
November 1, 2001
RT0435
Engineering Technology 8 pages

Research Report

An Effective Agent Server for Commercial Portal Sites

Gaku Yamamoto, Hideki Tai

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

ID:128 An Effective Agent Server for Commercial Portal
Sites

Gaku Yamamoto
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa, Japan
+81-46-215-4639

yamamoto@jp.ibm.com

Hideki Tai
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa, Japan
+81-46-215-5260

hidekit@jp.ibm.com

ABSTRACT

Recent Web Applications provide not only
request-response services but also notification
services that notify users by email. We have
developed an agent server approach with user
agents residing on the server side and working
for the users. We used the Java-based agent
server named Caribbean for two live financial
portal sites in 2000. Through this work, we
confirmed that the agent server is effective for
developing Web applications. In this paper, we
describe our experiences with the agent server
approach in these applications, showing its
effectiveness for application development and
its efficient performance.

Keywords

Agent Server, Agent-oriented Programming Model, Web
Application

1. INTRODUCTION
Recently, Web applications have become increasingly complex.
They provide not only request-response services but also
notification services that notify users by email. Moreover, such
services have been personalized to perform tasks using individual
users' data. One application model to develop request-response
services is the DB-centric model that uses a servlet engine as the

application server, and a database management system (DBMS) as
the users' data repository. However, there are no suitable and
natural application models for combined personalized request-
response services and personalized notification services. In the
DB-centric approach, we may have performance problems
because all tasks require DB accesses to retrieve users' data. Even
if a system does not have performance problems at first, it might
have problems scaling as the number of users increases. If the
performance requirements are high, the system requires powerful
hardware, resulting in an expensive system.

We have been working on agent server approaches since 1999, and
have created a Java-based [1] framework and runtime named
"Caribbean". Caribbean is a new type of application server based
on an agent-oriented programming model [6]. In the Caribbean
model, an agent is created for an individual user and resides at a
server. The agent holds the user's data and performs tasks in
response to incoming messages. This model can represent in a
natural way both request-response services and notification
services using an individual user’s data. The Caribbean runtime
provides an agent persistence mechanism, an agent swapping
mechanism which swaps agents between persistent storage and
memory, and an agent scheduler to maximize system performance.
These mechanisms are needed for a commercial agent server
managing many hundreds of thousands of agents. Since Caribbean
keeps many agents in memory, it achieves very high performance.
We have reported that the performance of Caribbean in our
benchmark tests [2] is from ten to over 100 times faster than a
Java-based DB-centric system. We used Caribbean for two live
financial Web portal sites in 2000.

In this paper, we draw on our experiences to introduce an
application example based on these financial portals, and describe
the effectiveness of application development and the efficient
performance of that application. The example provides
personalized request-response services and personalized
notification services. The agent server is a new type of application
server based on an agent-oriented programming model. Developers
can understand the model easily, allowing them to grasp the
structure of the complete application. Agent persistence helps
them to change the design of the users’ data. The overhead of a
DBMS can be reduced because an agent server manages the users’

LEAVE BLANK THE LAST 3.81 cm (1.5”)
 OF THE LEFT COLUMN ON THE FIRST PAGE

 FOR THE COPYRIGHT NOTICE

data without a DBMS. Furthermore, since an agent server has
very high performance, it lowers system costs.

In Section 2 we give an overview of the agent server. In Section 3
we describe an example application scenario based on live financial
portal sites that we developed. Our sample implementation of the
application is in Section 4. Section 5 is an overview of our design
approach. In Section 6, we discuss benefits of the agent server
approach and application areas in which the agent server approach
shows its effectiveness. Our conclusion and future work appears
in Section 7.

2. Overview of the Agent Server
2.1 Agent System
First of all, we give a brief overview of the agent server Caribbean.
The agent server is an application server based on an agent-
oriented programming model. For a typical Web application, the
agent is the object that holds the user's data and performs tasks
using that data. The agent reacts quickly in response to messages
sent by other agents or by external programs. The agent resides on
a server until it is explicitly removed. Each agent has a unique
identifier.

An agent exchanges messages with other agents. A message has a
message name and parameters consisting of parameter names and
values.

An agent uses functions, such as those provided by a database or a
mail server, while processing a message. Such functions are
resources shared by agents. The resources are implemented as
Service Objects. An agent can send messages to a service object or
can invoke the methods of a service object. A service object can
also send messages to agents.

Agents and service objects can call Context as an interface of the
agent server runtime. The Context provides functions for creating
an agent, removing an agent, obtaining a list of agents, etc.

The runtime of the agent server manages the agents' activities. In a
typical application using the agent server, an agent is created for
each user. Therefore, many agents will be created on a server.
Though most agents are kept in memory, physical memory size is
limited. The runtime monitors free memory space, and when free
memory becomes too small the runtime swaps some agents out
from memory and writes images of the agents into storage (swap
out). When a stored agent is activated, the runtime reads the agent
image from storage and restores the agent (swap in). By using this
mechanism, an agent server can host an extremely large number of
agents beyond the physical memory limitation.

An agent on the agent server is reactive. The runtime assigns a
thread to an agent. On the other hand, an agent might be swapped
out, required time for disk access. The amount of agent swapping
should be minimized. An agent scheduler in the runtime assigns
threads to agents in order to maximize system performance.

An agent must survive system failure. When the system restarts,
agents must be recovered, so the runtime has an agent persistence
mechanism.

Though a single agent server can manage hundreds of thousands of
agents, it is best that not all agents be managed in a single agent
server. Even if a system has a single computer managing the agents,
multiple agent servers should be used on that computer in order to
improve performance. Of course multiple agent servers on
multiple computers can host very many agents and support very
high performance. Therefore, the runtime provides a clustering
mechanism supporting multiple agent servers on multiple
computers. The client API provided by the Caribbean class library
supports clustered agent servers. A client program can send a
message to an agent on a group of servers without knowing which
agent server hosts the agent.

2.2 Performance
Basically, the agent server keeps many agents in memory. An
agent is an object holding a user's data. Since the accesses to a
user's data are local memory accesses, they can be performed very
quickly. The agent server can achieve very high performance if the
server has a sufficiently large memory. Table 1 shows our
benchmark results, comparing a system using the agent server with
a Java-based DB-centric system. The benchmark is the time for
the application to access all of the data for 100,000 users. Each
user's data is 50 strings of 10 characters. There are two types of
access, read only access, and update access (which includes a read
and a write). In the agent server system, an agent is created for
each user and the agent holds that user's data. All agents are in
memory. In the DB-centric system, the user data is managed by a
DBMS. An application server written in Java obtains each user's
data from the DBMS using JDBC. The DBMS has sufficient
memory to keep all of the users' data in its data cache.

In Table 1, the agent server system is over hundred times faster
than the DB-centric system for read only accesses. Even when all
accesses are updates, the agent server system is still ten times
faster than the DB-centric system.

3. An Application Example
We used the agent server Caribbean for two financial portal sites
providing financial information to users. The application example
in this paper is only loosely based on those experiences, because
the details of the actual sites are confidential. The example is

Table 1. Benchmark Results of the Agent Server System
and a DB-centric System

unit: processes per second

 100%
read-only

50% read-only
50% update

100%
update

Agent Server
Approach

22301.50 2077.90 1,069.33

DBMS Approach 168.05 125.40 100.61

similar enough to the real sites so that we can discuss the
effectiveness of the agent server approach in real systems.

3.1 Application Scenario
The example financial portal site provides financial information,
such as foreign currency, loan, and insurance information, through
a Web server. The site also provides three notification services
through email: foreign currency rates, profit and loss for foreign
currency assets, and financial news information notifications. The
services are implemented using the agent server.

Notification of Foreign Currency Rates

A user can choose foreign currencies and notification thresholds
for those currencies using a Web browser. The foreign currency
exchange rates are updated daily. If a foreign currency rate passes
a threshold set by the user, the user will be notified by email. For
example, a user could set a threshold for the US dollar at 115 yen.
If the US dollar rate goes from 114 yen to 115.47 yen, then a
notice of the US dollar rate at 115.47 yen will be sent. After
notification, the registered threshold will be disabled until the user
resets it. The threshold for US dollars is displayed with a mark
indicating a notification threshold.

Notification of Profit and Loss for Foreign Currency Assets

A user chooses foreign currencies and registers assets for each
foreign currency assets and sets notification thresholds for profit
(loss) for each asset. Since the currency rates are updated daily,
the profit (loss) of the assets change daily. If the profit (loss)
crosses the threshold set by the user, an email notification of the
value is sent. For example, a user buys US$1,000,000 yen at 110
yen, and also sets a profit and loss threshold of 50,000 yen. When
US dollar rate changes to 120 yen, the profit is +90,909 yen. Since
this is over 50,000 yen, the value is sent by email. After the
notification, the registered threshold is disabled until the user
resets it. The threshold of US dollars is displayed with a mark
indicating a notification threshold.

Notification of Financial Information

 A user chooses categories of financial news information through
his Web browser. When new information for a chosen category
appears on the site, email notification will be sent. The email
includes only a summary of the information and a URL where the
detailed information can be found. The user obtains that
information using a Web browser.

3.2 System Requirements
We summarize system requirements for the site in Table 2. The
specification is requirements at the initial stage. The system is
required high scalability to support a million users.

3.3 Overview of the System Topology
Figure 1 shows an overview of the agent system topology. In this
figure, some components such as firewalls and network equipment
are omitted. Although the actual networks are duplicated, it is
shown as a single network in the figure.

This system uses Web servers, servlet engines, DBMS, and the
agent server Caribbean. Two Web servers always run on two
computers. The servlet engines are on the same computers. Even if
one of the computers fails, the system continues to provide
services using the other Web server. Two agent servers also run on
two computers. If one of the computers fails, the agent server
from the computer will start on another computer so that the
system continues to provide services. The DBMS is configured on
two computers; a primary computer and a backup computer. The
DBMS on the primary computer always runs. If the primary
computer fails, the DBMS will start on the backup computer.

The system has two dual-ported RAID systems. One RAID is
connected to both of the agent server computers and another
RAID is connected to the two DBMS computers. The agent
server has a persistent agent area on the RAID. Therefore, either
agent server can access the persistent agent area if the other agent
server computer fails. The DBMS is similarly configured.

3.4 Agent System Implementation
The agent system consists of agents and service objects. Messages
are exchanged between the agents and the service objects. The
definitions of data exchanged between the agents and service
objects are shared among the agents and service objects.

Table 2. System Requirements

Number of users Expected to grow to 200,000 users
within a few years.

Amount of User Data At most 8 kilobytes per user
Frequency of
Notification

Foreign currency rates and the financial
information are updated daily. In the
future, the notification processes might
run several times per day.

Performance 200,000 accesses per day. At peak
times, 1,400 accesses per minute.

Fig. 1. An overview of the System Topology

RAIDRAID
DBMS
Server

Agent
ServerWeb

Server

Internet

Mail
Server

Agent

An agent is created for each user. The agent has functions for the
three services. Since each service is independent from the others,
they can be designed independently.

An agent receives messages from a user through servlets and
returns response messages to the servlets. Java Server Pages (JSP)
processed by the servlets engine generate HTML content.

An agent also handles notification processes when it receives
messages calling for DBMS updates. If the agent needs to send
email, it calls a service object for sending email.

Service Objects

There are 5 service objects in the agent server:

RMI-IIOPGateway

This service object provides gateway functions between agents
and external programs such as the servlets using the RMI-IIOP
interface. External programs send messages with agent identifiers
to this service object. This service object sends the messages to
the agents specified by the agent identifiers. The agents return
response messages to external programs through this service object.

UserAccountManager

This service object receives a message with a user identifier and a
password from the servlets and authenticates them. If the user
identifier and the password are correct, this service object returns
a message with the agent identifier of the user. If the user identifier
and the password are correct but the user's agent does not yet
exist, this service object will create an agent. This service object
stores user identifiers, passwords, and agent identifiers in the
DBMS.

CurrencyManager

This service object manages foreign currency rate information.
Although the information is stored in the DBMS, this service
object keeps the information in memory. An agent obtains foreign
currency rate information from this service object using method
calls. Since the information is in memory, this service object can
return the information immediately without accessing the DBMS.
When the DBMS is updated, this service object reads the latest

information from the DBMS and sends messages to all agents to
notify them of the update.

This service object also provides agents with several methods,
such as for translating a foreign currency code to a foreign
currency name. Since an agent holds foreign currency codes like
"NZD" instead of foreign currency names like "New Zealand
Dollars" in order to save memory, the agent has to call this service
object to translate the code to display its name on a Web browser.

FinancialInfoManager

This service object manages the latest financial information.
Detailed financial information is written to HTML files. The agent
server sends users summaries of the latest financial information.
These summaries are stored in the DBMS. This service object
holds in memory the summaries not yet sent to users. An agent
obtains summaries from this service object using method calls.
Since the summaries are in memory, this service object returns the
summaries immediately without accessing the DBMS. When the
DBMS is updated, this service object replaces the current
summaries with the latest summaries and notifies all agents of the
update.

This service object also provides agents with several methods,
such as a function for translating an information category code to
its information category name. To save memory, agents hold
category codes like "AutoIns" instead of category names like
"Automobile Insurance", so the agents call this service object to
translate codes to display the names on a Web browser.

Mailer

This service object sends email to users. An agent invokes this
service object using method calls. The email content is written to
disk once. The service object initiates several threads at startup
time. Each thread reads the content from disk and calls a mail
server (SMTP server) to send the email.

This service object supports multiple email servers for load
balancing. If one of the mail servers fails, this service object will
use another active mail server. When the failed mail server is
restarted, this service object will automatically use that mail server
again.

Data Definition

An agent exchanges data in the form of Java objects, with service
objects and servlets. Here are some examples:

Currency

Contains foreign currency rate information.
Exchanged between agents and the CurrencyManager.
Member Variables (Name of a value: Type, Description)

curCode: String, a code of a foreign currency
rate: double, the latest foreign currency rate
date: long, date when updated in milliseconds

RegisteredCurrency

Fig. 2. Agent System Configuration

Agent

Agent

Agent

RMI-IIOP
Gateway

Currency
Manager

Financial
Info

ManagerUser
Account
Manager

Mailer

servlet

EventNotifier

servlet
servlet

DBMS

MailServer
Message

Method Call

The Agent Server

Contains foreign currency rate information for display on a
Web browser and registration information. This class is
extended from the Currency class.
Exchanged between agents and servlets.
Member Variables (Name of a value: Type, Description)

curName: String, name of a foreign currency
threshold: double, threshold for foreign currency
notification
registeredDate: long, registration date in milliseconds

FinancialInfo

Contains a summary of financial information.
Exchanged between agents and service objects.
Member Variables (Name of a value: Type, Description)

category: String, a category code
date: long, date when updated in milliseconds
content: String, a summary of notified financial
information

Messages

Messages are categorized into three types: messages sent from
servlets, reply messages to servlets, and notification messages.
Here are some sample message definitions:

CurRateAddReq

Request to register a foreign currency rate notification.
Sent from a servlet to an agent.
Parameters (Name: Type, description)

Currency: String, a foreign currency
Threshold: Double, a threshold for notification

CurRateAddReply

Return code message for a "CurRateAddReq" message.
Sent from an agent to a servlet.
Parameters (Name: Type, description)

Code: Integer, a return code

CurRateGetAllReq

Request to obtain all available foreign currency rates.
Sent from an agent to a servlet.
Parameters (Name: Type, description)

None
CurRateGetAllReply

Reply message for a "CurRateGetAllReq" message. It contains
information on all available foreign currency rates.
Sent from an agent to a servlet.
Parameter (Name: Type, description)

List: Currency[], An array of Currency objects
CurRateDBUpdate

Message to notify an agent of a DB update.
Sent from CurrencyManager to an agent.
Parameters

None

3.5 Application Flow
There are two main flows in the application, flows related to a
user access, and flows related to notification.

3.5.1 User Accesses
A user invokes a login process by entering a user identifier and
password. The request is sent to RMI-IIOPGateway as a message
through a servlet and forwarded to the UserAccountManager. The
UserAccountManager reads the user's password and finds a user's
agent identifier corresponding to the user identifier, and
authenticates the user identifier using the password. If the agent
identifier is not null, the agent identifier will be returned with a
reply message to the servlet. If the reply message does not contain
an agent identifier, the servlet will send the UserAccountManager
a message to create a new agent whose identifier is stored in the
DBMS and returned to the servlet. Since this system has two
agent servers, the servlet has to choose an agent server where the
agent will be created. The Caribbean client API provides a
function to obtain information on a load of each agent server of a
clusteres agent system. The load is calculated from information on
the numbers of agents in each agent server and the load factor
given to each agent server. The servlet creates agents so that the
loads of each agent server are balanced.

Once a user completes the login process, the agent identifier is
stored with the session information of the servlet engine.
Therefore, subsequent requests can be handled without accessing
the DBMS until the session information expires. All of a user’s
requests are transferred to the user's agent as messages through
servlets. The agent receives the messages and performs the
corresponding processes. During the process, the agent calls the
service objects if necessary. For example, if a list of all available
foreign currency information is needed, it calls CurrencyManager.
The results are sent from the agent to the servlet as a reply
message. After the servlet receives the reply message, it invokes a
JSP to create the HTML content.

3.5.2 Notifications
The foreign currency database is updated at a scheduled time each
day. The update is initiated by a UNIX cron function. After the
database is updated, the client program that sends a database
update message to CurrencyManager is started. The message is
sent to CurrencyManager through RMI-IIOPGateway. When
CurrencyManager receives the message, it reads the latest foreign
currency rates from the DBMS so the current data becomes the
latest data. Then it sends messages to all agents. When an agent
receives its message, the agent calls CurrencyManager using a
method call to obtain the latest rates for the chosen foreign
currencies. The agent verifies whether the rates cross the registered
thresholds. It also calculates profits and losses for each foreign
currency asset registered by the user. If the agent needs to notify
the user, it will call the Mailer with the user's mail address as held
by the agent in order to send email.

The notification process for financial information is the same as
the notification process for foreign currency rates.

4. Design of the Agent System
The agent server is an application server based on an agent-
oriented programming model. Jennings et al. report that an agent-
oriented programming model is efficient in developing distributed
systems [6]. With support from our experiences, we think that the
model is also efficient in modeling internal configurations of the
applications providing personalized services through Web
interfaces.

Our design approach consists of two parts, agent system design
and agent design. Agent system design is the design of the
configuration of the agents and service objects in the agent server.
In this phase, we also have to define the messages, flows of the
messages, service objects’ methods called by agents, and data
format shared among agents and service objects. Agent design is
the implementation design for each agent and service object, and
follows agent system design.

4.1 Agent System Design
Agent system design is performed according to the following
procedures:

1. Define the participants in the agent system in accordance with
their roles.

2. Define agents and service objects corresponding to the defined
participants.

3. Define the data shared among the agents and service objects.
4. Define the messages exchanged among the agents and service

objects, define flows of the messages, and define the methods of
the service objects.

Though a large number of agents may be created in this system,
there are not many different types of agents and service objects,
nor are the message flows complicated. As Figure 2 shows, the
agent system configuration is simple, and so we could do the agent
system design without using any formal design methods.

We did have to consider that there could be a large number of
agents. This is particularly significant for the notification
processes. When the number of agents is in the hundreds of
thousands, the number of DB accesses is also in the hundreds of
thousands, creating a heavy load on the DBMS and resulting in
poor performance. If a message is copied for all agents when DB
update is notified, too much memory will be allocated. Therefore,
we have to take care about performance and a use of memory
when we design the agent system. General techniques for efficient
notification processes are described in [4]. The rest of this
subsection describes the specific approaches used in our system.

An agent sever computer in this system has sufficient memory to
keep all agents in memory. As shown in Table 1, the agent server
can achieve very high performance in that case. Moreover, all
foreign currency data are updated at once, as is the financial news
information. Therefore, we can expect that most agents will be

invoked as soon as the information is updated. All foreign
currency data and financial news information can be kept in
memory. Therefore, we adopted the following approach:

1. When data in the DBMS is updated, the CurrencyManager
and FinancialInfoManager read the latest data from the DBMS
and hold it in memory.

2. The service objects send messages to all agents notifying them
of the DBMS update.

3. If an agent needs to obtain the latest information, the agent
calls the methods of the service objects.

This approach has two merits. First, the implementation is simple.
Second, the service objects don't need any agent registration
information. The notification process is a kind of publish-
subscribe model. In a typical implementation of the model, a
mediator manages the subscription information, which must be
persistent against system failure. This increases system
development costs and affects system performance. In the
approach that we adopted, the system does not keep any
subscription information. Therefore the implementation is simple
and it is robust against system failure. Although all agents are
invoked, the performance is acceptable because it is expected that
most agents will respond to the DB update and performance of
the agent server is very good. Although the approach is suitable
for this application, we can't say that the approach is the best one
for every application.

4.2 Design of Agents and Service Objects
We can use the object oriented design approach to design the
internal implementation of the agents and service objects. Since
during the agent system design phase, the application is already
divided into the agents and various service objects, we don't need
to use any large-system design methods for designing the internal
implementation of agents and service objects. Moreover, in many
cases the specification of a Web application is frequently changed
even during development phase. Therefore, we don't use any
formal design methods. Instead, we adopted a spiral development
approach to implement the agent and each service object. Basically,
the internal designs of the agents and the service objects are
entrusted to each developer.

A key design point for implementing agents in an agent system
that manages a very large number of agents is size of the individual
agent. If the agents are large, performance will decrease because
fewer agents can be held in memory and the time spent writing
agents to disk will be increased. We designed the agents in these
systems to have an average size less than 7 or 8 kilobytes. To
reduce the size of an agent, agents hold foreign currency codes
such as "NZD" instead of foreign currency names such as "New
Zealand Dollar." The CurrencyManager provides the function that
translates from a foreign currency code into a foreign currency
name. Furthermore, we carefully chose the Java classes for the
agent's member variables to keep the member objects small. For
example, we do not use java.util.Date but simply long for
expressing date. We specified the initial size of java.util.Vector and

java.util.Hashtable. Keeping such points in mind is important for
developing an agent system managing very large numbers of agents.

5. Benefits of Utilizing the Agent Server
There are two main advantages of the agent server: an easily
understood programming model and high performance. In this
section, we describe these two advantages based on our
experiences and the benchmark results shown in Table 1.

5.1 Ease of Development
As described in the previous section, in the first step the designer
designs the agent system for the application. At this point the
application can naturally be divided into several agents and several
service objects. Dividing a whole application into several coarse
pieces helps developers grasp the structure of the whole
application. Moreover, developers can grasp the structure
intuitively by personifying the agents and service objects.

Another important point is the automatic agent persistence. In our
experiences, most specification changes are related to end user
interfaces. This results in changes in the definition of the user's
data. We can deal with such changes by simply modifying the
definitions of member variables within the agent objects. For the
DB-centric approach, developers have to change the definition of
the database with the users' data, which is a time-consuming job.
In addition, they have to analyze the effects on all modules. In the
agent server approach, modifying the definition of an agent
object's member variables is easy and its effects are sealed within
the agent itself. Therefore, we can shorten the cycle of the spiral
development approach.

5.2 Effects on Performance
One of the important benefits of the agent server approach is high
performance. As shown in Table 1, the performance of the agent
server is very high. A system to support hundreds of thousands
of users requires very high performance, and the agent server can
meet this requirement. The agent server also reduces response
times for users' accesses. If we developed these applications using
the DB-centric approach, the load on the DBMS will be heavy
because the application server has to access the DBMS very
frequently. In typical Web portal sites providing various services,
the data are managed in an integrated DBMS. Though the
integrated DBMS reduces system management cost, the DBMS
can become a performance bottleneck.

For the example Web site discussed in this paper, the frequency of
DBMS accesses by the agent server is not so high because the
users' data is managed in an agent server and the data about foreign
currency rates and financial news information can be kept in
memory by the service objects. Therefore, we can balance the load
on the DBMS among all of the services.

Moreover, in the example Web site discussed in this paper, the
data about foreign currency rates and financial news information
are kept in memory. And the agent server only reads the data.

Each agent server in the agent server cluster system can process
tasks without interfering with other agent servers. Therefore, the
system can increase performance as the number of computers
running the agent servers increases. So the system is enough
scalable for supporting millions of users.

6. Discussion
When we discuss the characteristics of the agent server, we need
to consider it from two aspects; the ease of development and the
performance. We could get knowledge that the agent server
approach is effective in developing the two financial portal
systems. Though the applications we developed are complex from
the viewpoint of the application logic, they are not complex from
the viewpoint of agent systems. We think this is an important
point. The agent-oriented programming model can model a
complex application so that developers can grasp the structure of
the entire application easily and intuitively. However, we don't
think that the agent server is effective for the development of all
applications. The point to consider is the types of data handled
by the application. The data types can be categorized in two
dimensions—the data is shared among all agents (shared/non-
shared) and the data is read only or updatable (read-
only/updatable).

Non-shared data of both types is data that an agent can efficiently
hold in its member variables. An agent server is suitable for dealing
with this data from both the viewpoints of ease of development
and performance.

The agent server can handle shared read-only data if the volume of
data is not too large by using service objects that hold the data in
memory. For example, tens of thousands of one kilobytes data
objects only require tens of megabytes of memory. Such amounts
of data can easily be kept in memory by each agent server in a
clustered agent system. In this case, the agent server achieves high
performance because all of the data is in memory. However, the
agent-oriented programming model does not help to implement
any mechanism for managing such data.

If the amount of shared read-only data is large and all of the data
cannot be kept in memory, it is not easy to manage such data
efficiently. The agent-oriented programming model does not help
to implement any mechanisms for managing such data.

An agent server is not efficient for managing shared updatable data.
If there is one agent server in a system, the server can manage such
data, but when there are multiple agent servers in a system, it is
hard to maintain data consistency among the servers.

As already noted, we are not advocating the use of agent servers
for all types of applications. However, a system is composed
from various parts. An agent server is effective for some of the
parts and other middleware such as a DBMS are effective for
other parts. By applying an agent server at suitable points, we can
reduce development costs and develop a high performance system
which balances the system load.

7. Conclusions
In this paper, we described the roles of the agent server, drawing
on our experiences in using agent servers for live Web portal sites.
The agent server is an application server that achieves high
performance by integrating data management with processes and
by using memory space efficiently.

The agent server is also an application server based on the agent-
oriented programming model. Since the model can represent the
application in natural way, developers can grasp the structure of
all of the application. Therefore, the development time can be
reduced and developers can flexibly deal with specification
changes. Our experiences confirm these beliefs.

The performance of the agent server is very high relative to
existing DB centric systems. In typical Web portal sites providing
various services, the data are managed in an integrated DBMS.
Though the integrated DBMS reduces system management cost,
the DBMS can become a performance bottleneck. The agent server
can reduce loads of DBMS, since the agent server holds users’
data.

Though the agent server has the benefits described above, we are
not advocating the development of applications based just on the
agent server approach. The agent server is most suitable for
developing systems that process tasks using each user's data, but

it is not so suitable for services that search for items in large
volumes of data or for transaction processing services. Such
services should be built using a DBMS or a Transaction
Processing Monitor. Our position is that by using the agent server
with other middleware, we can build better systems (See Fig. 3).

Our experience with agent servers has involved two similar Web
portal sites. We hope to verify the effectiveness for other types of
applications. Current agent servers have several limitations. For
example, if each user data has a lot of data, the performance will
suffer. Dynamic load balancing among multiple agent servers is not
supported. Because an agent is bound to the agent server where
the agent was created, the loads of the agent servers may be
unbalanced. We hope these problems will be solved in the future.

8. REFERENCES
[1] G. Yamamoto and H. Tai: Architecture of an Agent Server

Capable of Hosting Tens of Thousands of Agents, Research
Report RT0330, IBM Research, 1999 (a shorter version of
this paper was published in Proceedings of Autonomous
Agents 2000, ACM Press, 2000)

[2] G. Yamamoto and H. Tai: Performance Evaluation of An
Agent Server Capable of Hosting Large Numbers of Agents,
Proceedings of Autonomous Agents 2001, ACM Press, 2001

[3] H. Tai and G. Yamamoto: An Agent Server for the Next
Generation of Web Applications, The 11th International
Workshop on Database and Expert Systems Applications
(DEXA-2000), IEEE Computer Society Press, 2000

[4] G. Yamamoto and H. Tai: Event Distribution Patterns on an
Agent Server Capable of Hosting a Large Number of Agents,
Research Report RT0382, IBM Research, 1999

[5] G. Yamamoto and H. Tai: Agent Server Technology for Next
Generation of Web Applications, 4th International
Conference on Computational Intelligence and Multimedia
Applications, IEEE Computer Society Press, 2001

[6] N.R. Jennings and M. Wooldridge: Agent-Oriented Software
Engineering, in Handbook of Agent Technology, J.M.
Bradshaw, ed., AAAI/MIT Press

DBMS

SMTP Server

Manage goods
information

HTML Files of Detailed
Goods Information

HTTP Server
+

ServletEngine
Commerce Server

Agent Server

Manage a goods catalog
Cache goods information
Notify the latest goods information

Manage user's preference

Process to buy goods

Fig. 3. An Example Commerce Site.

A Commerce Server, an Agent Server, a DBMS, and other servers are
integrated into a system. Loads of servers are balanced.

