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Abstract

We consider the problem of spatial data mining where we �nd spatial association rules

that contain spatial predicates. Various kinds of spatial predicates can be de�ned in the

spatial association rules such as \topological relationship," \distance," \orientation,"

and so forth. Among them, \distance" and \orientation" are quantitative predicates.

In order to use such quantitative predicates in a rule, we have to specify values for

them. For example, we set 10 miles distance as a short driving distance. Then, we

can �nd rules that are derived from or that lead to the distance. However, implications

of such speci�c values are di�er depending on application domains. Therefore, in a

data mining process, we need a fast algorithm for �nding objective values for such

quantitative predicates. In this paper, we present a data mining system, which uses

eÆcient algorithms in computational geometry, for �nding the optimized distance and

/ or orientation according to a speci�ed criterion.

1 Introduction

Recent progress in computing facilities makes it possible to integrate geographic information

system (GIS) and huge databases that contain spatial information such as addresses. EÆcient
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data management and retrieval in such integrated GIS have been investigated so far [9].

Among them, there are several researches that focused on spatial data mining, i.e., mining

knowledge from huge spatial databases [16, 12, 4, 11, 10, 20, 3]. With the growth of mobile

computing environments, it will be expected that we have huge spatial databases more easily.

Therefore, spatial data mining will become much more important.

In data mining literature, association rules [1] are one of the most fundamental knowledge

that can be found in (transaction-based) relational databases. Koperski and Han extended

the association rules to spatial databases and de�ned spatial association rules [12] that contain

spatial predicates. Various kinds of spatial predicates can be de�ned in the spatial association

rules such as \topological relationship," \distance," \orientation," and so forth.

Among those spatial predicates, \distance" and \orientation" are quantitative predicates.

In order to use such quantitative predicates in a rule, we have to specify values for them. For

example, we set 10 miles distance as short driving distance. Then, we can �nd rules that

are derived from or that lead to the distance. However, implications of such speci�c values

are di�er depending on application domains. Therefore, in a data mining process, we need a

fast algorithm for �nding objective values for such quantitative predicates. In this paper, we

present a data mining system, which uses eÆcient algorithms in computational geometry, for

�nding the optimal distance and / or orientation according to a speci�ed criterion.

Motivating Example

One of the most fundamental spatial searches in a spatial database is a selection facilities based

on distance. Assume that we have a spatial database that has tables containing information

about customers and stores with the following schemata:

customers=(id,name,address,income,occupation)

stores=(id,name,address,revenue)

Following query is one of such distance queries.

\Find the name and address of customers who live within 10 miles of a store."
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Current advanced spatial databases can answer such query eÆciently by using spatial indexes.

Conventional spatial data mining systems can apply the technique and �nds several spatial

association rules concerning the distance. For example, we can �nd following rules and insight

concerning the distance:

� distance(customers.address, 9stores.address) < 10

) customers.occupation = 'student'

(Many customers living within 10 miles of a store are students.)

� customers.income > $10M

) distance(customers.address, 9stores.address) < 10

(Most of customers whose income is more than $10M are living within 10 miles

of a store.)

In this example, we set 10 miles distance before the mining process. The distance may

imply a short driving distance in an application domain. After de�ning the speci�c distance,

we can �nd rules that are derived from or that lead to the distance.

Main Results

In this paper, we present a data mining system for �nding the optimal distance and / or

orientation according to a speci�ed criterion. We call association rules that derived from the

optimal distance optimized distance rules. In the above example, our mining system �nds the

optimal distance that maximizes the probability of student, if the speci�ed criterion is the

maximization of con�dence to be student with a minimum support value. Similarly, it can

�nd the optimal distance that maximizes the probability of customers whose income is more

than $10M, if the speci�ed criterion is the maximization of the probability of such wealthy

customers. And the system �nally outputs optimized distance rules by using the optimal

distances as follows:

� distance(customers.address, 9stores.address) < 2

) customers.occupation = 'student'
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(Many customers living within 2 miles of a store are student. And, the 2 miles dis-

tance maximizes the con�dence, i.e., the probability of student customers in customers

who live within the distance, subject to a given minimum support, i.e., the probability

of customers who live within the distance in all customers in the database.)

� customers.income > $10M

) distance(customers.address, 9stores.address) < 12

(Most of customers whose income is more than $10M are living within 12 miles

of a store. And, the 12 miles distance maximizes the con�dence, i.e., the probability

of customers whose income is more than $10M in customers who live within the

distance, subject to a given minimum support.)

Notice that criteria, \maximization of the probabilities of speci�c kinds of customers,"

used in the example are subjective features. If the user do not have a speci�c intention for

such criteria, the system can extract optimal distance rules by using general criteria such as

\gain of mutual information," \con�dence" (for categorical non-spatial attribute) and \mean

squared error" (for numerical non-spatial attribute).

As for the \orientation" predicate, conventional spatial data mining systems have to de�ne

a speci�c range of angles before a mining process. For example, we de�ne \east of" predicate

as the angle range from 45 degrees to 135 degrees. Then, a mining system tries to �nd

association rules concerning the angle range. We can similarly de�ne optimized orientation

rules as well for \orientation" predicates. For the optimized orientation rules, we compute

the optimal angle ranges according to a criterion.

Figure 1 shows an example of the optimal distance rule and orientation rules on a map.
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Figure 1: Optimized Distance Rule (left) and Optimized Orientation Rule (right)

2 Preliminaries

Spatial Association Rules

In the de�nition of Koperski and Han [12], spatial association rules have a form \X ) Y (c)"

where X and Y are sets of spatial and non-spatial predicates and c is con�dence of the rule.

It means that when X occurred, Y also occurred with the probability of c. In their de�nition,

a spatial association rule contains at least one spatial predicate in the form.

A spatial predicate is one of the following relations between a spatial object and another

spatial object (or other spatial objects):

� topological relationship=foverlap, disjoint, contain, etc.g

� distance=fclose to, far from, etc.g

� orientation=fnorth of, west of, south of, east of, etc.g

Each spatial object can be evaluated whether the object satisfy a predicate of these or not.

Among those predicates, distance and orientation are substantially quantitative predi-

cates. In order to evaluate whether an object satis�es such quantitative predicates or not,

we have to prede�ne the speci�c quantity for each predicate. The \close to" predicate, for
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example, we may de�ne the predicate as Euclidean distance between two objects is less than

5 miles. However, adequate de�nitions for such quantitative predicates are di�erent for each

application domain. Moreover, important hidden knowledge might be in distance or orien-

tation between spatial objects. Therefore, it is highly demanding to compute objective and

signi�cant values for such quantitative predicates.

Example of Spatial Objects

In the rest of the paper, we assume a spatial database that has tables with following schemata:

customers=(id,name,address,income(N),occupation(C))

occupation=fstudent,programmer,engineerg

police oÆces=(id,name,address)

post oÆces=(id,name,address)

schools=(id,name,address,category(C))

category=felementary,junior high,highg

stations=(id,name,address)

stores=(id,name,address,revenue(N))

In the schemata, id, name, and address are common features of spatial objects. The un-

derlined attributes are additional non-spatial features and (N) indicates a numerical feature

while (C) indicates a categorical feature. The categorical attribute occupation of customers

table can take 'student,' 'programmer,' or 'engineer' as its value. The categorical attribute

category of schools table can take 'elementary,' 'junior,' or 'high.'

Starting Points and Query Points

We de�ne sets of starting points and sets of query points to compute distance or orientation.

We consider distance and orientation between a point in starting points and a point in query

points.
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We can choose several kinds of spatial objects from databases and de�ne sets of each kind

as sets of starting points. For example, we may de�ne seven sets of staring points by chosing

\police oÆces," \post oÆces," \elementary schools," \junior high schools," \high schools,"

\stations," and \stores."

Next, we de�ne query points that are used as population sets of all optimized distance

/ orientation rules. Each set of query points must have non-spatial features (attributes) to

compute a value of the objective function such as \information gain," \mean squared error,"

and so forth. For example, we may de�ne query points as \customers" and \stores."

Distance for each query point is Euclidean distance between the query point and the

nearest starting point from the query point. Similarly, orientation for each query point is an

angle from the nearest starting point to the query point. The distance can be de�ned for each

set of starting points.

Ordered Distance / Orientation Tables

After de�ning sets of starting points and sets of query points, we can compute distance and

orientation. In order to simplify the explanation, we focus on �nding optimized distance rules.

Remind that we can compute optimized orientation rules as well by using the same procedure.

First of all, the mining system creates intermediate relational tables that contain necessary

information to compute the optimal distance. The intermediate tables consist of (summarized

or bucketed) records that is ordered by distance value. If the number of query points, say n, in

a set is small enough to sort and store all information that is necessary to evaluate a speci�ed

criterion, we can compute accurate optimal distance without a bucketing with distance value.

However, the number of query points tends to be large in a huge spatial database and the

sorting operation, i.e., O(n log n), and the space for intermediate tables might be costly.

Moreover, we have to create similar ordered tables for all combinations of query point sets

and starting point sets. Therefore, the mining system creates ordered buckets that have the

same size of user speci�ed distance interval so that the number of buckets (records in an

intermediate table), say B, becomes B � n.
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Table 1: Ordered Distance Table (\Customers" and \Police OÆces")

bkt index distance #records
P

income #programmer #engineer #student

(1) 0: : :1 28 921.53 7 10 11

(2) 1: : :2 31 1021.41 10 11 10

(3) 2: : :3 21 1106.03 7 9 5
...

...
...

...
...

...
...

(B) 20: : : 8 29.50 3 4 1

Table 1 shows an example of such intermediate relational tables. Each bucket (record)

has one mile interval of distance and contains summerized information of query points that

belong to the corresponding disance range.

Optimized Distance / Orientation Rules

Once we create the ordered distance tables, the problem to compute an optimized distance

rule is the same as �nding a cutting point (or range for orientation rules) in the tables so that

the cutting point optimizes one of following criteria:

� For Non-Spatial Categorical Attribute:

{ Gain of mutual information (entropy) or GINI index or Chi square value based on

value distribution of the attribute

{ Maximization of con�dence, of each attribute value, subject to minimum support

{ Maximization of support subject to minimum con�dence of each attribute value

� For Non-Spatial Numerical Attribute:

{ Minimization of mean squared error (deviation) of attribute value

Detailed de�nitions of those criteria are de�ned in [7, 15, 14, 13].

Since the number of records of each ordered table is B (B � n), we can �nd such optimal

cutting point inO(B) time. However, for orientation rules, we have to compute optimal range.
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Figure 2: Two-Dimensional Rules of Distance and Orientation

In such cases, there is an O(B) time algorithm to �nd optimal range for the maximization of

con�dence or support [7, 6]. As for the other criteria, there is an eÆcient algorithm that is

expected to run in O(B logB) time [15, 14].

We can also consider distance and orientation simultaneously. If there are two numeric at-

tribute for predicate, in this case \distance" and \orientation," we can compute the optimized

two-dimensional rule eÆciently [5, 15, 14]. We can use rectangular, x-monotone, and recti-

linear regions as the optimized two-dimensional rules. Figure 2 are examples of a rectangular

(left) rule and an x-monotone (middle,right) rules on maps.

If we compute the ordered distance tables, we can use such eÆcient algorithms to compute

the optimized distance and / or orientation rules. Therefore, in this paper, we focus on eÆcient

constructions of the ordered distance tables in the next section.

3 Indexing Structures and Algorithms

Finding the Nearest Starting Point

For each query point, we have to �nd the nearest starting point and compute distance and

orientation. One of an eÆcient data structure for the purpose is, what is called, Voronoi

diagram [2]. We construct Voronoi diagrams for each set of starting points.

Let a set of n query points be Q = fq1; :::; qng, and let a set of m starting points be

S = fs1; :::; smg. And, let distance(q; s) be the Euclidean distance between two points q and
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s in the two-dimensional plane. The Voronoi diagram of S is the subdivision of the plane

into m regions, say \Voronoi regions," one for each point in S. Each Voronoi region has the

property that a point q lies in the region corresponding to a starting point si if and only if

distance(q; si) < distance(q; sj) for each sj 2 S with j 6= i. We denote the Voronoi diagram

of S by V or(S) and denote a Voronoi region that corresponds to a starting point si by Reg(si)

in this paper.

Algorithm 3.1 �nds the nearest starting point snearest 2 S for a query point q 2 Q by

using the Voronoi diagram V or(S). Though the worst time complexity of Algorithm 3.1 is

O(m), the expected running time becomes constant if we can start the algorithm from a point

that lies close to the nearest point. A method presented in [17, 18] uses a quaternary tree

bucketing and �nds the nearest point eÆciently.

Algorithm 3.1 Point Location of Voronoi Diagram 1

Input: Point (q), Voronoi diagram (V or(S)) Output: Point (snearest)

(1) Choose a starting point si 2 S arbitrary.

(2) For each sn whose Reg(sn) is adjacent to Reg(si):

(a) If distance(sn; q) < distance(si; q), set si be sn and go to (2).

(3) Answer si as snearest.

Constructing Voronoi Diagram

We need Voronoi diagrams for each set of starting points. We use an algorithm, called

\incremental method" [19, 8], to construct Voronoi diagrams. Assume there is a Voronoi

diagram V ori(Si) of a set Si with i points. An incremental method adds new point si+1

into the V ori(Si) and constructs V ori+1(Si+1) like in Figure 3. Algorithm 3.2 is one of such

methods.

Algorithm 3.2 Incremental Construction of Voronoi Diagram 1

1In order to simplify the explanation, we omitted some exceptional conditions, for example, a condition

when q lies on the border of Voronoi regions.
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Figure 3: Incremental Update of Voronoi Diagram

Input: Point (si+1), Voronoi diagram (V ori(Si))Output: Voronoi diagram (V ori+1(Si+1))

(1) Initialize set of segments B to be an empty set.

(2) Find the nearest point s 2 Si by using Algorithm 3.1 with parameters si+1 and V ori(Si).

(3) Divide Reg(s) with the perpendicular bisector of s and q.

(4) Add the border segment b into B.

(5) Mark Reg(s) as processed.

(6) Find snext whose Reg(snext) touches a segment b 2 B.

(7) If snext exists, then s = snext and go to (3).

(8) Construct Reg(si+1) that is surrounded by segments in B.

(9) Update V ori(Si) and answer V ori+1(Si+1).

Note that, in the Algorithm 3.2, the expected running time for updating V ori(Si) after

Algorithm 3.1 in the step (2) is constant in ordinary conditions. Therefore, if we can compute

Algorithm 3.1 in constant time, the expected running time to construct a Voronoi diagram by

using the incremental method becomes O(m) where m is the number of input points (starting

points in this paper).

Algorithms for constructing Voronoi diagrams have been investigated intensively. The

problem is proved to be 
(m logm) [2]. And, there is an algorithm whose worst time com-

plexity is O(m logm), which is the optimal. Though the worst time complexity of the above

incremental method is O(m2), we can improve the expected running time to be O(m) by
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Figure 4: Quaternary Tree Structure

using a quaternary tree bucketing [17, 18]. Therefore, we use Algorithm 3.1 and 3.2 for the

data mining system.

Quaternary Bucketing

In the Algorithm 3.1 and 3.2, we used a quaternary tree structure like in Figure 4. First of

all, we compute a large rectangle that covers all starting points and query points. Then, we

divide the rectangle into four equal-sized subrectangle, recursively. We set the depth of the

quaternary tree so that the average number of starting points of a kind in each leaf node is

close to one.

Since the width and depth of each leaf node of the tree is same, we can �nd a leaf node for

each point in a constant time. Therefore, bucketing of m starting points and n query points

into the leaves can be done in O(m) and O(n) time respectively.

After the bucketing, we assign a representative starting point to each leaf node as a label

of the node. A representative starting point of a leaf node is chosen arbitrary from starting

points that belongs the node. If there is no starting point in a leaf node, we label the node

null. In the eÆcient method presented in [17, 18], each intermediate node is also labeled with

one of the four labels of its children like in Figure 5. Next, all starting points are sorted by

breadth-�rst order of the tree. Then, the method applies Algorithm 3.2 by adding starting

points with the order. The expected running time of the method is O(m). We omit the

detailed ordering of the starting points and complexity analysis in this paper.

We use the same quaternary tree to �nd the nearest starting point for each query point.
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Figure 5: Labeling with Representative Starting Point

For each query point, we search for the nearest starting point from the labeled starting point

of the leaf node that the query point lies in. If the label is null, we use the label of its ancestor

node. If the nearest point that is found by Algorithm 3.1 is di�erent from the corresponding

labeled point, we update the label to the nearest point adaptively. This operation improves

the expected running time of Algorithm 3.1 signi�cantly. And, the expected running time for

�nding the nearest starting point for a query point becomes constant. Therefore, computing

an ordered distance / orientation table takes O(n) time by using the quaternary tree and

Voronoi diagram.

Note that we need only one quaternary tree to construct all voronoi diagrams and ordered

distance / orientation tables.
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4 Experiments

4.1 Scalability Examination by Using Synthetic Data

We implemented the proposed mining system and performed several experiments to evaluate

the performance. All experiments were done on an IBM IntelliStation which consists of a

Pentium II processor running at 450 MHz with 512 KB of L2 cache and 128 MB of real

memory.

We generated sets of synthetic starting points and query points with several number of

records. All records have an attribute for identi�cation and two coordinate values in the

two-dimensional plane. Query points have additional non-spatial features (attributes) which

are used for �nding optimized distance rules.

We divided the execution time of the mining for optimized distance rules into two parts:

preprocess and data mining process. The preprocess is time taken for constructing Voronoi

diagrams by using a quaternary tree. The data mining process is time taken for computing

ordered distance tables and optimized distance rules after the preprocess. The total process

is the sum of the preprocess and the data mining process, i.e., total time taken to compute

optimizad distance rules.

We performed following experiments with various number of starting points m and query

points n. Each graph of Figure 6, shows relationships between the execution time for a �xed

number of query points and various number of starting points.

There are three lines in each graph, which are labeled as preprocess, mining and total.

They correspond to execution time of preprocess, data mining process and total process

respectively. These notations are also used in other graphs in this section.

There is a gap in the execution time of the preprocesses between m = 2000 and m = 3000.

This gap comes from the change of the depth of the quaternary tree. The mining system

adjusts the depth of the quaternary tree so that the average number of starting points in each

leaf is close to one. Therefore, the mining system changes the depth according to m. And,

when m = 2048, the mining system adaptively changes the depth of the tree.
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Figure 6: Execution Time Dependence on Number of Starting Point
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Figure 8: Real Data for Starting Points

Notice that all the execution time of the data mining process in Figure 6 are constant.

This means that the quaternary tree is e�ective for data mining process.

Each graph in Figure 7, on the other hand, shows relationships between the execution time

for a �xed number of starting points and various number of query points. Because n is �xed

in every experiments, the execution time of the preprocesses are constant. The execution time

of the data mining process have linear dependence on number of query points.

4.2 Workability Examination for Real Data

In general, real spatial objects in spatial databases are not uniformly distributed in the two-

dimensional plane. We used real spatial objects for starting points which are obtained from

NTT townpage database in order to examine its workability in practice.

We used several sets of starting points in the real data whose m varies in this experiments.

As for query points, we used synthetic data. There are 455 sets of starting points in the real

data. Some sets contain only small number of starting points while some sets contain several

thousands. Since constant factor is dominant in the performance of the mining system when

m is small, we ignored sets whose m is less than 1000 in this experiments to examine the

scalability for real data.

The left graph of Figure 8 shows relationships between the total execution time for �xed
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number of query points n = 10000 and various number of total starting points. In this

experiment, m is the sum of all sets of starting points. And the total execution time is also

the sum of execution time for all non-ignored sets.

The right graph of Figure 8 shows relationships between the total execution time for �xed

number of total starting points m = 50000, that is, the sum of all sets of starting points, and

various number of query points.

These experiments show that our mining system eÆciently work for real data.

5 Concluding Remarks

We present a data mining system, which uses eÆcient algorithms in computational geometry,

for �nding the optimized distance and / or orientation rules according to speci�ed criteria.

For quantitative predicates like distance and orientation, �nding such optimized rules is highly

demanding. And the experiment results show that our mining system is eÆcient.

In this paper, we considered distance and orientation between a point and another point.

However, in spatial databases, we have to consider other types if spatial objects like lines

(connected segments) and polygons. If we have to consider distance and orientation between

such spatial objects, problem becomes much complicated. We are now considering such

complicated problems for our future works.
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