December 11, 2000
RTO0389
Computer Science 10 pages

Research Report

Extended Path Expressions for XML

MURATA Makoto

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice

This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Extended Path Expressions for XML

Makoto Murata
IBM Tokyo Research Lab/IUJ Research Institute
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan
TEL: +81-46-215-4678 FAX: 481-46-273-7413

mmurata@trl.ibm.co.jp

December 5, 2000

Abstract

Query languages for XML often use path ex-
pressions to locate elements in XML documents.
Path expressions are regular expressions such
that underlying alphabets represent conditions
on nodes. Path expressions represent conditions
on paths from the root, but do not represent con-
ditions on siblings, siblings of superiors, and de-
scendants of such siblings. In order to capture
such conditions, we propose to extend underly-
ing alphabets. Each symbol in an extended al-
phabet is a triplet <ej,a,e9>, where a is a con-
dition on nodes, and e; (eg) is a condition on
elder (resp. younger) siblings and their descen-
dants; e; and eg are represented by hedge regular
expressions, which are as expressive as hedge au-
tomata (hedges are ordered sequences of trees).
Such an extended path expression can be eval-
uated for every element by traversing the XML
document three times. Furthermore, given an
input schema and a query operation controlled
by an extended path expression, it is possible to
construct an output schema. This is done by
identifying where in the input schema the given
pointed hedge representation is satisfied.

1 Introduction
XML [3] has been widely recognized as one of

the most important formats on the WWW. XML
documents are ordered trees containing text, and

thus have structures more flexible than relations
of relational databases.

Query languages for XML have been actively
studied [1, 9]. Typically, operations of such
query languages can be controlled by path ex-
pressions. A path expression is a regular expres-
sion such that underlying alphabets represent
conditions on nodes. For example, by specify-
ing a path expression (section™,figure), we can
extract figures in sections, figures in sections in
sections, figures in sections in sections in sec-
tions, and so forth, where section and figure are
conditions on nodes. Based on well-established
theories on regular languages, a number of useful
techniques (e.g., optimization [2, 5, 10, 14]) for
path expressions have been developed.

However, when applied to XML, path expres-
sions do not take advantage of orderedness of
XML documents. For example, path expressions
cannot locate those <section> elements which
have subordinate <figure> elements immediately
followed by <table> elements.

On the other hand, industrial specifications
such as XPath [6] have been developed. Such
specifications address orderedness of XML doc-
uments. In fact, XPath can capture the above
example. However, these specifications are not
driven by any formal models, but rather designed
in an ad-hoc manner. Lack of formal models
prevents generalization of useful techniques orig-
inally developed for path expressions.

As a formal framework for addressing ordered-

ness, this paper shows a natural extension of
path expressions. First, we introduce hedge reg-
ular expressions, which generate hedges (ordered
sequences of ordered trees). Hedge regular ex-
pressions are equally expressive as hedge au-
tomata (variations of tree automata for hedges).
Then, we introduce pointed hedge representa-
tions. They are regular expressions such that
each “symbol” is a triplet <ej,a,ez>, where
e1,e9 are hedge regular expressions and «a is a
condition on nodes. Intuitively, e; represent con-
ditions on elder siblings and their descendants,
while ey represent conditions on younger siblings
and their descendants. As a special case, if ev-
ery hedge regular expression in a pointed hedge
representation generates all hedges, this pointed
hedge representation is a path expression.

Given a hedge and a pointed hedge representa-
tion, we can determine which node in the hedge
matches the pointed hedge representation. For
every node, (1) we determine which of the hedge
regular expressions in the pointed hedge repre-
sentation the node matches, (2) we then deter-
mine which of the triplets the node matches, (3)
and we finally evaluate the pointed hedge repre-
sentation for every node. The computation time
is linear to the number of nodes in hedges.

Another goal of this work is schema transfor-
mation. Recall that query operations of rela-
tional databases construct not only relations but
also schemas. For example, given input schemas
(A, B) and (B, (), the join operation creates an
output schema (A, B,C). Such output schemas
allow further processing of output relations.

It would be desirable for query languages
for XML to provide such schema transforma-
tions. That is, we would like to construct
output schemas from input schemas and query
operations (e.g., extract, delete), which utilize
pointed hedge representations. To facilitate such
schema, transformation, we construct a match-
identifying hedge automaton from a pointed
hedge representation. The computation of this
automaton assigns marked states to those nodes
which match the pointed hedge representation.
Schema transformation is effected by first creat-
ing a intersection hedge automaton which sim-

ulates this match-identifying hedge automaton
and the input schema, and then transforming the
intersection hedge automaton as appropriate to
the query operation.

The rest of this paper is organized as fol-
lows. In Section 2, we consider related works.
In preparation, we introduce hedges and hedge
automata in Section 3, and then introduce hedge
regular expressions in Section 4. In Section 5,
we introduce pointed hedges and pointed hedge
representations. In Section 6, we study how
to locate nodes in hedges by evaluating pointed
hedge representations. In Section 7, we construct
match-identifying hedge automata from pointed
hedge representations, and then construct out-
put schemas. In Section 8, we conclude and con-
sider future works.

2 Related Works

Extensions of path expressions for capturing con-
ditions on siblings have been studied by several
researchers [21, 18, 7, 17]. Some recent papers
[21, 15, 12] consider schema transformation for
XML.

Among these works, [21] is the closest to ours.
Its patterns use regular expressions to navigate
both vertically and horizontally (i.e., ancestors
and siblings). Moreover, it provides schema
transformation, which they call “DTD infer-
ence”. Their input schemas, which they call reg-
ular loto (labelled ordered tree object) type def-
initions, represent hedge local languages, while
their output schemas represent hedge context-
free languages. However, in our framework, both
input and output schemas represent hedge regu-
lar languages rather than hedge local languages.
Since all XML schema languages (except XML
DTDs) use hedge regular languages rather than
hedge local languages [13], we would argue that
our work is more applicable to such languages.

Neven [18] introduced pattern languages
FOREG and FOREG*. Patterns in these lan-
guages have both horizontal path expressions
and vertical path expressions. Furthermore,
he has established some equivalence between
his languages and monadic second-order logic.

In our framework, expressiveness of pointed
hedge representations are equivalent to hedge au-
tomata. Since monadic second-order logic and
tree automata are strongly related, we conjecture
that expressiveness of FOREG* and pointed
hedge representations are comparable. Schema
transformation is not provided.

Although [18] and [21] allow variables in pat-
terns, our framework does not allow variables at
present. As a result, a pointed hedge representa-
tion cannot locate tuples of elements. Introduc-
tion of such variables are discussed in Section 8.

Given an input DTD and transformation pro-
gram, Milo et al [15] check whether every result
of transformation conforms to a specified output
DTD. DTDs are represented by tree automata,
and transformations are represented by k-pebble
transducers. Path expressions are not used.

Catapillar expressions [4] capture conditions
on ancestor nodes, sibling nodes, etc. Expres-
siveness of catapillar expressions is compared
with that of regular tree languages. Schema
transformation is not provided.

XDuce [12] is a programming language for
handling XML documents. Types in XDuce
are regular expressions of types. Operations
in XDuce perform regular expression pattern
matching. Furthermore, XDuce provides type
inference by using tree automata. However, con-
ditions on non-subordinate nodes such as ances-
tor nodes cannot be captured in XDuce.

3 Hedges and Hedge Automata

In this section, we introduce hedges (ordered se-
quences of ordered trees) and hedge automata.

Let X be an alphabet, and let X be a finite set
of variables. We assume that they are disjoint
and do not contain either (or). A hedge over &
and X is recursively defined below:

e ¢ (the empty hedge),
o z (zeX),
e a(u) (a € X, u is a hedge),

e uv (u and v are hedges).

For example, a(e), a{x), a(e)b(b{e)x) are
hedges. Note that symbols in 3 are used as la-
bels of non-leaf nodes, while variables in X are
used as labels of leaf nodes. Hereafter, we ab-
breviate a(e) as a. Thus, the third example may
be abbreviated as a b(bx).

A deterministic hedge automaton M is a 4-
tuple <@, ¢, o, F> such that

e () is a finite set of states,
e ¢ is a function from X to Q,

e « is a mapping from X x Q* to @ such that

{ngz---qk| k > 0,0(a,q192. .. q) = q} is
regular for any ¢ € @, a € X, and

e F' is a regular set over) and is called the
final state sequence set.

Given a hedge, we execute a deterministic
hedge automaton M in the bottom-up manner.
First, we assign a state to every leaf node that
is labelled with a variable. This is done by
computing ¢(x), where x is the variable. Then,
we repeatedly assign a state to each of those
nodes such that their subordinate nodes already
have states assigned. This is done by computing
afa,q1qs - - . q;), where a is the label of the node
and q1qs ... g is the sequence of states assigned
to the subordinate nodes. Counsider the top-level
nodes in the given hedge and the sequence of the
states assigned to them. If this state sequence
is contained by F', the deterministic hedge au-
tomaton accepts that hedge. For example, a(e)x
is accepted if F' contains a(a, €) followed by ¢(x).
The language accepted by M, denoted L(M), is
the set of hedges accepted by M.

Non-deterministic hedge automata are simi-
larly defined. The only difference is that the
range of ¢ and « is the power set of (). A non-
deterministic hedge automaton accepts a hedge
if at least one of the possible computations yield
a state sequence in F'.

4 Hedge Regular Expressions

In this section, we introduce hedge regular ex-
pressions, which are as expressive as hedge au-
tomata.

Although there are many works [11, 8] on bi-
nary tree regular expressions, hedge regular ex-
pressions have not been studied in the literature.
To the best of our knowledge, the work closest to
ours is [20]. Their expressions capture the class
of hedge local languages, which is a proper sub-
class of hedge regular languages. Since any hedge
regular language can be obtained by applying
some projection to some hedge local language, a
pair of an expression and projection provides a
hedge regular “expression”. Our work differs in
not using projections. In other words, our hedge
regular expressions directly capture hedge regu-
lar languages.

Recall that regular expressions for strings have
the concatenation and the closure (*) operator.
To introduce hedge regular expressions, we have
to provide two pairs of these operators. The first
pair creates new hedges by aligning hedges in
the horizontal direction. Meanwhile, the second
pair creates new hedges by embedding hedges in
hedges.

Although it is easy to align hedges in the hori-
zontal direction, it is not straightforward to em-
bed hedges in hedges. Where in a hedge do we
embed other hedges? As a target for such em-
bedding, we introduce substitution symbols.

Let Z be a set of substitution symbols. We
assume that Z and X U X are disjoint. A hedge
over Y and X with substitution symbols in Z are
defined below:

o z(xeX),
e a(z) (a€ X,z € Z),

e a(u) (a € X,u is a hedge with substitution
symbols)

e ujuy (ui,us are hedges with substitution
symbols)

Let U be a set of hedges with substitution sym-
bols, v be a hedge with substitution symbols, and
s be a substitution symbol. Hedges in U are em-
bedded in v by replacing each occurrence of z
in v by hedges in U. Different occurrences of

z may be replaced by different hedges. The set
of hedges obtained by embedding U in v at z is
denoted by U o, v. When V is a set of hedges
with substitution symbols, U o, V is defined as

UUEV U Oz V
Now, we are ready to introduce hedge regu-

lar expressions. A hedge regular expression over
>, X, and Z is defined below:

o«
e z(reX),

e ale) (a € X, e is a hedge regular expression),
e cie9 (e1,e9 are hedge regular expressions),

e cj|ez (e1,e2 are hedge regular expressions),
e ¢* (e is a hedge regular expression),

e a(z) (a€ X,z € Z),

e 10, €9 (e, e are hedge regular expressions,
and z € Z),

e ¢? (e is a hedge regular expression, and z €
Z),

A hedge regular expression e represents a set
L(e) of hedges with substitution symbols. L(e)
is recursively defined below:

L(e) = {e},
L(z) = {x},
L(a{e)) = {alu) | u € L(e)},
L(eyez) = {u; followed by uy |
uy € L(e1),u2 € L(ez)},
L(e1) U L(eg),
{e} UL(e) U L(ee) U L(eee) U ...,

L(eile2)
L(e")
L(a(z))
e2)

)

= {a(2)},
L(e1 0, e2) = L(e1) o, L(e2)
L(e? :L()UL(YU L(e 3’Z)U
L(e"*) = Lle),
L(e**) = L(e"*)o, L(e) U L(e'*),
L(e**) = L(e**)o, L(e)U L(e*?)

For example, consider a hedge regular ex-
pression a(z)*?. Obviously, L(a(z)*) is

{€,a(z),a(z)a(z),a(z)a(z)a(z),...}. To compute
L(a(z)**), we have to compute L(a(z)*H?),
L(a(z)*%?), L(a(z)*37), and so forth.

For every positive integer i, L(a(z)*%?) con-
tains all hedges such that (1) their height is equal
to or less than i, (2) every symbol is a, and
(3) every substitution symbol is z. Therefore,
L(a{z)**) contains all hedges such that (1) every
symbol is a, and (2) every substitution symbol
is z.

Given a hedge regular expression e, we can al-
ways construct a hedge automaton over ¥ U Z
that accepts L(e). Likewise, given a hedge au-
tomaton M, we can always introduce some sub-
stitution symbols and construct a hedge regular
expression that accepts L(M). The proof is out-
side the scope of this paper, but is similar to the
proof of equivalence of binary tree expressions
and binary tree automata.

5 Pointed Hedge Representa-
tions

In this section, we introduce pointed hedge repre-
sentations, which naturally extend path expres-
sions. Pointed binary tree representations were
originally introduced by [22, 19] and their appli-
cations to structured documents were studied in
[16]. But our pointed hedge representations han-
dle hedges rather than binary trees, and they use
hedge regular expressions rather than hedge (or
tree) automata.

5.1 Pointed Hedges

In preparation, we introduce some definitions. A
pointed hedge over alphabet ¥ and X is a hedge
with one substitution symbol n such that n oc-
curs once and only once. For example, a(x)b(n)
and a{x)b(c(n)y) are pointed hedges (see Figure
1).

The product of pointed hedges v and v, de-
noted by u @ v, is the result of replacing n in
v by w. In other words, it is the only ele-
ment of {u} o, v. For example, the product of

a(x)b{n) and a(x)b{c(n)y) is a{z)b(c{a(z)b(n))y).

Figure 1: Pointed hedges and their product
(The left-top example is a{x)b(n) and the right-
top example is a(z)b(c(n)y). Their product is

a(z)b{c(alz)b{n))y))

Figure 2: Decomposition of pointed hedges (the
right-hand side begins at the bottom and ends
at the top).

The associative law holds; that is, (u®v) Dw =
u® (v @ w) for any pointed hedges u, v, w.

A pointed base hedge is a pointed hedge of the
form wja(n)uz, where uj,us are hedges and a
is a symbol in ¥. For example, a{x)b(n) is a
pointed base hedge, but a(z)b{(c(n)y) is not. Any
pointed hedge can be uniquely decomposed into
a sequence of pointed base hedges (see Figure 2).
For example, a(z)b{c(n)y) can be decomposed
into ¢(n)y and a(x)b(n).

A pointed base hedge representation over al-
phabet X and variable-set X is a triplet <
e1,a,ea>, where a € X and ej,ez are hedge
regular expressions. The represented language,

((up € L(<ep1,ay,er2>)
)

e > u= P
Uy € L(<€21,ak,€22>)
)
L U1 € L(<€11,ak,€12>)

Figure 3: Matching of pointed hedge representa-
tions and pointed hedges

denoted by L(<ei,a,ez>), is {ura(n)uz| u; €
L(el),UQ € L(eg)}.

As an example, consider a pointed base hedge
representation <a(z)**,b,a(z)**>, where a(z)**
is the example hedge regular expression in the
previous section. Recall that this hedge regu-
lar expression generates all hedges such that ev-
ery symbol is a and every substitution symbol
is z. Therefore, a pointed hedge is generated by
<a(z)*?,b,a(z)**>, when the parent of 7 is la-
belled with b, the other nodes are labelled with
a, and the substitution symbols are z.

A pointed hedge representation over alphabet
3 and variable-set X is a regular expression
e over a finite set A of pointed base hedge
representations. A pointed hedge u matches
this pointed hedge representation if e generates
a sequence <eji,ai,€12>,<e€21,02,€22>,... <
€1, Ok, ep2>, u is decomposed into a sequence
of pointed base hedges uy,ug,...,u; (ie., u =
up ® ug O ... B ug), and w; is contained by
L(<e;1,a,e;9>) for every i (1 < ¢ < k). For
example,

As an example, consider a pointed hedge
representation <a(z)**,b,a(z)**>*. A pointed
hedge matches this pointed hedge representation
if (1) the parent of 7 is labelled with b, (2) all its
ancestor nodes are labelled with b, (3) all other
nodes are labelled with a, and (4) the substitu-
tion symbols are z.

Just like path expressions locate nodes, a
pointed hedge representation r locates nodes in
hedges. For each node in a hedge, we construct
a pointed hedge by replacing the subordinates of

this node by 7. If this pointed hedge mathces r,
this node is located by r.

Finally, we would like to point out that ex-
pressiveness of pointed hedge representations (to
be precise, pointed binary tree representations)
have been already studied [22, 19]. Equiva-
lence of monoid recognizability (pointed binary
tree representations) and recognizability (binary
tree automata) has been established. Hence, we
would argue that pointed hedge representations
are as powerful as possible in the framework of
hedge automata.

6 Evaluation of Pointed Hedge
Representations

We show an algorithm for evaluating pointed
hedge representations. Given a hedge, this al-
gorithm locates those nodes which satisfy the
pointed hedge representation by traversing the
hedge three times.

Recall that a pointed hedge representation
is a regular expression over a finite set A of
pointed base hedge representations. Let A be
{<€11, ay,e12>,<€21,02,€29>,...,<€npl,Ap, €p2>
}.

For each e;; and e;o (1 <i < n), we construct
deterministic hedge automata M;; and M;s.

Without loss of generality, we can assume that
M1, Mz (1 <i < n) share the state set @, the
transition function ¢, and the transition function
«. That is,

M;
My =

<Q7 L, @&, Fi1>
<Q7 L, @&, Fi2>

If they did not share Q, ¢, «, we only have to use
the cross product of all state sets as a new state
set; that iS, we use Qll X Q12 X Q21 X Q22 X
... Qn1 X Q2 as the state set, where (Q;; is the
state set of M;;. We then reconstruct transition
functions and final state sequences for this new
state set.

Again, without loss of generality, we can as-
sume that Fj; = Fj; or Fj; N Fj; = 0, and
that Fjp = Fjo or Fjp N Fjo = (for every
i,7 (¢ # 7). If this assumption does not hold, we

only have to construct hedge regular expressions
for Fjy N —Fj1, Fin N Fj1, —Fj1 N Fjy, Fip N —F)a,
Fio N Fjo, =Fj2 N Fjo, and rewrite the original
pointed hedge representation.

Given a pointed base hedge uja(n)uz (u; and
ug are hedges), we would like to know which
pointed base hedge representation <e;1,a;,ejo>
the pointed base hedge matches. First, we as-
sign a state to each node in u; and uy by evalu-
ating the transition functions ¢ and «. Let [u]
be the state sequence assigned to the top-level
node sequence of wj, and let [uy] be the state
sequence assigned to the top-level node sequence
of ug. Pointed base hedge uja(n)us matches
<e€j1, a;, e;2> if and only if Jup] is contained in
Fj1, ais equal to a;, and [ug] is contained in Fjo.

A pointed base hedge does not match more
than one pointed base hedge representation. If
it matches <e;,a;,e2> and <eji,aj,ej2>, we
have a state sequence contained by Fj; and Fj;
and another state sequence contained by Fjs and
Fj3, and a = a; = a;j. Then, by our hypotheses,
these two pointed base hedge representations are
identical.

We further assume that any pointed base
hedge match with some pointed base hedge rep-
resentation 0 in A. If this assumption does not
hold, we only have to add more pointed base
hedge representations to A.

We can now construct a classification function
0 from Q* x X x Q* to A. Given state sequence
q11912 - - - q1i, symbol a, and state sequence
¢21q22 - - - q25, this function chooses the pointed
base hedge representation <egi,ak,exs>€ A
such that ap = a, and q¢u1¢q12...¢q1; and
g21q22 - - - q2; are contained by Fj; and Fjg, re-
spectively. The pointed base hedge representa-
tion that matches a pointed base hedge uya(n)us
is 0([u1], a, [ug]).

Remember that a pointed hedge represen-
tation e generates a regular set over a finite
set of pointed base hedge representations.
Consider the mirror image of this set, namely
{wg ... wowy | wiwy...wy is generated by e}.
Since the mirror image of a regular set is regular,
we can construct a deterministic automaton
N =<5, u, s0, Sein> that accepts this set, where

S is a finite set of states, sp (€ S) is a start
state, and Sg, (C S) is a set of final states.

Now, we are ready to introduce an algorithm
for locating those nodes which satisfy a pointed
hedge representation. First, to each node, we as-
sign a state in @ by evaluating transition func-
tions ¢ and «. Then, to each node, we assign a
pointed base hedge representation in A by eval-
uating the classification function 0; that is, we
classify the pointed base hedge comprising the
elder siblings (including their subordinates), the
node (which is assumed to have 7 as the subordi-
nate), and the younger siblings (including their
subordinates). Finally, to each node, we assign a
state in S by applying p to the assigned pointed
base hedge representation and the state of its
parent node. If and only if a final state in Sg,
is assigned to a node, this node is located by the
given pointed hedge representation. Obviously,
this algorithm takes time linear to the number
of nodes.

7 Construction of Match-
identifying Hedge Automata

In this section, to facilitate schema transforma-
tion, we construct a match-identifying automa-
ton from a pointed hedge representation.

Suppose that query operations (e.g., delete)
are controlled by pointed hedge representations.
Given an input schema and such a query op-
eration, we would like to construct an output
schema. For this purpose, we have to identify
where in the input schema the given pointed
hedge representation is satisfied.

The match-identifying hedge automaton con-
structed from the pointed hedge representation
accepts any hedge. But the match-identifying
hedge automaton assigns a marked state to each
node in a hedge, if and only if the node satisfies
the pointed hedge representation. From the in-
put schema and the match-identifying hedge au-
tomaton, we can construct an intersection hedge
automaton. This hedge automaton accepts the
same language as the input schema does, but
further identifies matches by marked states. By

modifying this automaton as appropriate to the
query operation, we can generate an out schema.
In the case of extraction, we only have to use
marked states as final state sequences.

Careful readers might wonder whether con-
struction of such match-identifying hedge au-
tomata is possible. Hedge automata are bottom-
up, but pointed hedge representations capture
conditions on non-subordinates. Deterministic
hedge automata cannot predict what they will
encounter later. To overcome this problem, we
use non-deterministic unambiguous hedge au-
tomata.

The key idea is to make a non-deterministic
automaton N’ which simulates N in reverse (Fig
4). That is, (1) if N has a transition labelled ¢
from a state s; to another state so, then N’ has
a transition labelled § from so to s; via §, where
J is a pointed base hedge representation, (2) the
start state of N is a final state of N', and (3)
the final states of N are start states of N'. For-
mally, N’ is defined as <S, i/, Sgn, {s0}>, where
p'(8,s2) o s1 if and only if (9, s1) = s9, Sqn is
the set of start states, and {s¢} is the set of final
states.

Suppose that N’ has successful computations
(sequences of states) for a string. If we reverse
these computations, we obtain computations of
N for the mirror image of this string. Since NV is
a deterministic automaton, it has only one com-
putation per string. Therefore, N’ is unambigu-
ous: it has only one successful computation per
string. At each symbol in a string, N’ may have
multiple choices. But only one of them leads to
a final state.

We construct a match-identifying automaton
<Q',k,3,F">. First, the set of states Q' is de-
fined below:

Q' =(@xSxT)U(Qx {s1}x{aL})

Since we intend to use the classification func-
tion @ in the definition of 3, a state in Q' com-
prises a symbol in ¥. Use of S and @ in Q' allow
simulation of N and M;1, M;,, respectively. s
and a | are additional values for leaf nodes.

A set Q! . of marked states is defined below:

Execution Simulation

of N in reverse

S0 S0
0([un], a1, [ur2 13— 1 f

S1 S1
0([ua1], az, [ug2 |y H f

S9 52

52;1 éz'fl
O([uirl, ai, [ui])— 1 f

S; 54

Figure 4: Simulation of N in reverse

Q' ok = @ X Sgp x X,
Use of Sg, implies that N’ begins with one of

its start states.
Mapping from ¥ to Q' is defined below:

k(z) =<u(x),s1,a1> .

Next, we define a function 8 from ¥ x Q™ to
the power set of . Given a symbol and a se-
quence of states in Q’, this function returns a set
of states in @'. The first ingredient (elements in
() simulates . The second ingredient (elements
(SU{s.})) simulates N’. The third ingredient
(elements in (X U {a }) is the symbol given as
input.

Bla, <qu,s1,a1><qg, 52, 02> ... <q;, 5i,a;>) =
{<a(a, q1492 . . . qz)7 s, a> |
either s € ' (0(q1 - - - ¢j-1,5,qj+1--- Gi), 55)
or aj = a forevery j (1 <j <4)}

Next, we show that 3 satisfies the regular-
ity condition. The inverse image of «, namely
g qi|ala,q1g2-..qi) = g} (a € ¥,q € Q},
is abbreviated as a,'(g). We use the same ab-
breviation for (.

Let us construct the inverse image of 5. We
can easily show that 8;!(<gq,s,b> (a,b €
Y,a # bqg € Q,s € S) and B, (<q,5.,a, >
) (g € Q) are regular.

Bl (<q,5,b>) =
B, (<q,s1,a,>) =

= =

Next, we consider 3,1(<q,s,a> (¢ € Q,s €
S,a € X). Our previous definition of 5 imposes
conditions on each of the child nodes. Rather, by
eliminating those child nodes which do not sat-
isfy conditions, we have the following equation.

8.1(<q,5,0>) = h(a,*(q) -
U1§i,j§n h(EI)Xijh(Fj2)

Here Xj; is a set defined below:

Xij ={<q,s',a">| s ¢ W' (0(fir,d’, fj2),8"),q € Q
for every fi1(€ Fy1) and fjo(€ Fjo)}

h is a natural extension of a substitution de-
fined below:

h(g) = ({g} x S x E) U{<g,s1,a1>}

If a state sequence < qp,s;,01 >
< @2, S2, a9 > < @i, Si,a; > is contained by
h(Fi1)X;jh(Fj2), then s is not contained by
' (0(qr - qj—1,05,qj41---Gi),55)-

Since regular sets are closed under substitu-
tions, concatenation, and boolean operations,
the inverse image of (3 is a regular set.

Finally, we construct a final state sequence set
F'. The first ingredient simulates F. The sec-
ond ingredient (elements in (SU{s})) and third
ingredient (elements in (¥ U {a,}) are defined
so that the application of u to the result of the
classification function 6 and the final state sg
of N’ yields the second ingredient (elements in

(S U {SL}).
F' = {<q,s1,a1><qy, 52,02> ... <qi, 5i, 0> |
sj = p0(qL- - gj-1,a5,¢j+1- - i), 50)
or aj = a forevery j (1 <j<4)}
It remains to show that F’ is regular. As in
the construction of the inverse image of 3, we
can rewrite F' as below:

hQ*Y) — |J hEFL)Yih(E))

1<4,5<n

F' =

Here Y;; is a set defined below:

Y;_'] :{<Q7 S,7a’l>| u(g(filua,7fj2)750) 7& S,,q c Q
for every fii(€ Fj1) and fjo(€ Fjo)}

Again, since regular sets are closed under sub-
stitutions, concatenation, and boolean opera-
tions, F' is a regular set.

8 Conclusions and Future

Works

Pointed hedge representations are natural exten-
sions of path expressions such that conditions
on siblings, siblings of ancestors, and even their
descendants can be represented. We have pre-
sented an algorithm for locating nodes by ex-
tended path expressions. To generate output
schemas from input schemas and query opera-
tions, we have constructed match-identifying au-
tomata from extended path expressions.

There are some open issues. First, is it pos-
sible to generalize useful techniques (e.g., opti-
mization) developed for path expressions to ex-
tended path expressions? Second, pointed hedge
representations are probably too powerful to im-
plement. In fact, the construction of match-
identifying automata is very complicated. It
will become significantly easier if we use usual
path expressions only. Some restrictions on
pointed hedge representations might make the
construction easier while preserving expressive-
ness enough for users. Third, we would like to
introduce variables to pointed hedge representa-
tions so that query operations can use the values
assigned to such variables. For this purpose, we
have to study unambiguity of hedge regular ex-
pressions and pointed hedge representations. An
ambiguous expression may have more than one
ways to match a given hedge, while an unam-
biguous expression has at most one such way.
Variables can be safely introduced to unambigu-
ous expressions.

9 Acknowledgements

I appreciate Kilho Shin who pointed me to hedge
regular languages. Dongwon Lee and Murali
Mani read an earlier draft and have provided
many useful comments.

References

[1]

S. Abiteboul, P. Buneman, and D. Su-
ciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan
Kaufmann, 1999.

S. Abiteboul and V. Vianu. Regular path
queries with constraints. In PODS 97, 1997.

T. Bray, J. Paoli, and C. M. Sperberg-
McQueen. Extensible Markup Lan-
guage (XML) 1.0. W3C Recommenda-
tion. http://www.w3.org/TR/REC-xml,
Feburary 1998.

A. Briiggemann-Klein and D. Wood. Cater-
pillars: A context specification technique.
Markup Languages: Theory and Practice,
2(1):81-106, Winter 2000.

P. Buneman, W. Fan, and S. Weinsten.
Path constraints on semistructured and
structured data. In PODS 98, 1998.

J. Clark and S. DeRose. XML Path Lan-
guage (XPath) version 1.0 W3C Recom-
mendation. http://www.w3.org/TR/xpath,
November 1999.

S. Cluet, C. Delobel, J. Siméon, and
K. Smaga. Your mediators need data con-
version! In SIGMOD 98, 1998.

H. Comon, M. Dauchet, R. Gilleron,
F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. “Tree Automata
Techniques and Applications”, 1997.
http://www.grappa.univ-lille3.fr/tata.

M. Fernandez, J. Simeon, and P. W. (ed-
itors). XML query languages: Experiences
and exemplars. http://www-db.research.bell-
labs.com /user/simeon /xquery.html.

M. Fernandez and D. Suciu. Optimizing reg-
ular path expressions using graph schemas.
In ICDE 98, 1998.

F. Gécseg and M. Steinby. Tree Automata.
Akadémiai Kiadd, Budapest, 1984.

[12]

[13]

[20]

[21]

22]

H. Hosoya and B. C. Pierce. Regular expres-
sion pattern matching for XML. In POPL
01, 2001.

D. Lee, M. Mani, and M. Murata. Rea-
soning about XML schema languages
using formal language theory, November
2000. Technical Report, IBM Almaden Re-
search Center, RJ#10197, Log#95071,
http://www.cobase.cs.ucla.edu/tech-
docs/dongwon/ibm-tr-2000.pdf.

A. Mendelzon and P. Wood. Finding regu-
lar simple paths in graph databases. STAM
Journal on Computing, 24(6), 1995.

T. Milo, D. Suciu, and V. Vianu. Type-
checking for XML transformers. In PODS
00, 2000.

M. Murata. Transformation of documents
and schemas by patterns and contextual
conditions. In PODP 96, volume 1293 of
LNCS. Springer-Verlag Inc., 1997.

F. Neven. Extension of attribute grammars
for structured document queries. In DBPL
99, 1999.

F. Neven and T. Schwentick. Expressive and
ecient pattern languages for tree-structured
data. In PODS 00, 2000.

M. Nivat and A. Podelski. Another varia-
tion on the common subexpression problem.
Discrete Mathematics, 114:379-401, 1993.

C. Pair and A. Quere. Définition et etude
des bilangages réguliers. Information and
Control, 13(6):565-593, Dec. 1968.

Y. Papakonstantinou and V. Vianu. DTD
inference for views of XML data. In PODS
00, 2000.

A. Podelski. A monoid approach to tree au-
tomata. In M. Nivat and A. Podelski, edi-
tors, Tree Automata and Languages, pages
41-56. North-Holland, 1992.

