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1 Introduction

The purpose of this report is to extend Poisson distribution for the study of real Internet
traÆc by use of a generating function technique.

The well-know Poisson distribution of the traÆc model

P (n; t) =
(�t)n

n!
exp(��t) (1)

is derived from the three assumptions, (1) "memoryless", (2) "single request" and (3)
"stationary" properties of the traÆc [1, 2]. In this report, I will �rstly remove the
assumption of single request (separated occurrence) and next remove the stationary
assumption in the traÆc. Here we will see that the assumption of memoryless and
stationary properties for the traÆc leads to a special relation that the ratio of the variance
h(n� hni)2i to the average hni of request numbers remains constant with respect to the
change of time intervals for counting requests. Then I will analyze the real access log of
HTTP server with this extended Poisson distribution. We will see that the ratio of the
variances to the averages increases with the increase of the counting time intervals in the
real access log of HTTP servers. This strongly indicates that the memoryless assumption
does not hold for real Internet traÆc.

In the appendix, I will also give a very simple derivation of Poisson distribution.

2 Stationary Memoryless Stream

In this section, we derive a general form of traÆc distribution in stationary state from
memoryless assumption. Through this report, P (n; t) represents the probability that n
requests arrive during the time interval t. From this de�nition, P (n; t) � 0 and

1X
n=0

P (n; t) = 1 (2)

for any t > 0.

2.1 General Solution based on Generating Function

The probability of n requests arriving in the merged interval t1+ t2 is generally given by

P (n; t1 + t2) =
nX

n0=0

P (n0; t1)P (n� n0; t2jn
0; t1): (3)

Here P (n00; t2jn
0; t1) is the conditional probability that n00 requests arrive during the

interval t2 after n
0 requests arrive during the interval t1. The memoryless assumption is

to assume that
P (n00; t2jn

0; t1) = P (n00; t2): (4)
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Thus, the memoryless assumption is alternatively written by

P (n; t1 + t2) =
nX

n0=0

P (n0; t1)P (n� n0; t2) (5)

for any integer n and any t1; t2 > 0.
Let us derive a general solution of memoryless traÆc by use of a generation function

W (z; t) =
1X
n=0

znP (n; t): (6)

Here we assume that P (n; t) goes to zero suÆciently rapidly so that W (z; t) is analytic
function with respect to z in the range jzj � 1. Then we obtain

W (1; t) = 1 (7)

from Eq.(2) and
W (z; t1 + t2) =W (z; t1)W (z; t2); (8)

from Eq.(5). The latter equation can be written alternatively as

logW (z; t1 + t2) = logW (z; t1) + logW (z; t2): (9)

This means that logW (z; t) is a linear function of the interval t. WhenW (z; t) is assumed
to be continuous with respect to the interval t, we can write it as

logW (z; t) = u(z)t (10)

with an appropriate function u(z). Thus, �nally, we obtain a general solution

W (z; t) = exp(u(z)t) (11)

for memoryless and stationary traÆc in term of a generating function.

2.2 Expansion of Generating Function

The explicit form of P (n; t) can be obtained by expanding u(z) in series of z.
Let u(z) be expanded in

u(z) = ��+ �
1X
n=1

cnz
n: (12)

From Eq.(7), we have

1 =
1X
n=1

cn: (13)

Here each term �cn can be interpreted as the rate of n requests arriving simultaneously
since

P (n; t)=t! �cn when t! 0: (14)
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Then we have
P (0; t) = exp(��t): (15)

and

P (n; t) =
nX
k=1

c
(n)
k

(�t)k

k!
exp(��t) for n > 0: (16)

Here the coeÆcient c
(n)
k can be derived from the recurrence as follows.

c
(n)
1 = cn (17)

and

c
(n)
k+1 =

n�kX
m=1

cmc
(n�m)
k for k > 0: (18)

This can be derived from the di�erential equation

dP (n; t)

dt
+ �P (n; t) = �

nX
m=1

cmP (n�m; t); (19)

which is obtained by expanding

@W (z; t)

@t
= u(z)W (z; t); (20)

2.3 Expectations of TraÆc

The expected number of requests during the time interval t is given by

hni = �t
1X
n=1

ncn (21)

and its variance is given by

h(n� hni)2i = �t
1X
n=1

n2cn: (22)

The ratio of the variance to the average is independent from the time interval t;

h(n� hni)2i

hni
=

P
1

n=1 n
2cnP

1

n=1 ncn
�

1X
n=1

ncn: (23)

Eq(21) is derived from

1X
n=1

nzn�1P (n; t) =
@W (z; t)

@z
= t

du(z)

dz
W (z; t):

Eq(22) is derived from

1X
n=1

n2zn�1P (n; t) =
@

@z
z
@W (z; t)

@z
=

 
t
d2u(z)

dz2
+ t2(

du(z)

dz
)2 + t

du(z)

dz

!
W (z; t):
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2.4 Evaluation of Extended Poisson Distribution

I showed that each term of extended Poisson distribution can be expressed by the product
of exponential term and polynomial of the time interval t in the proceeding subsections.
But it is not economical to evaluate P (n; t) after evaluating the coeÆcients of polyno-
mials.

I recommend to use directly the following recurrence formula to evaluate P (n; t).

P (n+ 1; t) =
t

n + 1

nX
m=0

(m+ 1)cm+1P (n�m; t): (24)

This recurrence is derived by expanding

@W (z; t)

@z
= t

du(z)

dz
W (z; t)

with respect to z. The recurrence (24) is further simpli�ed when speci�c forms of u(z)
are selected.

2.5 Speci�c Examples

Let us think about the case of

u(z) = � log((1� p)=(1� pz)); (25)

which gives a generating function

W (z; t) =

 
1� p

1� pz

!�t
: (26)

The parameter p controls the decreasing speed of cn as

cn =
pn

n log(1� p)
: (27)

This generating function W (z; t) leads to the recurrence

P (n+ 1; t) =
p(n+ �t)

n + 1
P (n; t) (28)

I recommend to use this recurrence with the starting value

P (0; t) = (1� p)�t (29)

for evaluating of P (n; t) although their explicitly forms are given by

P (n; t) =
�(n + 1 + �t)pn

�(1 + �t)n!
(1� p)�t: (30)
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The parameters � and p can be determined by the average

hni =
�tp

1� p
(31)

and the variance

h(n� hni)2i =
�tp

(1� p)2
: (32)

Let us think about another simple case of

u(z) = �
�(1� z)

1� pz
= �� +

�z(1� p)

1� pz
; (33)

which gives a generating function

W (z; t) = exp(�
�t(1� z)

1� pz
): (34)

The parameter p controls the decreasing speed of cn as

cn = (1� p)pn�1 (35)

This generating function W (z; t) leads to the recurrence

P (n+ 1; t) =
1

n + 1

�
(2np+ �t(1� p))P (n; t)� (n� 1)p2P (n� 1; t)

�
: (36)

The P (n; t) can be easily evaluated by this recurrence and the starting values

P (0; t) = exp(��t) and P (�1; t) = 0: (37)

The explicit form of P (n; t) can be given in terms of the Laguerre polynomials by

P (n; t) = pnLn(�
�t(1� p)

p
) exp(��t): (38)

This is easily derived by noting the generating function of the Laguerre polynomials

exp(�
xz

1� z
) =

1X
n=0

Ln(x)z
n (39)

The parameters � and p can be determined by the average

hni =
�t

1� p
(40)

and the variance

h(n� hni)2i =
�t(1 + p)

(1� p)2
: (41)
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3 Nonstationary Memoryless Stream

3.1 General Solution based on Generating Function

Let P (n; t1; t2) represent the probability that n requests arrive during the interval be-
tween the times t1 and t2 where t1 � t2. We set the normalization

1X
n=0

P (n; t1; t2) = 1 (42)

and the memoryless assumption

P (n; t1; t2) =
nX

n0=0

P (n0; t1; t)P (n� n0; t; t2) (43)

for any t such that t1 � t � t2. Eq.(43) implies that the probabilities of the interval
[t1; t] and [t; t2] have no correlation.

We again use a generating function

W (z; t1; t2) =
1X
n=0

znP (n; t1; t2): (44)

Then we have
W (1; t1; t2) = 1 (45)

from Eq(42) and
W (z; t1; t2) = W (z; t1; t)W (z; t; t2) (46)

from Eq.(43). This can be rewritten as

logW (z; t1; t2) = logW (z; t1; t) + logW (z; t; t2): (47)

Let us assume W (z; t; t0) is di�erentiable with respect to t0 and there exist the limit

lim
�>0!0

logW (z; t; t+ �)

�
= u(z; t) (48)

where u(z; t) is an appropriate function of z and t. Then, from Eq(47), we have the
di�erential equation

@

@t
logW (z; t1; t) = u(z; t): (49)

By integrating to this di�erential equation and noting W (z; t; t) = 1 we obtain a general
solution of memoryless and nonstationary traÆc

W (z; t1; t2) = exp(
Z
t2

t1

u(z; t))dt (50)

in term of a generating function.
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3.2 Expansion of Generating Function

Let us expand u(z; t) in

u(z; t) = ��(t) +
1X
n=1

znun(t): (51)

Since u(1; t) = 0 from Eq(45), we have

�(t) =
1X
n=1

un(t): (52)

The function un(t) must be nonnegative because

un(t) = lim
�>0!0

P (n; t; t+ �)

�
for n > 0: (53)

By noting that
@W (z; t0; t)

@t
= u(z; t)W (z; t0; t); (54)

we can derive the di�erential equation with respect to the time t

dP (n; t0; t)

dt
+ �(t)P (n; t0; t) =

nX
m=1

um(t)P (n�m; t0; t): (55)

Therefore, un(t) can be interpreted as the rate of n request arriving.

3.3 Expectations of Memoryless and Nonstationary TraÆc

The expected number of requests in the interval between t1 and t2 is given by

hni =
1X
n=1

n
Z
t2

t1

un(t)dt (56)

and its variance is given by

h(n� hni)2i =
1X
n=1

n2
Z
t2

t1

un(t)dt: (57)

Therefore we have
hni � h(n� hni)2i (58)

and
h(n� hni)2i

hni
� hni: (59)
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3.4 Simpli�ed Memoryless and Nonstationary TraÆc

Now let us derive a simpli�ed type of memoryless and non-stationary traÆc.
Suppose that the relative ratios of request numbers remains unchanged;

un(t) = cn�(t) (60)

Then, we have

W (z; t1; t2) = exp(u(z)
Z
t2

t1

�(t)dt) (61)

where

u(z) = �1 +
1X
n=1

cnz
n: (62)

Since this generating function is identical to Eq(11) by a scale transformation of time

t!
Z
t

t0

�(s)ds; (63)

we can express memoryless and nonstationary traÆc from memoryless and stationary
traÆc by an appropriate time scale transformation as far as the assumption (60) ap-
proximately holds true. Also, the ratio of the variance to the average h(n � hni)2i=hni
remains unchanged with respect to the change of time interval for counting.

In the special case that the un(t) = 0 for n � 2, we have

W (z; t1; t2) = exp(�(1� z)
Z
t2

t1

�(t)dt): (64)

This leads to

P (n; t1; t2) =
1

n!

�Z
t2

t1

�(t)dt
�n

exp(�
Z
t2

t1

�(t)dt) (65)

4 Merged Stream

Here we will show a merged stream of memoryless traÆc is also memoryless traÆc.
Let P1(n

0; t; t0), P2(n � n0; t; t0) and P12(n; t; t
0) represent probability distributions of

jobs for the stream-1, the stream-2 and the merged stream. And let W�(z; t; t
0) be a

generating function for each P�(n; t; t
0) de�ned by

W�(z; t; t
0) =

1X
n=0

znP�(n; t; t
0) (66)

If the stream-1 and stream-2 has no interaction in merging, we have

P12(n; t; t
0) =

nX
n0=0

P1(n
0; t; t0)P2(n� n0; t; t0): (67)
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Then their generating functions satisfy

W12(z; t; t
0) =W1(z; t; t

0)W2(z; t; t
0): (68)

This leads to the linearity of logarithm of the generating functionsW�(z; t; t) with respect
to merging streams;

logW12(z; t; t
0) = logW1(z; t; t

0) + logW2(z; t; t
0): (69)

On the other hand, as shown in the previous subsection, the stationary and nonstationary
Poisson Stream can be derived from the linearity of the generating functions W�(z; t; t)
with respect to merging time intervals. Therefore, the merged traÆc of the extended
Poisson distribution is also extended Poisson distribution.

5 Analysis of Real Access Log of HTTP Servers

Figure 1 shows daily behavior of HTTP requests at some US customer on August 1,
2001. Each black circle stands for the average of request counts per 2 seconds over every
2 minutes. Figure 2 gives daily behavior of the ratio of the variance to the average. The
variances are also computed by statistics of request counts per 2 seconds over every 2
minutes. The average and variance largely vary with time in the day while the ratio
uctuates around constant value through the day.

From Figure 1, I selected the time range from 18:50:00 to 20:06:48 as almost stationary
region of statistics.

Figure 4 shows the distribution of request count per a second from the time 18:50:00 to
20:06:48 by �lled circles. The theoretical distributions, Poisson distribution and extended
Poisson distributions are shown by solid and dot lines. The extended-1 is based on the
model of Eq.(26) and the extended-2 is based on the model of Eq.(34). The Poisson
distrbution does not �t the observed counts while the both of the extended distribution
�t them well.

Figure 3 shows how the ratio of the variance to the average changes with respect
to the time intervals for counting for the data from the time 18:50:00 to 20:06:48. We
see that the ratio of the variances to the averages increases with the increase of the
counting time intervals in the real access log of HTTP servers. This means that we can
not �t the real distribution data of the request counts per di�erent time interval with the
same parameters p and � of the extended Poisson distribution. As the ratio in Figure
2 does not show any daily behavior, we cannot explain this observation by memoryless
nonstationary traÆc. This strongly indicates that the memoryless assumption does not
hold for real Internet traÆc.
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A The Elementary Derivation of Poisson Distribution

Here, we derive the well-known Poisson distribution in simple and intuitive manner,
Suppose that N jobs distribute randomly in a large time interval NT without any

correlation. Then the probability P (n; t) that each job falls in the interval t is given by
�t=N where � = 1=T . Then, we get

P (n; t) =
N !

n!(N � n)!

 
�t

N

!n  
1�

�t

N

!N�n
(70)

The � can be interpred as the rate of arriving jobs.
Let us apply Stirling's formula

logM ! = (M � 1=2) logM �M + (1=2) log(2�) +O(1=M) (71)

to P (n; t). Here O(1=M) represents the term that goes to zero in the order of 1=M when
M becomes larger. Then logP (n; t) is simpli�ed for large N as follows.

logP (n; t)
= logN !� logn!� log(N � n)!�N logN + n log(�t) + (N � n) log(N � �t)
= �(1=2) logN + (1=2) log(N � n)� n� (N � n)(log(N � n)� log(N � �t))

+n log(�t)� logn! +O(1=N)
= ��t + n log(�t)� logn! +O(1=N):

Thus we obtain well-known Poisson formula of simple stream

P (n; t) =
(�t)n

n!
exp(��t) (72)

when N goes to the in�nity. Eq.(72) satis�es the normalization

1X
n=0

P (n; t) = exp(��t)
1X
n=0

(�t)n

n!
= 1: (73)

The expected number of jobs in the time interval t is given by

hni =
1X
n=0

nP (n;T ) = �t (74)

and its variance is given by

h(n� hni)2i =
1X
n=0

(n2 � hni2)P (n; t) = �t (75)

Therefore we have
hni = h(n� hni)2i: (76)

10



References

[1] B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, Second
Edition, translated by Samuel Kotz, Birkhaeuser, ISBN 0-8176-3423-1, 1987.

[2] Donald Gross and Carl M. Harris, Fundamentals of Queueing Theory, Second Edi-
tion, John Wiley & Sons, ISBN 0-471-89067-7, 1985.

11



Figure 1: Daily behavior of average count, August 01, 2000
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Figure 2: Daily behavior of ratio, August 01, 2000
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Figure 3: Averages, variances of request counts with respect to time intervals

intervals (sec) averages variances ratios
1 33.768 91.496 2.710
2 67.536 258.336 3.825
4 135.071 695.413 5.148
8 270.142 1880.351 6.961
16 540.285 5078.120 9.399
32 1080.569 14621.009 13.531
64 2161.139 40453.536 18.719
128 4322.278 113315.478 26.217
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Figure 4: Distribution of counts per sec, 18:50:00-20:06:48
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