3 Needs dynamic link library

4 Intel processor only

Figure 7: Summary of Detection Technique Characteristics

5 Evaluation

The result of penetration tests are shown
Figure8. It illustrates the application name
which has a known buffer overflow vulnerabil-
ity, its description, the result of exploits without
any protection, and the result of exploits with
our protection. Their first three are exploited by
attacks on the return address and the last one is
exploited by an attack on the arguments which
point to a structure with a function pointer.
This is not a comprehensive exploit list, but

enough to verify the protection method works
well. It showed that all tests terminated with a
message that a stack-smashing attack had been
detected, they didn’t invoke a root shell, and
they didn’t terminated abnormally.

5.1 Performance Overhead

The guard mechanism imposes an additional
cost in program execution. The overhead was
defined by Crispin[2] as follows: it is the ratio
of the CPU time of a guarded function call per
the base cost of the function call. The overhead
of our system varies according to the presence
of local character arrays. It is obvious that our
optimized method has no overhead in the appli-
cations that have no local character arrays, such

as integer sorting programs, linear programming
systems, and so on.
The insertion overhead for a guard variable

depends on the size of the function. Program 9
is introduced to measure the upper bound of the
overhead. It is written to be an actual string
program and to be as small as possible.

int test()
{

char buf[128];
strcpy(buf, "1234567890");
return strncmp(buf, "1234", 4);

}

Figure 9: Program to Estimate the Upper
Bound of the Overhead

The experiment was performed on a 600 MHz
Pentium III with 512 K of level 2 cache, and
256 M of main memory. The time is based on
50,000,000 runs and is given in seconds.

original our method overhead
run time run time (%)

4.67 5.05 8%
It shows an 8% overhead on function calls,

which should be the upper bound on the real
costs of running programs under this protection
system. The overall overhead of guarded pro-

7

Exploit Program Description Result of Attack Protected Result
xlockmore 3.10 Lock an X window display root shell terminated
Perl 5.003 Perl script language root shell terminated
elm 2.003 ELM mail user agent root shell terminated
SuperProbe 2.11 Probes video hardware root shell terminated

Figure 8: Penetration Resistance

grams varies with how many functions are called
that have character array. Figure 10 shows a
program’s name, its description, the number of
functions declared, and the number of functions
used with character arrays. In most cases, the
usage of a character array is less than 10% of
the functions. It isn’t the same as the ratio of
the number of functions executed, but there is
a some correlation between them.
The copy overhead of an argument is more ex-

pensive than the insertion overhead for a guard
variable, if the argument is a structure that con-
tains a character array or a pointer variable.
Figure 11 shows the number of functions which
arguments contain a character array, and the
number of functions which arguments contain a
pointer variable for each program. There are no
structures being passed as parameters to func-
tion calls. Therefore, for each pointer argument,
the overhead is at most one copy operation from
an argument to a local variable.

Program with string with pointer
perl 5.005 0 0
ctags 3.4 0 0
imap 4.7-5 0 0
XFree86 3.3.6 0 0
kernel 2.2.14 0 0
egcs 1.1.2 0 0
glibc 2.1.3 0 0

Figure 11: The Number of Copying Overhead
Operations for Arguments

Figure 12 shows the run-time cost of three
real-world applications to compare the over-
head of our method, libsafe, and StackGuard.
The applications are perlbench (a CPU-bound
program) mesuring the time of several opera-
tions [8], ctags (an I/O-bound program) index-
ing egcs-1.1.2 directory, and imapd transmitting
100 email messages of size two kilobyte each.
The programs are selected from programs that
mainly process string operations to illustrate the
upper bound of the overall overhead. The exe-
cution times are based on 100 runs with asso-

ciated 95% confidence intervals. The times are
elapsed times using /bin/time. By looking at
Figure 13 showing the comparison of each sys-
tem’s performance overhead, it can be seen that
our method is the most efficient.

�

�

��

��

��

��

���� 	
�� �����

�
�
�
�
�
��
�
	

�
��
�

�
�
�
�
	
�
�
�

�������� �������	� ������ �
�	������

Figure 12: Mean Execution Times

perl ctags imapd
ProPolice 4% 1% 0%
libsafe 8% 2% 0%
StackGuard 8% 3% 0%

Figure 13: Comparison of performance overhead

6 Conclusions

We have described the stack area where the
control of an application can be captured by a
stack-smashing attack. We have described our
protection method, which is based on the canary
method of StackGuard[2] to protect the location
of the return address, extending the protection
to the location of the previous frame pointer,
the arguments, and the local variables.
Our method achieves good performance on

several application benchmarks. We have de-

8

Program Description function count w/ string ratio(%)
perl 5.005 Perl script language 9590 54 0.6%
ctags 3.4 Tag files generator 850 4 0.5%
imapd 4.7-5 ELM mail user agent 915 259 6.4%
XFree86 3.3.6 X window system 22198 1145 5.1%
kernel 2.2.14 Linux kernel 3881 112 2.8%
egcs 1.1.2 GNU compiler system 27019 244 0.9%
glibc 2.1.3 Library 719 106 14.7%

Figure 10: The Usage Counts for Character Buffers

scribed the reason, which is that the number of
functions vulnerable to buffer overflow is rela-
tively small compared to the total number of
functions used.
We have implemented our system as a in-

termediate language translator for gcc, which
means the implementation is independent of the
operating systems and the processors used. We
believe that the minimal performance overhead
and its universal applicability makes it the best
defense system for workstations, personal digital
assistants(PDA), and cellular telephone system.

References

[1] A. Baratloo, N. Singh, and T. Tsai. Trans-
parent Run-Time Defense Against Stack
Smashing Attacks. In Proceedings of
the USENIX Annual Technical Conference,
June 2000. to be appeard.

[2] C. Cowan, C. Pu, D. Maier, H. Hinton,
J. Walpole, P. Bakke, A. G. Steve Beat-
tie, P. Wagle, and Q. Zhang. StackGuard:
Automatic Adaptive Detection and Preven-
tion of Buffer-Overflow Attacks. In Pro-
ceedings in the 7th USENIX Security Sym-
posium, January 1998.

[3] S. Designer”. Non-executable user stack.
http://www.false.com/security/linux/.

[4] ”eEye-Digital Security Team”. Iis4.0 re-
mote exploit. http://www.eeye.com/, 1999.

[5] I. Goldberg, D. Wagner, R. Thomas, and
E. A. Brewer. A secure environment for
untrusted helper applications. In In Pro-
ceedings of the 6th USENIX Security Sym-
posium, 1996.

[6] R. Hastings and B. Joyce. Purify: Fast
Detection of Memory Leaks and Access Er-

rors. In Proceedings of the Winter USENIX
Conference. 1992.

[7] R. Jones and P. Kelly. Bounds
Checking for C. http://www-
ala.doc.ic.ac.uk/ phjk/BoundsChecking.html,
July 1995.

[8] Perlbench. http://www.metacard.com/perlbench.html.

[9] A. Snarskii. FreeBSD stack integrity patch.
ftp://ftp.lucky.net/pub/unix/local/libc-
letter, 1997.

[10] ”The Software Security Group. Its4:
Open source software security tool.
http://www.rstcorp.com/its4/.

[11] ”Vendicator”. Stack shield:
A ”stack smashing” tech-
nique protection tool for linux.
http://www.angelfire.com/sk/stackshield/.

9

