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1 Introduction

Real Internet traffic is far from the Poisson distribution and does not satisfy the memoryless
assumption as I showed in the accompanied paper “The Study of Internet Traffic -1, Extended
Poisson Distribution” [1]. The purpose of this report is to develop a mathematical model for
generating a correlated traffic. Here we model the traffic as a time sequence just like access
log. The time sequence is a mapping from the set of integers (or positive integers) into a set
of real numbers. We call a probabilistic algorithm for generating this time sequence a micro
model of traffic. We call each element of time sequence a time event .

The simplest micro model is given as follows.

Simple Micro Model:
The algorithm generates the time event ¢, from ¢, by t,4+1 = t,, + s, where s, is
the random variable which follows the probability density py,(sy).

This is a good starting point to study micro models of traffic but it is not sufficiently
correlated to reproduce real Internet traffic as I will show in another accompanied report [2].
The strongly correlated micro model can be given as follows.

Compound Micro Model:

The algorithm generates ¢,,; from ¢, by t,+1 = t, + s, where s, is the random
variable which follows to the probability density py(s,). Each t, probabilistically
yields finite length of time sequence {t, 0,%n1,%n2, ..., tnm} by sub micro model.
Here t,, o represents t,,. The traffic is given by a collection of these fragmented time
sequences.

Obviously, there are many algorithms to generate this fragmented time sequence. The
simplest one can be given as follows.

An Example of Sub Micro Models

The algorithm generates the time ¢, ;; from ¢, with the probability P, by
tnk+1 = tnk+5nk Where s, i is the random variable which follows to the probability
density pp, (Snk)-

By changing the sub model for generating fragmented sequences from one to another, we can
easily make many different type of compound micro models. A good micro model of the traffic
is simple and sufficiently flexible to reproduce a variety of real Internet traffic with accountable
parameters. Therefore, the analysis of the real traffic data is essential. However, in this report,
I focus on mathematical formulation for micro model and describes some examples of micro
models. I will give the analysis of the real traffic data based on micro model in another report
[2].

The observed traffic data are usually statistics of request counts. I will clarify the relation
of micro models and statistics of traffic, access counts in time interval. In actual simulation of



traffic, we need the starting point of time sequence and face to the problem of stationary state.
Firstly I will study the problem of stationary time sequence. Then I propose algorithms for
stationary micro model and dynamic micro model for daily/weekly and event-driven behavior
of traffic.

2 Simple Micro Model

2.1 Basic Formulation

Let us think about a time sequence {t,} without the start nor end which is generated succes-
sively from the random variable s,, by

tn+1 =1y + Sn. (1)

The index n runs over all integers from n = —oo to +o0o. Let p(s) is the probability density
that the random variable s, takes the value s. We assume the probabilistic causality

0 ifs>0
0 otherwise

p(s)

v

(2)

and the normalization

/ Y p(s)ds = 1. (3)
0

Since the time sequence has no start nor end, there exists some appropriate n for any given
time ¢ such that
bty <t <tpyl. (4)

We call t,, the latest time event before the reference time ¢. Let ¢(s;t) represent the probability
density that the latest time event before the reference time ¢ takes the value t — s. It satisfies

p(s;t) > 0 ifs>0
= 0 otherwise

(5)

and

/oo $(s:t)ds = 1. (6)
0

Once the probability density ¢(s;t) is given for some reference time ¢, we can compute ¢(s;t')
for any t' after the time ¢ as follows.

Let us denote w = t' — ¢ > 0. When s > wu, it means that no time event takes place after
the latest time event ¢, = t + u — s before the next reference ¢’ = t + u. Therefore we have

Hssttu) = gls—uit) [ pls)dsy [ [ pla)da M

S



for any s < u < 0. When s < u, the probability density ¢(s,t+ u) can be decomposed into the
sum of the probability densities that m time events happen after the time t, = t — s’ before
the time ¢'. We have

//.../¢(s';t)p(sl)p(sz)...p(sm) (/soop(sm+1)dsm+1 //:Op(ac)dx> dsydss...dsm, (8)

where sj =ty —tpj-1 and 51 > s and &' = s1 +s2+ ... + 55 — (u— 5).

The result can be expressed in a simple form by using the alternative notations

wlsit) = d(sit) [ [ playds, (9)

hi(s';s") = p(s'+ ") if s >0ands” >0, (10)
= 0 otherwise,
and
hm(s';s") = // hi(s';51)p(s2)...p(8m)ds2...dsp, (11)
s1+so+...+8m=s"
and

h(s';s") = Z h(s';s"). (12)

m=1
Then we have
P(s;t+u) =¢(s —uyt) for s >u (13)
and ~
P(s;t+u) = / dz (x;t)h(x;u — s) for s < u. (14)
0

By using the same notation, the probability that m time events take place during ¢ and
t 4+ u is given by

P04, +u) — /0°° ds /:o dz (s )p(x) (15)

and
P(m;t,t + u) :/0 ds/o dx/s dy P(x; t)hpy (z;u — 8)p(y). (16)

2.2 Stationary State
2.2.1 Solution of Stationary State

The stationary state of time sequences is defined as the state that ¢(s;t) is a function of only
s and independent from the reference time ¢. Thus, we can write it as ¢(s;t) = ¢(s). If such a
function exists, the corresponding 1(s;t) = 1(s) must satisfy both Eq. (13) and Eq.(14).

From Eq. (13), (s) should be constant. By substituting the constant C in 1(s;t) of
Eq.(14), we have

/ ds' h(s';s") =1 (17)
0
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in order that 1 (s) can be constant.

Reversely, we can prove Eq.(17) as follows. As shown in the appendix A-1,

/ ds' b (s's8") = Hp—1(8") — Hy(s")

where

H()(S) =1

= // p(s1)...p(8m)ds1...dsp,.
S1+..csm <s'

0 n
/ ds' Y hp(s'ss") =1 — Hp(s").
m=1

0

and

Then we have

As shown in the appendix A-2,
H,(s") -0 when n— oo

as far as some b > 0 exists such that

/Obp(s)ds <1

o.¢]
/ ds' h(s';s") =1
0

Thus we have

The proof ends.

Thus, the constant function
P(s;t) = C
satisfies Eq. (13) and Eq.(14). The constant C' is determined by Eq.(5) as

1/C = /ds/ dx p(x /d:z:wp

Then, the probability density for the latest time event is given by

o= [Cadepta) [ [ ante

for the stationary state.

(19)

(20)

(21)

(22)

(23)

(24)



2.2.2 Access Counts in Time Interval

In the stationary state of time sequences, the probability P(n;t,¢+u) is also independent from
the time #; it can be written as

P(n;t,t +u) = P(n;u). (28)

The P(n;u) denotes the probability that n time events take place during the interval of the
time length w.

By substituting the constant C' in Eqgs. (15) and (16), we have

P(0;u) C/ ds/ dz p(x /dssp3+u// ds sp(s (29)

n
e P(n:u) = o/ou ds /io dz (Hy_1(s) — Hy(s)) p(z) for n > 0. (30)
They can be alternatively written by
PO) =1~ C [ ds (Hols) - Hi(s)) (31)
and u
P(niu) = C /0 ds (Hp_1(s) — 2Hy(8) + Hps1(s) forn >0 (32)

as shown in the appendixes A-3 and A-4 respectively.

From Egs.(31) and (32), we have the normalization
o
> P(nju) = 1. (33)
n=0
The average of counts (n) is calculated as

= Z: nP(n;u) = C/Ou ds Hy(s) = Cu.

ny = u//ooo sp(s)ds (34)

The variance ((n — (n))?) is calculated as

Thus we have

((n ZnQPnu (ZnPnu >:C’u—|—2C’/0ud$H($)—02u2 (35)
where -
= Z Hn(x) (36)
n=1



When the probability density function p(z) is continuous, there exists some appropriate positive
number for any given closed interval [0, b] such that

0< H(x) <Mz forany z € |0,0] (37)
as is proved in the appendix A-5. Therefore we have
(n—m)?)/(n) =1 asu—0. (38)
From the numerical experience, I expect

((n— (n)*)/(n) = ((s = ())*)/{s)” asu— co. (39)

Here (s™) is the moment defined by
(s"™) = / s"p(s)ds. (40)
0

Thus, generally, {((n— (n))?)/(n) depends on the interval u for event counts at simple micro
models.

2.3 Simple Micro Model Algorithms

Here to “generate s with probability density p(s)” means to generate a real number s randomly

so that p(s) be the probability density that the generated value is s. We assume the probabilistic
causality of Eq.(2) for the probability density. Practical techniques to generate s with various
functions of p(s) will be described in another Research Report [3]

To “generate m time events of the value ¢ with the probability c¢,,,” means to generate an

integer m randomly so that c¢,, be the probability that the generated integer is m and to repeat
the value ¢ by m times in the time sequence. We assume that they satisfy

co=0 and » ¢, =1 (41)
n=1

One of ways to generate such m randomly is given as follows.

1. Generate a real number s randomly so that the generated number s distribute uniformly
in the interval (0, 1).

2. Return a number m so that

m—1 m
ch§s<20n
n=1 n=1



2.3.1 Algorithm for Stationary State

Here, we give an algorithm for generating stationary state of time sequence {t1, 2, t3, ...} from
the reference time ¢, with a given probability density function p(xz). The reference time ¢
stands for the starting point of a simulation but is not included in the time sequence.

Parameters :
The parameters to be specified for the algorithm are the starting (reference) point ¢, and

the probability density p(z).
Algorithm :

1. Initial Step
(1.1) Generate s; with probability density po(s1). Here the function pg is defined by

po(s) = /:op(x)dw //Ooo xp(x)dx (42)

(1.2) Compute t; by t1 = to + s1.
2. Successive Step. Do while n > 1 until a given termination condition is satisfied:

(2.1) Generate s,, with probability density p(sy,).
(2.2) Compute t, by t, = th_1 + $p
(2.3) Increase n by one.

2.3.2 Algorithm for Stationary State with Bulk

Here I will give a probabilistic algorithm for generating stationary state of time sequence by
bulk. The ‘bulk’ means that the events with the same time appear in a time sequence.

Parameters :
The parameters to be specified for the algorithm are the starting (reference) point ¢g, the
probability density p(x) and the probability ¢,. Here ¢, denotes the probability that n
time events are generated at the same time.

Algorithm :

1. Initial Step
(1.1) Generate s; with probability density po(s1). Here the function pg is defined by

po(s) = /soop(x)dw //Ooo xp(x)dx (43)

(1.2) Compute t; by t1 = to + s1.
(1.3) Generate m time events of the value ¢; with the probability c,,.

2. Successive Step. Do while n > 1 until a given termination condition is satisfied:



.1) Generate s, with probability density p(s;,).

.2) Compute t,, by t, = tp,_1 + sy

.3) Generate m time events of the value ¢; with the probability c,,.
4) Increase n by one.

2.3.3 Dynamic Micro Model

A word ‘nonstationary’ is somewhat misleading. Therefore I use ‘dynamic’ for a micro model
which simulates daily/weekly change and event-driven change of traffic. Thus I give the algo-
rithm for generating time sequence in probabilistic way such that the expectation value of event
count during a unit time interval varies from time to time. In another word, the probability
P(n;t,t + u) varies with ¢ as well as with u. Here P(n;t1,t2) be the probability that n events
take place from the time #; to to.

Parameters :
The parameters to be specified for the algorithm are the probability density p(z) and the
transformation function 7'(z). We assume that the function T'(x) is strongly increasing
for z > 0. We give the reference time by ¢, = 7'(0).

Algorithm :

1. Initial Step
(1.1) Generate s; with probability density py(s1). Here the function pg is defined by

po(s) = /soop(x)dw //Ooo xp(x)dx (44)

(1.2) Compute x1 by 21 = 1.
(1.3) Compute t; by t; = T'(z1).

2. Successive Step. Do while n > 1 until a given termination condition is satisfied:
(2.1) Generate s, with probability density p(sy).
(2.2) Compute x,, by x,, = ;1 + sy,

(2.3) Compute t, by t, = T(xy).
(2.4) Increase n by one.

The point of this algorithm is that we can easily compute probability of dynamic traffic
at a given time by use of Egs (31) and (32). The probability that n time events take place
between the times ¢ and %9 is given by

P(n;t1,t2) = P(n; X (t2) — X(t1)) (45)

where X (t) is the inverse function of T'(z) such that T(X(¢)) = t and X (T'(x)) = 2. The rate
of the events r(t) is given as follows.

()—hm 1/h) ZnPntt—i—h)—hm 1/h) ZnPnX(t—i—h) X(t)).



From Eq.(34), we have
r(t) = imCX(t+h) —X(t).
h—0 h

Thus we have UX T
t)=C— = — 4
rit) = O C/ dz (46)
where C' is defined by Eq.(26).

When we have the rate data r(t) at first, the dynamic micro model may be used with the
following steps.

1. Read the parameters of the rate function r(z).

2. Compute X (¢) by the integration

X =c [ r)t. (47)

to

3. Construct the inverse function 7'(z) from the function X (¢).

4. Apply dynamic micro model with T'(z) and p(x).

However, frequently, we cannot find out a simple analytical form of the inverse function
T (z) from X (¢) and need to construct a cheap-to-evaluate but accurately approximated func-
tion of T'(z). Any direct numerical evaluation method for inversing a function requires some
iterative procedure and is expensive. In the appendix-B, I will illustrate how to construct an
approximation of the inverse function by discussing of the rate model r(t) = Atexp(—at) + B
where A, a and B are arbitrary positive numbers.

2.3.4 Construction of Dynamic Micro Model from Count Data

In most applications to real problems, firstly we have a table form of count data, a set of pairs
{T,, R,}, but no rate data. Here R,, is the average count at the time interval between 7}, and
T,+1. One example of this type of data is given in Figure 1 where R,, are hourly hits of IBM
Intranet W3 averaged over business days from March 12 to April 6, 2001.

In this case, we can directly construct T'(z) by using cubic spline fit of T'(x) without the
contraction of r(¢) nor X (¢). The magic is that we know X (7)) without construction of the
functions r(¢) nor X (¢) because of Eq (47).

Thi1
X(Thi1) - X(T,)=C r(t)dt = CR,, (48)
Tn
Therefore we can calculate X,, = X(T},) successively by X, 11 = X,, + CR,, from Xy = 0.
Since T'(z) is inverse function of X (¢), we have also T'(X,,) = T,,. Thus, the cubic spline fit is
applicable to construct T'(z).



Figure 1: Hourly report of averaged hits in business day

T, (hour) R, C?%g, (107'2) 7, (/hour)
00 86453 1.768338 90344.5
01 85889 2.226398 82611.8
02 135446 -9.830433 98565.8
03 181704 -0.734637 170866.7
04 193861 -0.451760 192093.6
05 185590 0.658698 187752.9
06 227135 -0.982930 194339.9
07 414082 -1.305133 278821.2
08 749020 -0.218998  590603.9
09 979403 -0.040101 900113.6
10 1052048 -0.011630  1042781.5
11 984815 0.015232  1030566.2
12 914213 0.015310 942884.5
13 889944 0.005762  894158.6
14 886158 -0.005573 893755.3
15 838901 0.021972  860238.3
16 773792 -0.008698 836208.2
17 529516 0.142058  664251.9
18 329415 0.439307 411695.6
19 219596 0.963151 262126.5
20 163237 1.438356 185286.9
21 134316 1.589352 145354.4
22 116437 1.030715 126016.2
23 96275 3.545444 104887.9
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Let us approximate T'(x) by a polynomial f,(z) of the degree three for each the interval
[Xn, Xnt1] as

fn(:L‘) = 1/(CRTL) ((Xn+1 - $)Tn + (:L‘ - Xn)Tn+1

K1 =)z — X0) (OB + (X — 20 + (CRo+ (o~ X))

where ¢, are unknown parameters. Then at the boundary points, we have
fa(Xn) =T, fo(Xns1) = Tota, (50)
() = P 2+ @) C R J (i) = T 4 (g 4+ 200)C Ry (51)
n(Xn) = 6g, and f(Xni1) = 6n1. (52)

We assume that the polynomials f,, (x) are connected continuously up to their second deriva-
tives at the boundary points. Then, from Eq(51), we obtain the tridiagonal form of simultane-
ous linear equations on parameters g,

T, - T T, —1,,_
Ry 1gn1+ 2(Rn71 + Rn)Qn + RnQnJrl = 1/02 < il L2 i 1) .

Rn Rnfl (53)

In the periodical condition of N intervals, where all properties at T are identical to those
at Ty, we have N unknown parameters and N linear equations and can solve them. In the
open condition of N intervals, where properties at Ty and T may be different, we have only
N — 1 equations and need to reduce the number of unknown parameters N — 1 by assuming
go = gy = 0. The rate can be computed from Eqgs (46) and (51) as

CZRn
(Tn+1 - Tn) - (QQn + Qn+1)OZR%

(54)

Ty =

Figure 1 gives also a solution of periodical condition in terms of C2¢, and r,,/C? for input
data T, and R,.
2.4 Memoryless Process

Let us think about a simple micro model given by the probability density

Aexp(—As) ifs>0
0 otherwise.

p(s)

v

(55)

This model yields memoryless process in the sense that the probability density of next event
time is independent from the last event time;

p(s) =o' +3) [ [ dopio) (56)

Here we will evaluate the functions defined in previous sections by using this probability density.

11



Firstly we have
()\S//)mfl

= WA exp(—X(s' + s")).

Therefore,
h(s';s") = Xexp(—=As').

This gives how a state phi(s,t) approaches to the stationary state

) | exp(=Au)p(s —ust) for s > u,
st +u) = { Aexp(—As) for s <w

The constant C' of the stationary state is C' = X and the stationary state is

d(s) = Aexp(—As).

n—1 ()\S)m

H,(s) =1—exp(—2As) Z '
= m!

by n—1
Hya(5) = Hals) = (-5 exp(—h)
Therefore we have the well-known Poisson distribution [4]
)\ n
P(n;u) = ( :') exp(—Au).

The sum of H,(z) is given by

H(z) = Z H,(z) = A\z.
n=1

2.4.1 Stationary State with Bulk

(64)

Let B(n;u) be the probability that n events takes place during the interval of the time length
w in the algorithm for the stationary state with bulk. We will compute B(n;u) from P(n;u) =
(Au)™/n!exp(—Au), which is the probability that n distinguished time events take place during

the interval of the time length .

Let W (z;t) be a generating function given by

Wi(zu) = Z 2" B(n;u).
n=0

(65)

At each distinguished time %, m time events can take place with the probability ¢,,. Therefore,

we obtain

W(z;u) = i < 3 cmzm> P(n;u).
1

n=0 \m=

12

(66)



This can be rewritten by

W(z;u) = exp <—)\(1 - i cmzm)u> (67)
m=1

This is a generating function of the extended Poisson distribution given in the previous Research
Report [1].

13



3 Compound Micro Model

The compound micro model is a kind of extension of ‘bulk’ algorithm. In the Algorithm for
Stationary State with Bulk of the previous section, m events take place with the probability
cm at the same t,,. In the compound micro model, the m events are generated in some range
of separated times by the sub micro model.

The compound micro model can be described as follows.

1. Generate time sequence {t1,t2,t3,...} by some simple micro model.

2. Generate the fragment of time sequence {t, 0, 1...tn, m} by sub micro model for each
t,. We call t,, the parent event of the events of the events T, ;.

3. Combine the fragments into one time sequence.

4. Sort the time events ¢, j in the combined time sequence in the order of icreasing time.

In the first step, we may use the dynamic simple model to reproduce time-dependent rate
of traffic such as daily/weekly change and event-driven change of traffic.

The last step ‘sort’ is required when we apply a compound micro model for event simulation
of networked servers. Therefore a compound micro model is generally more expensive than a
simple micro model.

Nevertheless, the compound model has the following merits.

e It can generate a strongly correlated time sequence with a simple probability density
function.

e It is relatively accountable in comparison with a simple micro model with a complex
density function p(z).

I strongly recommend to use the compound micro model.

In another Research Report [2], I will show how the compound micro model produces
observed data.

3.1 Sub Micro Model

The sub micro model is the algorithm for generate fragment of the time sequence. Here I mean
by ‘fragment’ that the number of events in a time sequence is always finite. In this section, I
list up typical sub micro models.

In the following, to “continue with the probability P means also to terminate the generation
of the next sub time events with the probability 1 — Pj.

14



Any sub micro model can be characterized quantitatively by the average length (m) of
fragment and expected event distribution density n(s) which denotes expected number of dis-
tribution at the relative time s after the parent event. From this definition, we have

() = /0  dsn(s). (68)

3.1.1 Basic Sub Micro Model

Parameters :
The parameters to be specified in the algorithm are the start time ¢,, the probability
density function ¢(s) and the probability Pj.

Algorithm :

1. Initial Step: Set t, 0 = 5.

2. Successive Step (k > 0): Continue with the probability P.
(2.1) Generate s, ; with probability density ¢(s, ).
(2.2) Compute t, 1 by tpr = tnr—1 + Snik
(2.3) Increase k by one.

The average length of generated sequence is given by

o0 m
<m>=Y m]] B (69)
m=1 k=1

We force Py that the above summation converges. This condition is obviously satisfied when
there exists upper bound € < 1 for sufficiently larger £ such that Py < e.

3.1.2 Modulated Sub Micro Model

Parameters :
The parameters to be specified in the algorithm are the start time ¢,, the probability
density functions ¢(s) and ¢'(s) and the probabilities P, and P}.

Algorithm :

1. Initial Step: Set t,, 0 = t,,.
2. Set k=Fk =1.
3. Outer Loop (k > 0): Continue with the probability P.
(3.1) Generate s, j with probability density q(sy ).
(3.2) Compute t,, 1 by tpp =ty pr—1 + Spis-
(3.3) Set I = 1.
(3.4) Inner Loop (I > 0): Continue with the probability P;.

15



i. Generate s, 4+, with probability density ¢'(s, x/41)-
ii. Compute &y k11 bY tn g1 = tngrt1-1 + Snkr41-
iii. Increase [ by one.
(3.5) Increase k by one.
(3.6) Replace k' by k' + 1.

3.1.3 Compound Sub Micro Model

A compound sub micro model is the sub micro model which calls a sub micro model inside. If
it calls itself, it is recurrence type of compound micro model.

Parameters :
The parameters to be specified in the algorithm are the start time ¢,, the probability
density function ¢(s), the probability Py and sub model to be called inside.

Algorithm :

1. Initial Step: Set t, 0 = 5.
2. Set k=1.
3. Outer Loop (k > 0): Continue with the probability P.
(3.1) Generate s, ; with probability density ¢(s, ).
(3.2) Compute t, 1 by tnx =ty 1 + Spk-
(3.3) Call a sub model with #, ; and generate a sub fragment of time sequence
{tnyk,g, tn k15 ---tn,k,l}-
(3.4) Combine generated sub fragment with previous combined sub fragment.
(3.5) Sort it.
(3.6) Increase k by one.

3.1.4 Stationary Compound Model

In stationary state, the rate r of the compound model is given by

(o) = (m) / [~ aplw)is (70)

where p(s) is the probability density for the parent events. The expected count Average in the
interval of time length wu is given by ru.

In any event simulation of compound micro model, the existence of starting point ¢y causes
some error because of neglecting time fragments which are generated from the parent events
before the starting point ¢y although this error decreases with elapse time s. The expected
error e(s) of the rate at the elapse time s is given by

e(s) = /Smftyn(x)dx //000 xp(x)dz . (71)
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Thus, the relative error is estimated

er(s) = /:nfty n(x)dz //Ooon(x)dx . (72)

In the event simulation of compound micro model, we need to compute statistics of stationary
after sufficiently large elapse time s where e,.(s) can be negligible with respect to required
accuracy.

3.1.5 Dynamic Compound Model

Dynamic compound model can be obtained by applying dynamic micro model algorithm of
previous section to generate the parent events t,,. Of course, dynamic compound model may be
realized by making the parameters of sub micro model dependent on the parent time. However,
the analysis of real data does not require the time dependence of sub micro model parameters.
In the report [1], we found the ratio of the variance to the average is almost constant while the
average varies largely as daily change.

On the other hand, frustrated users may change their behavior in web access according to
the status of end-to-end performance. In this case, I expect the change of the sub micro model
parameters will be effective to model user behavior to end-to-end performance.
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A Proofs

A.1 Proof of Eq.(18); Integration of h,,(s’;s")

Let us simplify the integral
o.¢] oo
/ ds' hy,(s';s8") = / / p(s' + 81)p(52)...p(sm)ds'dsy...dsy, (73)
0 0 S1+82...5;m=s8""
by defining a new variable of integration s; by s’ + s;. Then we have

/ ds' hp(s';s") = // p(s1)p(82)...p(8m)ds1dss...dsy, (74)
0 C(s'")

where C'(s") is a region for integration given by
51+ 89 + oo + 8y > 5" (75)

and
S 4 .+ 5 < 5" (76)

All the points of the set specified by
S1+ 82+ o+ 5y < 8" (77)

satisfies Eq.(76). Therefore, the region C(s”) is given by subtracting the set of Eq.(77) from
the set of (76). Thus, Eq.(18) is proved.

A.2 Proof of Eq.(22); Evaluation of H,(s)

Suppose that some b > 0 exists such that

b
/ p(s)ds = e < 1. (78)
0
Then, as p(s) > 0, we have
T
/ p(s)ds < e for any z <b. (79)
0
Also there exists an appropriate integer k for a given s” such that

(k+1)b> s". (80)

Let us divide the region for the integration of Eq.(20) into m!/(k!(m — k)!) of subregions
which k parameters of s; are larger than any of the remaining parameters. Then we have

m!

Hin(s") = Kl(m — k)!

/ dsy...dsp p(s1)...p(8m) (81)
Ry
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where the integration region R,, is given by s + s + ... + s, < s” and
sj > s; for any j, k such that j <k <. (82)

On the other hand, from Eq.(80), the number of parameters s; beyond b can not exceed k.
Therefore s; < b for [ > k. We have

H, (s ")_ (= k (/ ds p(s >k</0bdsp(s)>m_k. (83)

Hp(s") < ————em k. (84)

Finally, we have

And
H,(s") =0 (85)

when n becomes infinite.

A.3 Proof of Eq.(31)

P(O;u):C'/Ooods/soodwp(w)—C’/Ouds/soodxp(w)
:1—C/0uds <1—/Usd$p(:1:)>

- 1_0/0“43 (Ho(s) — H (s)). (86)

The proof ends.

A.4 Proof of Eq.(32)

%/ ds/ dzx Hy,(s)p( / dz p(x /dsH p(u —s)

= Hn(u) = Hp 1 (u). (87)

/Ou s /:s d Hn( / dz ( Hp1(2))- (88)

This leads to Eq.(32). The proof ends.

Therefore we have
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A.5 The Alternative Expression for H(z) and Proof of Eq(37)

By noting that
Hypi (o /dypx— Haly), (89)

we have

= [Cayp) + [ dy e —pHW) (90)
0 0

Since each H,(z) is nonnegative and increasing, the sum H(z) is also nonnegative and
increasing.
H(y) < H(z) if y <.

This and Eq.(90) lead to

< /Oxdyp(y) + H(x) /Omdyp(x —Y).

/dyp < H(z /dyp /(1—/0Idyp(y)>- (91)

As p(z) is continuous, there is a maximum number L of p(z) for any given closed interval
[0, b] ; there exists L such that p(z) < L for any x € [0,b]. This and Eq(91) lead

Then we have

Lx
0<H(z) < ——————. 92
= ()Sl—fé’dyp(y) .

The proof ends.

A.6 Evaluation of H(x) by Mean Value Theorem
A.6.1 The integral form of mean value theorem

Let extend the mean value theorem into an integral form. Suppose f(z) and g(z) are continuous
and g(z) # 0 in the closed interval [a,b]. Let F(¢) denote the integral

= [tz [ gas - [ gy [ g (93)

Then we have F(a) = F(b) = 0. From the Rolle Theorem, there exists ¢ such that F'(t) = 0
and a <t <b. As g(z) # 0, it leads to the integral form of mean value theorem: There exists
t such that

b b
/a F(2)g(x)de :f(t)/a g(@)dz and a<t<b. (94)
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