
October 11, 2000
RT0382
Engineering Technology 7 pages

Research Report

Event Distribution Patterns on an Agent Server
Capable of Hosting a Large Number of Agents

Gaku Yamamoto and Hieki Tai

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Event Distribution Patterns on an Agent Server
Capable of Hosting a Large Number of Agents

Gaku Yamamoto
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa, Japan
+81-46-215-4639

yamamoto@jp.ibm.com

Hideki Tai
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa, Japan
+81-46-215-5260

hidekit@jp.ibm.com
ABSTRACT

Services which handle events occurring at
servers are emerging recently in the Internet
world. These services will be performed in
accordance with each user's preference data.
To offer such services, an agent-based
architecture where an agent resides at a server
as a user's proxy has been proposed. In such
agent systems, an event distribution pattern
which sends an event to agents when a
database is updated is necessary. When we
build large systems hosting hundreds of
thousands of agents, we have to consider
system-level factors such as performance and
resource limitations in addition to complexity
of programming. In this paper, we describe
typical event distribution patterns for large
systems of this kind. Important points to
consider regarding the agent interaction
patterns in such systems are identified.
Keywords
Agent Design Patern, Agent Architecture, Agent Server

1. INTRODUCTION
Recently, in the Internet world, services which handle
events occurring at servers are appearing. These services
evolving towards personalized services which are processed
in accordance with each user's preferences. To build such
services, an agent-based architecture where agents reside at

a server as the users' proxies has been proposed [1, 2]. In
this architecture, an agent collects a user's data. A user
accesses his own agent to obtain some information using a
Web browser. He can also update and manage his own data
by accessing his agent. The agent captures events occurring
at the server and responds appropriately to the events. For
example, in case of an agent monitoring foreign currency
bank accounts, the agent might monitor to see when the
currency rates are updated, then obtain the latest rates,
calculate the user's profits and losses, and notify the user of
the values by email if they exceed a threshold set by the
user.
In such agent systems, an event distribution mechanism is
needed to send an event to agents when a database is
updated. From another perspective, the mechanism can be
thought of as created by the agents' behavior patterns. In
most of the research on agent behavior patterns, the patterns
are studied from the viewpoint of each agent's behavior.
However, in the case of a system managing a large number
of agents, the situation is different from a small system. In a
system managing hundreds of agents, it is reasonable that
each agent obtains the latest data from a database when the
database is updated. However, such behavior cannot be
adapted to a system hosting millions of agents because the
system might would the database millions of times. In that
case, we should use a different behavior pattern that the
agent host system first reads the updated data into memory
from the database, and each agent obtains the data from
local memory. However, to use this distribution pattern, we
have to take into account the amount of updated data
because of memory limitations of the system. Thus, when
we build such large systems, we have to consider system
constraints such as performance and memory limitations.
This paper shows three typical patterns for distributing the
events that cause agents to respond. We discuss these
patterns from the viewpoint of application characteristics,
the number of agents, system efficiency, and complexity of
programming. We also describe categories of applications
for which those distribution patterns are suitable. Since
these three patterns might cause system overloads and
performance problems in applications where the number of
agents and the number of data items are large, we describe

LEAVE BLANK THE LAST 3.81 cm (1.5”)
 OF THE LEFT COLUMN ON THE FIRST PAGE

 FOR THE COPYRIGHT NOTICE

other efficient distribution patterns applicable for the
applications.
We discuss each pattern by showing the flow of messages
which the pattern uses, because this reveals the system
characteristics of each pattern. However describing a
general framework implementing each pattern is important,
so a focus of this paper is a discussion of the patterns from
the system-level perspective.
In Section 2, we briefly introduce an architectural overview
of an agent server hosting a large number of agents. Section
3 describes the basic structure of event distribution
mechanisms which cause agents to start their processing
when a database is updated. Section 4 describes some
considerations of an event distribution mechanism that can
be applied to a system which hosts a large number of agents.
In Section 5, we divide applications into six categories from
the viewpoints of both the number of agents and the number
of items of data. Three common event distribution patterns
are presented and discussed in Section 6. In Section 7, we
describe event distribution patterns for applications where
the number of agents and the number of data items are very
large. Section 8 concludes the paper.

2. An Architectural Overview of an Agent
Server a Hosting Large Number of Agents
The agent server described in this paper is a server that
provides many users with event handling services,
information monitoring services, or asynchronous
processing services. Those services are provided in
accordance with an individual user's preference data. For
implementing those services, an agent server architecture
where each user owns his agent on the server is proposed in
[1, 2]. The agent is a reactive agent which starts processing
in order to respond to a received message. Each agent has
its own user's data, and works using that data.

Figure 1. An Architectural Overview of the Agent Server

An architecture of such an agent server is described in [3].
The agent server is a single process running under some
operating system. An agent is an object having both

business logic and a user's data. All agents in the agent
server share the same memory space, but an agent cannot
make reference directly to other agents. It sends an
asynchronous message to the other agent to communicate
with that agent. The message is put into the agent's message
queue. An agent server gets the message at an appropriate
time and hands the message to the agent by calling the
agent's message handler. The server assigns the agent a
thread in a thread pool. The server limits the number of
threads running on the server by using the thread pool in
order to avoid system overload.

The agent server may manage hundreds of thousands of
agents. In that case, the server might not be able to keep all
agents in memory. Therefore, the server needs an agent
swapping mechanism which swaps agents in and out
between memory and storage. The mechanism converts an
agent to a byte array and writes the array on the file system.
At the same time, it reads another byte array from the file
system and restores an agent from the read array. The
process is done at the time when the server obtains a
message from an agent message queue.
The agent server also has an agent recovery mechanism so
that agents in memory will not be lost if a system fails. The
server takes a snapshot of an agent if the agent's data has
been updated after the agent processed a message.
There are also ServiceObjects which provide agents with
common services such as a database access interface. The
ServiceObjects have the same asynchronous messaging
mechanism as agents, allowing them to send and receive
messages. An agent can have object references to the
service objects and can call them by method invocation.
Some of the benefits of this agent server architecture are
that it is easy to develop a system because the system is
modeled in a natural way [4] and it can achieve high
performance if the system has a large memory space
because the users' data are stored in agents located in
memory [5].

3. Basic Structure of Event Distribution
Patterns
When data stored in a database is updated, agents which are
interested in the updated data obtain the data and start
processing. On such systems, the data shared among all
agents is managed by a data management object which is
one of the ServiceObjects. An agent obtains data stored in
the database from the data management object.
An agent has to obtain the latest data when the data are
updated. How this update notification is distributed is an
event distribution pattern. When the data is updated, the
data management object reads the data from the database.
Then it chooses agents that should start processing with the
latest data, and sends events to those agents. When an agent

Service
Object

Agent

Service
Object

Agent

Agent

Persistent
Storage

Context
Thread

Pool
Message
Queue

Method Call

Asynchronous
Messaging

Swapping
Mechanism

DBMS

B/E System

server assigns a thread to an agent, the agent starts
processing and updates the agent's data if necessary.

Figure 2. Basic Structure of an Event Distribution Pattern

The event distribution pattern seems not to vary at this
abstract level. However, we can see several different
patterns by considering deeply the processes of the data
management object and of the agents.

4. Significant Points of the Event Distribution
Patterns for Large Numbers of Agents
Efficiency of software programming is a focal point in most
discussions about software design patterns [6, 7]. However
there are few discussions of the performance of agent
design patterns, except for [8, 9]. Nevertheless, in case of
applications running as server software, we have to consider
the efficiency of the utilization of system resources, such as
CPU and memory, as well as the efficiency of the
application software itself. Especially, we have to carefully
consider memory utilization. Because if a system uses
memory over physical memory of the computer the system
will be in thrashing or the system will fail . In this section,
we describe important points to consider regarding event
distribution patterns on systems hosting a large number of
agents.
Memory Occupied by Events
An event is sent to an agent from the data management
object using the asynchronous messaging mechanism. The
event is stored in the agent's message queue. Therefore, an
agent server may temporarily keep many events in memory.
If the size of a typical event object is a hundred bytes and
the data management object creates a million event objects
in order to distribute the events to a million agents, the
server temporarily uses a hundred megabytes of memory, a
significant amount.
Memory Occupied by Updated Data
If the amount of updated data is too large for an agent
server to keep in memory, the event notifications must not
themselves contain the updated data. Otherwise the agent
server can fail because the events are kept in the agents'

message queues and the server will try to keep all of the
updated data in its memory.
Database Accesses
We also have to take account of the number of database
accesses. If the data management object keeps no data in
memory, it has to read the latest data from a database
whenever an agent tries to obtain the data after the agent
receives an event. This can cause too many database
accesses. For example, if a million agents are running on an
agent server, a million database accesses will be triggered
for each event. It would cause system overload.
Agent Swapping
The agent server has an agent swapping mechanism as
described above. Since each agent swap causes a disk
access, system performance will be greatly reduced if too
much agent swapping is taking place.

5. Application Categories
When we consider event distribution patterns of an agent
server, we have to take into account system parameters in
addition to the process flow the event distribution patterns
that accompany database access, a key point is whether or
not all updated data can be stored in memory. Therefore,
we can divide applications into the following two types:

A: applications where all updated data can be stored in

memory
B: applications where only part of the updated data can be

held in memory

Another key point is the number of agents. Applications can
be divided into following three types from the perspective
of the number of agents:

1: the number of agents is small
2: the number of agents is large but only a minority of the

agents will react to the database update
3: the number of agents is large and most of the agents

will react to the database update

The meaning of "the number of agents is small" is that all
the agents can respond to the updated data during a period
that is short in comparison with performance demands of a
particular application.
Using the above categorization, applications can be divided
into six types. We will refer to each category as A-1, A-2,
and so on.

Agent

Agent

Agent

Data
Management

Object

DBMS
Agent
List

Updated
Data

Matching
Logic

Event

6. Event Distribution Patterns
In this section, we consider three types of event distribution
patterns, and discuss these patterns from the viewpoints of
complexity of programming, system performance and
memory utilization.

6.1 Broadcast-Event Pattern
Description
When a database is updated, a data management object
distributes events to all agents. The event contains
information which notifies agents of the database update. It
does not include the updated data. The event can be shared
among all agents. Each agent decides for itself whether or
not it is interested in the specific event. If an agent needs to
respond to the event, the agent obtains the updated data
from the data management object by invoking a method of
the data management object, for example "getData(String
name)" in Figure 3. The data management object typically
reads the updated data into memory prior to distributing the
event if the agent server has enough memory.

Figure 3. Broadcast-Event Pattern

Complexity of Programming
In this pattern, the data management object distributes
events to all agents. Therefore, it does not need any
matching logic for choosing appropriate agents. It does not
need to have a mechanism for managing information on
agents' interests. An application developer does not have to
provide any mechanism to store the information into
persistent storage. Thus it is easy and inexpensive to
program for this distribution pattern.
System Performance
In this pattern, all agents will be invoked even if some
agents do not need to handle the event. Therefore, if only
some of the agents react to the event, this pattern is not
efficient. Especially, in the case that all agents cannot be
held in memory, it causes unnecessary agent swapping. On
the other hand, if most agents do react to the event, this
pattern is efficient because the data management object
does not need to manage information on the subscriptions

of agents, and it also doesn't need to worry about the
choosing of agents.
This pattern can achieve very high performance if all agents
and updated data are located in memory. Even if only part
of the updated data can be held in memory, this pattern can
work without causing system failures because of memory
allocation problem, but its performance in that case is not
so good.
Memory Utilization
In this pattern, all agents can share an event object. The
event object does not contain any updated data. Therefore,
the amount of memory required by the pattern for
distribution overhead is negligible.
Types of Applications
This pattern is suitable for applications of type A-1, A-3,
and B-1. It also is applicable for applications of type B-3 if
the application does not require high efficiency of CPU
utilization. However, in that case, the load imposed by the
database management system might be heavy.

6.2 Multicast-Data Pattern
Description
In this pattern, the data management object refers to
information on the subscriptions of the agents, and creates
an event for each agent which subscribes to the updated
data, and sends the event to the destination agent. The event
includes the updated data, so the agent obtains the latest
data directly from the event.

Figure 4. Multicast-Data Pattern

Complexity of Programming
The data management object has to manage information on
the subscriptions and interests of the agents and chooses
agents which should receive the latest data. This
information must be persistent in spite of system failures.
Application developers have to implement logic which
manages the persistency of the information and choose
appropriate agents quickly. If the implementation is not
efficient, system performance will be poor.

Agent

Agent

Agent

EventData
Management

Object

DBMS
Updated

Data

getData(String name)

Send the event to
all agents

Agent

Agent

Agent

Data
Management

Object

DBMS
Updated

Data

Send the event to
selected agents

Event
Data-A

Data-B

Agents can explicitly detect items which have been updated
because the received event contains all updated items. If the
agent needs to start an action after receiving all updated
data, this pattern is useful.
System Performance
This pattern does not send unnecessary events to agents. It
is efficient in the case of systems where only some of the
agents react to the event.
Memory Utilization
Each event includes the latest data which the destination
agent needs. The event cannot be shared among other
agents. Therefore, many events will be created temporarily.
There might be hundreds of thousands of events. Moreover,
all updated data may be kept into memory, possibly even in
many copies. Therefore, application developers have to
consider memory usage carefully.
Types of Applications
This pattern is suitable for applications of type A-2.
However, it requires consideration of memory utilization.

6.3 Multicast-Event Pattern
Description
In this pattern, the data management object creates an event
and sends it to agents which the data management object
chooses by referring to the information on the subscriptions
of agents. The event includes only information notifying the
agents of the database update, but no updated data. The
event can be shared among all agents. After an agent
receives the event, it obtains the latest data from the data
management object by invoking a method of the data
management object, for example "getData(String name)" as
shown in Figure 5. The data management object may read
the updated data into memory prior to the distribution of the
event if the agent server has enough memory.

Figure 5. Multicast-Event Pattern

Complexity of Programming
The data management object has to manage information on
the subscriptions of agents and choose agents which should

receive the latest data. This update status information must
be persistent against system failure. Application developers
have to implement logic which insures the persistency of
the information and chooses appropriate agents quickly. If
the implementation is not efficient, system performance will
be poor.
System Performance
This pattern does not send unnecessary events to agents.
This is efficient in the case of systems in which only some
of the agents react to the event.
Each agent obtains the latest data from the data
management object by using method invocation. If all
updated data can be held in memory, the operation can be
done very quickly. Even if only part of the updated data is
held in memory, this pattern can work without causing
system failures because of running out of memory, but its
performance is not so good.
Memory Utilization
In this pattern, all agents can share an event. The event does
not contain the updated data. Therefore, the amount of
memory required as overhead for this distribution pattern is
negligible.
Types of Applications
This pattern is suitable for applications of type A-2. It also
is applicable for applications of type B-2 if the application
does not require high efficiency CPU utilization. But in that
case, the system load from the database management system
might be high.

7. Case of Many Agents and a Large Amount
of Data
Even in the case that an agent server cannot keep all agents
in memory and cannot keep all of the updated data in
memory, the Broadcast-Event pattern and the Multicast-
Event pattern are applicable because they don't cause
system failures because of running out of memory.
However, system performance is decreased because these
distribution patterns may cause either many database
accesses or a lot of agent swapping. As the result, these
patterns may not be suitable for many target applications. In
this section, we propose the basic idea of a pattern which
can be applicable for such applications. Our assumptions
about the applications in this section are that only some of
the agents are held in memory, only part of the updated data
is kept in memory, and all agents need to process the
updated data.
For the situation of our assumptions, the highest costs come
from either database accesses or agent swapping, and we
should try to reduce these costs. Therefore, we divide the
agents and the data into several agent groups and several
data blocks, respectively. The sizes of those are set so that
all the elements of a group/block can be held in memory at

Agent

Agent

Agent

EventData
Management

Object

DBMS
Updated

Data

getData(String name)

Send the event to
all agents

the same time. Let's consider a case where there are one
million agents, and the agent server can keep two hundred
thousand of agents in memory. There are one million items
of data and the agent server can keep four hundred
thousand the data items in memory along with the 200,000
agents. Agents are divided into five groups; "A", "B", "C",
"D", and "E." Each group has two hundred thousand agents.
Data items are divided into three groups; "a", "b", and "c."
The group "a" contains four hundred thousand data items,
and the groups "b" and "c" each contain three hundred
thousand data items. The agent server loads each agent
group and each data grouping into memory in turn, and
performs the processing of the events handled within that
combination of the loaded agents and the loaded data. We
also have to schedule the order of reading the groups into
memory. There are two common scheduling policies,
scheduling to minimize the amount of agent swapping, or
scheduling to minimize the amount of database access. We
call the two approaches the "Minimum Agent Swapping
Approach" and the "Minimum Database Access Approach",
respectively.
In the Minimum Agent Swapping Approach, agent groups
and data groups are read into memory in order of A-a, A-b,
A-c, B-c, B-b, B-a, C-a, C-b, C-c, D-c, D-b, D-a, E-a, E-b,
and E-c. In this approach, each agent group is fixed and
held in memory until all agents of the group finish their
actions. Moreover, we can reduce the number of times of
database accesses by reversing the order of reading the data
groupings each time an agent group is finished--this reuses
the last data group so it does not need to be reloaded. In the
Minimum Data Access Approach, the agent groups and data
groupings are read into memory in the order of a-A, a-B, a-
C, a-D, a-E, b-E, b-A, b-B, b-C, b-D, c-D, c-E, c-A, c-B,
and c-C. Each data group is fixed until all items of data of
the grouping have been handled completely. Again, we can
reduce the amount of agent swapping by reversing the order
of reading the agent groups between each pass.
Let's assume that in the initial state agent group A is in
memory. In the Minimum Agent Swapping Approach, the
amount of agent swapping and the number of data accesses
are 800,000 and 3,400,000 respectively. In the Minimum
Data Access Approach, the amount of agent swapping and
the number of data accesses are 2,400,000 and 1,000,000
respectively. We cannot say which approach is definitively
better because it depends on the performance of the agent
swapping routines and the database access routines. From
the view of the amount of data read from disk, an agent is
probably bigger than an item of data, because an agent has
several components. On the other hand, database access
may take longer than agent swapping, because it causes
inter-process communication, data format conversions,
involves copying the data several times and so on. Further
research on the relative performance of agent swapping and
database access is required.

A purely restricted asynchronous messaging mechanism is
not adequate for implementing this approach. To exchange
an agent group with another agent group, the data
management object needs to wait until all agents of the
current agent group have completed their event handling.
But an asynchronous messaging mechanism normally do
not have a mechanism for waiting for completion, so the
data management object cannot detect the event. We need
such a waiting mechanism, for instance, a mechanism which
calls a method of the data management object when all
agents of the current agent group have completed their
event handling. Unfortunately, our agent server does not
have such a mechanism, though we are planning to
implement it.

(a) Minimum Agent Swapping Approach

(b) Minimum Data Access Approach
Figure 6. Event Distribution Patterns using Groups

8. Conclusion
In this paper, we described considerations of agent patterns
on an agent server which hosts a large number of agents. In
such agent servers, system metrics such as CPU utilization
and memory must be considered as well as complexity of
programming. We described three event distribution
patterns; Broadcast-Event, Multicast-Data, and Multicast-
Event. Characteristics of each of these patterns were also
discussed from the viewpoints of complexity of
programming and system considerations. Those three
patterns have problems under the conditions where all
agents and updated data cannot be loaded into memory at

Agent

Agent

Agent

Data-700000
:
:

Data-999999

Data-300000
:
:

Data-699999

Data-0
:
:

Data-399999

Group-D Group-E

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Group-CGroup-BGroup-A

Block-a Block-b Block-c

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Data-700000
:
:

Data-999999

Data-300000
:
:

Data-699999

Data-0
:
:

Data-399999

Group-A Group-B Group-C Group-D Group-E

Block-a Block-b Block-c

the same time. We proposed a base approach for an event
distribution pattern under thees conditions. The approach of
grouping agents and data is efficient because the costs of
agent swapping and database access can be reduced.
However, it requires an extra mechanism for
synchronization. Unfortunately, our current agent server
does not have such a mechanism, though the considerations
of this paper require us to add it if our server will be
required to handle such large-scale applications.

9. REFERENCES
[1] IBM Caribbean,

<http://www.alphaworks.ibm.com/tech/caribbean>
[2] Kinetoscope VIA Systems,

<http://www.kinetoscope.com/via>
[3] G. Yamamoto and H. Tai: "Architecture of an Agent

Server Capable of Hosting Tens of Thousands of
Agents", IBM Research Research Report RT0330,
1999 (a shorter version of this paper was published in
Proceedings of Autonomous Agents 2000, ACM Press,
2000)

[4] H. Tai and G. Yamamoto: "An Agent Server for the
Next Generation of Web Applications", The 11th
International Workshop on Database and Expert
Systems Applications (DEXA-2000), IEEE Computer
Society Press, 2000

[5] G. Yamamoto and H. Tai: "Can a Persistent Object
Technology Make A High Performance Application
Server?" , WIT-2000, Sep. 2000 (in Japanese)

[6] E. Gamma, R. Helm, R. Johnson, and J. Vissides:
Design Patterns, Addison-Wesley

[7] Y. Aridor and D.B. Lange: "Agents Design Patterns:
Elements of Agent Application Design" , Proceedings
of Autonomous Agents '98, ACM Press, 1998

[8] O.F. Rana and K. Stout: "What is Scalability in Multi-
Agent Systems?" , Proceedings of Autonomous Agents
2000, ACMPress, 2000

[9] O.F. Rana: "Performance Management of Mobile
Agent System" : Proceedings of Autonomous Agents
2000, ACMPress, 2000

