
April 3, 2002
RT0456
Human-Computer Interaction 12 pages

Research Report

Building a Collaborative Web Environment for Supporting End
Users

Yoshinori Aoki

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

- 1 -

Building a Collaborative Web Environment
for Supporting End Users

Yoshinori Aoki

IBM Research, Tokyo Research Laboratory

E-mail: yoshia@jp.ibm.com

Abstract
This paper describes methods for developing a Web-based
collaborative environment for call center agents supporting end
users by using real-time Web browser sharing techniques. The
collaborative functions should be available for end users
without any preparation on the client side. This is because it is
unacceptable for end users, especially novice users, if the
system requires the users to download and install software on
their client PCs in order to use the collaborative functions when
they run into problems on the Web site. On the other hand, it is
important for Web site developers to separate content design
and collaborative-function development. If they are not
separated, content designers have to create collaboration-aware
content, and existing content cannot be reused with the
collaborative functions. This paper discusses three approaches
for developing real-time browser sharing systems, and shows
why the proxy-based approach is the best to meet the above
requirements. Collaboration tools, such as telepointers and
annotations, can help an end user communicate with a call
center agent. However, if the layouts of the same page are
different among the shared browsers, coordinate-based
telepointers and annotations will not be displayed at appropriate
positions. This paper also explains methods for synchronizing
Web page layout.

1. Introduction
Many services, such as Internet auctions and online banking,
are provided as Web-based services. Users access such services
by using Web browsers. Users often have to go through
awkward steps to use the services or fill out complicated Web
forms to apply for the services. Hence, some of the users
abandon their purchases midway, or even change service
providers to find more user-friendly services. In such cases, the
Web sites are losing business opportunities. Therefore, it is very
important for Web-based service providers to build a user-
supportive Web site.

This paper explains a system that supports an end user’s
operations using a Web browser by synchronizing the user’s
browser with a call center agent’s browser as shown in Figure 1.
This system allows end users to collaboratively work on a

shared browser when they cannot complete their tasks by
themselves or have some questions about the content.

Microsoft’s NetMeeting and Lotus’s Sametime are commercial
products that allow users to share desktop applications with
remote users. They capture the screen as an image and send it to
the other users. The advantages of this approach are: (1) Users
can share any desktop applications, and (2) Users can share
their applications even though they are not installed on the
partners’ client machines. They naturally allow users to share
their Web browsers, too. However, their performance is
inadequate over the Internet because they exchange large
volumes of data.

Another approach is exchanging events between applications
that are running on each client. The advantage of this method is
its high performance, because the amount of data actually
exchanged is very small. Some real-time browser sharing
techniques have already been proposed [5, 16, 23, 38].
However, they have the following problems:

(1) Users have to install collaboration-aware browsers [15, 16]
or plug-ins [23, 26, 27, 33] in their clients in advance.
Therefore they cannot seamlessly start using the
collaborative functions when the need arises.

Figure 1. Application Scenario

- 2 -

(2) Content designers have to develop collaboration-aware
content in a special manner [5]. Therefore content
designers have to be familiar with the collaborative
functions. In addition, existing content is not reusable in
such systems.

(3) When browsers’ font configurations and other settings are
different among the shared browsers, Web pages are
displayed with different layouts [20]. Therefore, it becomes
impossible to show coordinate-based telepointers and
annotations in appropriate positions.

This paper describes a novel technique for synchronizing Web
browsers that solves the above problems.

The rest of this paper is organized as follows. The next section
explains the requirements for the application shown in Figure 1.
The following section explains related work and classifies the
approaches into three categories. This paper then explains the
details of our system and presents my conclusions.

2. Requirements
This section describes the requirements for building the Web-
based collaborative environment shown in Figure 1. In Figure 1,
the call center agent is supporting the end user by looking at the
same Web page on the shared browser. The agent and end user
may both be working behind firewalls. The following are the
requirements for the application.

• No special installation: Collaborative functions should
work with normal Web browsers without any plug-ins.
Some of the previously proposed systems require end
users to install collaboration-aware Web browsers [15, 16]
or plug-ins [23, 26, 27, 33] to provide collaborative

functions for Web browsers. However, such installations
bother end users, especially novice users. Collaborative
functions should be available without any installations
when the need arises.

• Separating content design and collaborative function
development: Collaborative functions should be sepa-
rated from content, so content designers do not need to be
aware of and include the collaborative functions in the
content. The ideal is that content designers can create
content without being conscious of collaborative
functions, because content designers and developers
usually work separately. The separation also allows the
system to reuse existing content.

• Web page layout sharing: If browsers’ default fonts, text
sizes, or window sizes are different, the layouts of the
same Web page will be different among the shared
browsers. This is a problem because some of the
collaboration tools, such as telepointers and annotations,
are based on window coordinates. Figure 2 shows an
example Web page with some annotations in different
layouts. Hence, the layouts of the same Web page should
be the same among the shared browsers.

• Session management: The sessions shared between
browsers should be managed to support (1) dynamic Web
pages, (2) transaction management, and (3) the SSL
(Secure Sockets Layer) protocol [9]. Some Web pages are
dynamically generated by server-side programs such as
servlets [21] or CGI [19] programs. If shared Web
browsers independently access a Web server, they may

Figure 2. Shared Web Page with Different Font Configurations

- 3 -

receive different Web pages. In addition, if shared Web
browsers independently submit a shared Web form,
multiple transactions will take place. The SSL protocol
should also be supported for secure transactions in a
session.

3. Approaches
Many real-time Web browser sharing techniques have been
proposed, and I have classified these approaches into the
following three categories:

(1) Client-based approaches

(2) Server-based approaches

(3) Proxy-based approaches

We have adopted the proxy-based approach. The following
sections explain the three approaches in detail and why I chose
the proxy-based approach.

3.1. Client-based Approach
In the client-based approach, collaborative functions are
implemented in client-side software, and users have to install it
in advance. An advantage of this approach is that the existing
content can be used with the collaborative tools, because the
collaborative functions are isolated in the client-side software.
The main disadvantage is that users have to install the software
in advance, which prevents end users from using the
collaborative functions spontaneously.

GroupWeb [16] and GroupSpace [15] are systems implemented
using this approach (GroupSpace is actually a mix of the client-
and server-based approaches). Original Web browsers were
developed to provide the collaborative functions in these
systems. Many toolkits [26, 31] have been developed, and
developers can reduce the cost of developing collaboration-
aware applications by using such toolkits. However, it is very
costly to develop original Web browsers that fully support
recent standards such as HTML, HTTP, XML, JavaScript, Java,
SSL, etc. Therefore, another client-based approach has been
proposed, which adds collaborative functions to existing Web
browsers without any modifications by installing plug-ins in the
clients [23, 26, 27, 33]. To realize the collaborative functions,
the plug-ins control the browsers via IPC (Inter-Process
Communication) calls such as DDE [30] in Windows. Sakairi et
al. proposed a toolkit with which developers can add multi-user
functionalities to an existing single-user application [32].
WebShare [33] is implemented with the toolkit, and is an add-
on module that enables existing browsers to provide
synchronous-browsing capability. Another disadvantage of this
approach is that it is impossible to capture events in accord with
the application semantics and control the application properly if
the application does not provide an interface for the plug-ins.

3.2. Server-based Approach
In the server-based approach, collaborative functions are tightly
integrated into the content. The chief advantage of this approach
is that existing browsers are already suitable, because the
collaborative functions are implemented on the server side.
However, content designers have to create collaboration-aware
content, and hence they are required to have not only artistic
design skills but also programming skills. In addition, it is
impossible to reuse existing collaboration-unaware content.

Artefact [5] is implemented using the server-based approach.
Artefact is an environment for developing CORBA-based [39]
collaborative Web applications. In Artefact, the content itself is
written in ADL, a special XML-like language. The content
written in ADL is transformed to HTML documents by server-
side applications. Users can issue events for the server-side
CORBA applications by clicking hyperlinks or by submitting
forms from their Web browsers. GroupSpace (introduced in the
previous section) extends the HTML format by adding two tags
with which we can add collaborative functions to an HTML
document [15]. Therefore GroupSpace can also be categorized
as using a server-based approach.

3.3. Proxy-based Approach
In the proxy-based approach, the collaborative functions are
embedded into the content while passing through a proxy
server, and the proxy server supports the requested collaborative
functions. This approach is similar to the server-based approach
in that collaborative functions are embedded in the content.
However, while collaborative functions are tightly integrated
into the content in the server-based approach, they are
automatically inserted in the proxy-based approach. This means
that there need be little dependency between the collaborative
functions and the content, and therefore the content designer
can create the content without being conscious of the
collaborative functions, and existing collaboration-unaware
content is reusable with minimum effort. In addition, users can
use existing Web browsers without any modifications or plug-
ins, because collaborative functions are dynamically embedded
into the content. I adopted the proxy-based approach because of
these advantages.

WBI [3, 4] provides a framework with which developers can
build new functions on a conventional proxy server. Hence it
allows developers to reduce the cost of developing a customized
proxy server.

Several proxy-based systems have been proposed [6, 22]. In
CoWeb [22], the proxy server replaces all input fields of an
HTML form by Java applets that provide collaborative input
capability. However, CoWeb does not support general Web
pages except for HTML forms. In addition, some HTML forms
include JavaScript code, typically calculations of a total price or

- 4 -

input value validation, and they may not work correctly if the
input fields are replaced by Java applets. In [6], a Java applet is
inserted into an HTML document, and the Java applet
exchanges the URL of the page with other browsers to display
the same Web page. However, the collaborative functions are
not adequate to support end users on a Web browser, because
though users can see the same Web page they cannot share the
form input, scrolling, Web-page layout, and window operations.
In addition, this system also does not support telepointers nor
annotations.

Many Java-applet-based systems have been proposed to realize
collaborative environments using Web browsers [7, 10, 11, 24,
25, 28, 29, 34, 36]. These systems try to realize shared
workspaces using Java applets, and their view of Web page
sharing is limited to URL synchronization. This is because Java
applets lack the capabilities required to control Web browsers.
Java applets can only identify the URL of the Web page in
which the Java applet is embedded or load a Web page into the
frame where the Java applet is embedded [8]. On the other
hand, our system tries to use Web pages as shared workspaces.
The proxy of our system embeds not only Java applets but also
JavaScript programs. The Java applets provide only
communication capabilities and the collaborative functions are
basically implemented in JavaScript. This is because JavaScript
can access the objects, such as images and link objects, in a
Web page via the DOM (Document Object Model) [37]
interface, which provides methods for capturing events on a
Web page and for directly controlling the objects in the page.
Therefore our system provides not only URL synchronization,
but also synchronization of form input, scrolling, and window
operations. In addition, our system also supports telepointers
and annotation functions.

3.4. Contribution
This section summarizes the problems in the previous studies,
and explains the contribution of this paper.

The main disadvantage of the client-based approaches is that
such systems force end users to install software in advance and
prevent end users from using the collaborative functions
spontaneously. The main disadvantage of the server-based
approaches is that content designers have to create
collaboration-aware content in special manners because the
content and the collaborative functions are tightly integrated.
The advantage of the proxy-based approach is that such systems
can solve the above two major problems. On the other hand, the
main problem of existing proxy-based systems is poor
functionalities for browser synchronization. This is because
they are based on Java applets, and the Java applets lack the
capabilities for detecting operations on Web pages and
controlling the Web browsers.

The main contribution of this paper is a novel method for event
detection and browser control by combining JavaScript and
Java. With this method, our system realizes comprehensive
browser synchronization capabilities without losing the
advantages of the proxy-based approach including (1) end users
need not install any software in advance, and (2) content design
and collaborative function development are completely
separated. Our system supports synchronization for not only
URLs, but also form inputs, scrolling, and window operations.
In addition, our system also provides collaboration tools
including telepointers, image annotations, text annotations, and
ink annotations directly attached to Web pages. The SSL
protocol support, intranet user support, and Web-page-layout-
sharing technique are also contributions of this research.

4. Collaborative Environment on the Web
This section describes our general solution for building
collaborative environments for Web users.

4.1. Architecture
Figure 3 shows the architecture of our system. In Figure 3, two
Web browsers are running on Nodes A and B, sharing one
application, and both users can access the collaborative
functions using their control panels, and see the Web pages in
their content windows.

Our system consists of three components. One is a proxy server
and the others are client-side programs called the document

controller and the node manager. The proxy server includes the
embedding engine and the session manager. The embedding
engine inserts the document controller into an HTML
document, and the session manager provides session and
security management. Each node runs a node manager that
communicates with the session manager to support that node’s
participation in the shared session. Every HTML document (or
frame of a compound document) has a document controller
embedded in it to control the display of that document.

When a user takes an action on a Web page, the document
controller detects the event, and notifies the node manager. For
example, when the user inputs a value into a text field on a Web
form, then the document controller detects that the value has
been changed and sends to the node manager that information,
including the frame id, form id, input-field id, and input value.
The node manager then sends this to the session manager, and
the session manager distributes it to the other node managers.
Each node manager executes an event to synchronize its own
browser by using the methods provided by the document
controller. The document controller synchronizes its own
browser using JavaScript methods. For example, when a value
“Japan” was input into a text field on Node A, the browser on
Node B can be synchronized by using the following JavaScript
call.

- 5 -

window.document.forms[0].elements[2].value = “Japan”;

With the control panel, a user can select between normal
operation mode, in which the user can browse as usual, and
annotation mode, in which the user can attach annotations to
Web pages. When the user changes the mode, the control panel
notifies the document controller of the mode change. The user
can also close the collaborative session with the control panel.
When the user closes the session, the node manager notifies the
session manager and the session manager distributes the status
change to any other node managers in the session.

Both the control panel and content window are browser
windows, and the node manager and the document controller
are implemented in Java and JavaScript, and executed in the
Web browsers. The node manager has to be downloaded
directly from the proxy server to communicate with the session
manager under the Java security model [8]. Users do not have
to install any software to use the collaborative functions,
because all the client-side components are downloadable.

When a Web page is requested, the proxy server obtains the
Web page from the Web server, parses the HTTP response, and
embeds a document controller into the HTML document. The

document controller is embedded
into every HTML document. When
a Web page consists of multiple
frames, every frame has to contain a
document controller. After an
HTML document is downloaded,
the document controller is activated,
parses the HTML document, and
sets up event handlers for the
appropriate objects in the page. The
document controller then detects
events via the DOM interface, and
controls its HTML document by
using the DOM interface. The
document controller consists of one
JavaScript file and one Java applet,
and must be embedded at the end of
an HTML document by using
SCRIPT and APPLET tags. The
best place is just before the end tag
of the body tag, “</BODY>.” This
is because if the document controller
is embedded at the beginning of an
HTML document, the document
controller starts parsing the HTML
document before it has finished
loading the HTML document. This

may cause failures in setting up the event handlers. An
alternative method is calling the event-handler-set-up method as
an onload event call. Details of the event detection and the
program insertion in the embedding engine appear in [1, 2].

4.2. Session Manager
A user has to establish a session to start collaboration by loading
the node manager in a Web browser. After the node manager is
activated, it communicates with the session manager to find
partners. In the application shown in Figure 1, a proxy server
will be managed by the call center, and the session manager
finds an available agent to help the user. The session manager
maintains the session with the participating node managers
running on the shared browsers. The session manager provides
the following functions:

(1) Dynamic Web page support

(2) Transaction management

Many Web servers dynamically generate Web pages using
server-side programs such as servlets and CGI programs. If the
shared browsers independently request Web pages from such a
Web server, the browsers may receive different Web pages
even though they request the same URL, because each browser
is uniquely identified by the Web server. In addition, when a

Web Server

Node B

Document
Controller

Node
Manager

Node A

Document
Controller

Node
Manager

event detection

events events

Proxy Server

HTTP
request/response

Session
Manager

Embedding
Engine

Content WindowContent Window

request/response
HTTP

Control PanelControl Panel

browser synch.

event detection

browser synch.

Figure 3. System Architecture

- 6 -

user submits a shared form, multiple transactions will take
place, because all the shared browsers will submit their forms.
Master-slave browsing can avoid such problems. In master-
slave browsing, only one user acts as the master and the rest of
the users act as slaves. When a master or a slave clicks a link or
submits a form, the session manager distributes the event to all
the shared browsers and each of the browsers executes the event
and then sends an HTTP request to the session manager.
However, the session manager relays only the master’s HTTP
request to the Web server though it accepts the HTTP requests
from all the shared browsers. After receiving the HTTP
response from the Web server, the session manager distributes
the HTTP response not only to the master browser but also to
the slave browsers. In this way, the session manager provides
dynamic Web page support and transaction management.

4.3. SSL Protocol Support
The SSL protocol is used to encrypt HTTP requests and
responses when a browser and a Web server exchange
confidential data such as user names and credit card numbers.
The SSL sessions are usually established between the browser
and the Web server. However, in naive master-slave browsing
of a secure site, the following problems occur, because of the
data encryption between browsers and the Web server.

(1) The proxy server cannot examine or manipulate the
encrypted data. Hence, the proxy server cannot insert a
document controller into the HTML document.

(2) The session manager relays only the master’s HTTP
requests to the Web server. Hence, the HTTP requests and
responses are encrypted for the master browser. It means
the slave browsers cannot decrypt the HTTP responses,
even if the session manager sent the HTTP responses not
only to the master browser but also to the slave browsers.

To solve the above problems, the proxy server has to decrypt
the HTTP responses received from the Web server, insert a
document controller into the HTML document, and then
encrypt the modified HTTP responses for each browser again.
As shown in Figure 4, independent SSL sessions have to be
established between the proxy server and the Web server, and
between the proxy server and the browsers.

4.4. Proxy Configuration
The proxy server plays the central role in our system, and
strongly affects the application scenario. This section discusses
the proxy configuration.

4.4.1. Problems
In the application shown in Figure 1, both the end user and the
call center agent are in different intranets. Figure 5 shows the
proxy configuration in such case. There are the following two
problems in the proxy configuration shown in Figure 5.

(1) Intranet support

(2) SSL protocol support

In Figure 5, each proxy server prevents its intranet user from
directly accessing Web servers outside the intranet. The user
has to access the Web servers via the proxy server. In this
situation, the normal proxy servers as shown in Figure 5 do not
work for collaboration with the other intranet users. This is
because intranet users have to use their own proxies, and hence
they cannot establish a collaborative session by sharing a proxy
server that includes the session manager.

As mentioned in Section 4.3, independent SSL sessions have to
be established to support the SSL protocol, because the proxy
server has to modify the HTML documents to embed document
controllers. However, in Figure 5, HTTP connections are

Web
Server

SSL session B

SSL session A

Proxy

Client A Client B

SSL session C

Figure 4. SSL Protocol Support

Web
Server

Proxy

Client B

Proxy

Client A

HTTP
connections

intranets

Figure 5. Proxy Server

- 7 -

established directly between browsers and an actual Web
server. Hence, the browsers will try to establish SSL sessions
directly between the browsers and the Web server. This means
that the proxy server cannot insert a document controller into
the HTML document, because the data is encrypted between
them. Therefore, the proxy servers cannot support the SSL
protocol in the way required here.

4.4.2. Solution
Our solution for the problems described in the previous section
is to implement the proxy server as a reverse proxy server.

Reverse proxy servers are generally used for load balancing,
caching, and redirection. The number of HTTP connections is
the major difference between a normal proxy server and a
reverse proxy server. In a normal proxy server, a Web server is
a destination address of an HTTP request sent by a browser.
The normal proxy server just fetches the HTTP request and
relays it to the Web server. Hence, there is one HTTP
connection between the browser and the Web server. On the
other hand, in a reverse proxy server, the reverse proxy server is
a destination address of an HTTP request sent by a browser.
The reverse proxy server creates a new HTTP request and sends
it to a Web server. The Web server is a destination address of
the new HTTP request sent by the reverse proxy server. Hence,
there are two HTTP connections, one between the browser and
the reverse proxy server, and another between the reverse proxy
server and the Web server. This is because a reverse proxy
server acts as the Web servers’ proxy, and works like a Web
server. The reverse proxy server accepts HTTP requests as
though it were a Web server and sends the HTTP responses to
browsers after getting the Web pages from backend Web

servers. Hence, Web browsers regard a reverse proxy server as
a Web server.

Figure 6 shows how the reverse proxy server works in our
system, and the followings explain why the reverse proxy
server can solve the problems.

(1) Intranet support: The reverse proxy server is accessible
for users of different intranets as shown in Figure 6. This is
because browsers regard a reverse proxy as a Web server,
so even if there is a proxy server between a browser and
the reverse proxy server, the browser can reach the reverse
proxy server in the same way as for normal Web accesses.
Therefore the reverse proxy allows users to establish a
collaborative environment with users of other intranets.

(2) SSL protocol support: When a reverse proxy server is
used, the browsers will try to establish the SSL sessions
between the browsers and the reverse proxy server as
shown in Figure 6. This is because HTTP connections are
established between the reverse proxy server and the
browsers. The reverse proxy server can then establish
another SSL session between the reverse proxy server and
the actual Web server. After establishing the SSL sessions,
HTTP requests and responses can be sent via the secure
sessions.

4.4.3. Usability of Reverse Proxies
All end users have to do to use a proxy server is configure their
browsers to make all requests through the proxy server. On the
other hand, how users work with a reverse proxy server
depends on the proxy configuration.

When we provide user-support services that are available for
any Web site on the Internet, the proxy server has to be located
on the Internet. End users can visit any Web sites via the proxy
server. We call this a public reverse proxy. Figure 7 (a)
illustrates an example of accessing a Web server

Web
Server

Proxy

Client B

Proxy

Client A

Reverse
Proxy

HTTP
connections

intranets

Figure 6. Reverse Proxy Server

(a) Public Reverse Proxy (b) Private Reverse Proxy

intranet

Web
Server

Client A Client B

http://www.abc.com/shop/

shop.abc.com

www.abc.com

Reverse
Proxy

proxy.com

www.abc.com

Reverse
Proxy

Web
Server

Client A Client B

http://proxy.com/www.abc.com/

Figure 7. Public and Private Reverse Proxies

- 8 -

“www.abc.com” via a public reverse proxy “proxy.com.” Users
have to visit all Web sites via the reverse proxy in order to
remain in the collaborative environment. In the example, the
client sends an HTTP request to the reverse proxy. The URL of
the HTTP request is “http://proxy.com/www.abc.com/,” and the
first half indicates the name of the reverse proxy, and the latter
half indicates the URL of the Web page that the user actually
trying to see. After receiving the HTTP request, the reverse
proxy extracts the URL of the actual Web page, and sends a
new HTTP request to the Web server to receive the actual Web
page. Therefore users are not allowed to load a Web page by
using their bookmarks or by directly typing a URL in the
address bar of their browsers. One implementation approach is
for users to log on from the start page of the reverse proxy, and
then input a URL in the form provided by the reverse proxy.
Because of this, end users should be aware of the mechanisms
involved in order to use this system with a public reverse proxy
and the use of a public reverse proxy is very complex.

When a Web site provides user-support services only for its
own content, the reverse proxy is better as its Web server. The
reverse proxy works only for the Web site; hence users cannot
establish a collaborative environment with other Web sites. We
call this a private reverse proxy, as shown in Figure 7 (b). In
Figure 7 (b), the reverse proxy “www.abc.com” acts as a Web
server for the domain “abc.com.” The actual content is stored or
generated in the other Web servers such as “shop.abc.com”
within the intranet. Therefore, end users do not have to be aware
of the existence of the Web servers behind the reverse proxy,
and the usability of a private reverse proxy is much better than a
public reverse proxy.

4.4.4. SSL Protocol in Reverse Proxies
When the SSL protocol is used, the browser establishes an SSL
session with the reverse proxy as shown in Figure 4. In the SSL
session, the browser receives the Web server’s certificate issued
by a CA (Certification Authority) and allows the end user to
look at the certificate [12]. In Figure 7 (a), the end user can only
look at the certificate of “proxy.com,” even though the actual
content is from “www.abc.com.” Therefore, end users cannot
be sure what Web site is providing the actual content when they
are using a public reverse proxy. On the other hand, a private
reverse proxy allows end users to look at the certificate of its
domain. In Figure 7 (b), the user can look at the certificate of
“www.abc.com.”

When the user uses a private reverse proxy, it is not necessary
to establish an SSL session between the reverse proxy and the
Web server, because the session is inside the intranet. The SSL
protocol, especially the encryption module, usually makes
heavy demands on CPU resources, and therefore the

performance of the private reverse proxy is better than the
public reverse proxy.

4.4.5. Summary of the Discussion
By implementing a proxy server, including the session manager
and the embedding engine, as a reverse proxy server, we can
support both different intranet users and the SSL protocol.

The reverse proxy server can be classified into public and
private reverse proxies. The private reverse proxy is much
better than the public reverse proxy from the viewpoints of
usability and also the SSL protocol support.

4.5. Collaboration Tools
Our system provides the following features to communicate
with other users. Figure 2 (a) shows examples of these
collaboration tools.

• Telepointer: A telepointer is displayed on a Web page by
using an IMG tag. When the mouse pointer moves on the
Web page, the document controller detects the movement
and sends it to the other nodes via the session manager.
The document controllers on the other nodes move the
telepointer by using a JavaScript method.

• Image annotation: When a user attaches an image to a
Web page, the document controller dynamically creates a
new layer for the image on the Web page.

• Text annotation: A user can position text on a Web page
as shown in Figure 2. First the user can create a new
colored panel within a layer in a text-annotation mode,
and then a text field will be created in the layer. The user
then can directly write text in the text field.

• Ink annotation: When a user moves a mouse pointer on a
Web page in the ink annotation mode, small colored
layers will be created along the path of the mouse
movement.

These functions are implemented in JavaScript by using
Dynamic HTML functions [13]. Many toolkits and frameworks
have been described for developing Java-applet-based
collaborative applications [7, 10, 11, 24, 25, 28, 29, 34, 36]. It is
also possible to implement other collaboration tools, such as a
shared chalkboard and chat functions, by using such toolkits or
frameworks.

4.6. Web Page Layout Sharing
The layout information in the HTML document is not the only
constraint on the display of Web pages. Browsers also use local
state information like font configurations and window sizes that
affects the display. There are two methods for sharing pages in
an environment in which page layouts can be changed
according to the window size and font configurations:

(1) Strict layout sharing

- 9 -

(2) Relaxed layout sharing

The following sections explain the above two methods and the
method actually used in our system.

4.6.1. Strict Layout Sharing
In a strict layout sharing system, the page layouts are
completely synchronized, and users see the same page in the
same layout. It is possible to achieve strict layout sharing in
Web browsers by synchronizing the window sizes and by
specifying fonts and text sizes for all objects in the Web pages
by using CSS (Cascading Style Sheets) [14] in advance. Fonts
and text sizes specified in CSS take precedence over a
browser’s font configurations. Therefore content designers can
strictly specify page layouts without consideration of the
browsers’ font configurations. However, there are some
disadvantages in the CSS-based strict layout sharing as follows.

• Users cannot see Web pages according to their own font
preferences. Different users naturally prefer different
configurations.

• It is extra work for content designers because they have to
specify fonts and text sizes for all objects in each Web
page.

• It is not possible to reuse existing content in which fonts
and text sizes are not specified in CSS.

4.6.2. Relaxed Layout Sharing
In a relaxed layout sharing system, the page layouts are not
synchronized, and users see the same page with different
layouts. In GroupWeb, a semantic telepointer is implemented as
one of their browser’s functions [17, 18]. The telepointer
indicates the same object even when the page layouts are
different between the shared browsers. Relaxed layout sharing
system like in GroupWeb can solve the problems described in
Section 4.6.1. However, it is difficult for relaxed layout sharing
systems to appropriately display text, images, and ink
annotations that are directly attached to a Web page as shown in
Figure 2. Such annotation functions are very useful to
communicate with other users in a collaborative environment.
(Tang reported that annotating text and graphics directly on
pages accounts for 65% of all actions in conventional
collaborative environments [35].)

4.6.3. Dynamic Strict Layout Sharing on Web
Browsers

As described in the previous sections, strict layout sharing has
to be implemented within Web browsers to support text, image,
and ink annotations on Web pages.

In the application shown in Figure 1, CSS font specifications
should not be used, avoiding the problems explained in Section
4.6.1. Our system realizes strict layout sharing by dynamically
synchronizing the agent’s page layout with the end user’s page

layout. Hence, end users can see Web pages according to their
font preferences.

The agent’s browser can display Web pages in the same layouts
as the end user’s layouts by using the following steps:

(1) When a master browser (the end user’s browser) loads a
new page, the document controller embedded in the page
extracts the font and text size information from all objects
in the Web page by using the DOM interface.

(2) The document controller sends the font information to the
session manager via the node manager. The session
manager sends it to the node manager of the slave browser
(the agent’s browser).

(3) According to the font information, the node manager of the
slave browser instructs the document controller to
dynamically change fonts and text sizes by using the DOM
interface.

The problem with this method is that the slave browser cannot
immediately display the Web page in the same layout as the
master browser’s after loading a new page. This is because the
slave browser first displays the Web page according to its own
font configuration, and after receiving font information from the
master browser, the slave browser dynamically changes the
page layout. In the application shown in Figure 1, the issue is
not a serious problem if the agent is aware of it in advance.

4.7. Implementation and Evaluation
The document controller, node controller, embedding engine,
and a part of the session manager have already been
implemented, and we can establish a collaborative environment
with normal Web browsers. By implementing and evaluating
our prototype systems, we found several issues as described
below.

(1) There are incompatibilities in the JavaScript between
Microsoft Internet Explorer and Netscape Communicator.
Hence, we have developed separate versions of the system
for the two major browsers, even though the basic
architectures are the same. Our architecture theoretically
allows us to establish a collaborative environment with an
Internet Explorer user and a Netscape Communicator user.
However, it is impossible to synchronize Web page layout,
because of the different implementations of the page layout
rendering engines between the two browsers. This implies
that telepointers and annotations cannot be displayed in
correct positions in such environments.

(2) We found that too many events are captured by the
document controller and the performance of the system is
harmed if a document controller sets up event handlers for
all of the objects in the Web page. We avoided this
problem by tuning up the event-handler-set-up code. For

- 10 -

example, we removed all mouse-move event handlers
from all objects except body objects. This is because a
body object represents the whole body of a Web page,
hence we can capture coordinates of the mouse pointer
from the body object, wherever on the Web page the
mouse pointer is positioned.

(3) The performance is poor for the ink annotation function in
the Internet Explorer, although it works well in Netscape
Communicator. This is because may colored layers are
dynamically created along the path of mouse movement,
and the performance in creating new layers depends on the
rendering engine of the browser.

5. Conclusions
This paper describes some requirements for building a
collaborative environment for supporting Web users by using a
real-time browser sharing technique. I classified the previously
proposed systems into three approaches: (1) client-based
approaches, (2) server-based approaches, and (3) proxy-based
approaches, and explained the features of each approach. I also
explained why the proxy-based approach is the best in order to
reuse the existing content and support normal Web browsers
without any modifications or plug-in installations, and our
system is accordingly designed using the proxy-based approach.

Some proxy-based systems have already been developed [6,
22]. Java applets are used to synchronize the URLs among the
shared browsers [6]. However, other operations, such as form
input and scrolling, cannot be shared, because Java applets
cannot detect such operations on Web pages. Our system
embeds not only Java applets but also JavaScript programs that
extract events from objects in a Web page and directly control
the objects by using the DOM interface. Therefore, our system
can synchronize not only URL transitions but also form input,
scrolling, and window operations. In addition, our system also
provides telepointers within Web pages, and allows users to
directly attach text, images, and ink annotations to Web pages.

This paper also discusses proxy configuration. Reverse proxies
are appropriate for supporting collaborative work through
firewalls and with the SSL protocol. The private reverse proxy
is the best for building a collaborative environment for call
center agents to use in supporting end users.

When font configurations are different among the shared
browsers, each browser displays Web pages in different layouts.
This paper describes a method for dynamically synchronizing
the page layout of a call center agent’s browser with an end
user’s browser. The method allows end users to see Web pages
according to their font preferences.

Our system allows developers to add collaborative functions to
existing Web applications with minimal efforts. The system is

acceptable for novice users, because the users do not have to
install any software in their clients in advance in order to use the
collaborative functions. They can use the collaborative function
only when they need help in their browsing. Future work will
involve supporting not only PC users but also other devices
such as PDAs and cellular phones.

Acknowledgements
The author would like to thank Dr. Toshio Souya for his
implementation of the embedding engine, and Younosuke Furui
for his implementation of part of the session manager. He
would also like to thank his colleagues in the laboratory for their
valuable comments.

References
[1] Aoki, Y., Ando, F., and Nakajima, A., “Web Operation

Recorder and Player,” Proc. of International Conference on

Parallel and Distributed Systems (IEEE ICPADS2000), Iwate
Japan, pp. 501-508, July 2000.

[2] Aoki, Y., Ando, F., and Nakajima, A., “Creating Web-
based Presentations by Demonstration,” IPSJ Journal, Vol.
42, No. 2, pp. 155-165, February 2001.

[3] Barrett, R., Maglio, P.P., and Kellem, D.C., “How to
Personalize the Web,” Proceedings of CHI’97, Atlanta, GA,
pp. 75-82, March 1997.

[4] Barrett, R., and Maglio, P.P., “Intermediaries: New Places
for Producing and Manipulating Web Content,” Proceedings

of 7th International World Wide Web Conference, Brisbane,
Australia, April 1998.

[5] Brandenburg, J., Byerly, B., Dobridge, T., Lin, J., Rajan,
D., and Roscoe, T., “Artefact: A Framework for Low-
overhead Web-based Collaborative Systems,” Proceedings of
CSCW’98, Seattle, Washington, pp. 189-196, November
1998.

[6] Cabri, G., Leonardi, L., and Zambonelli, F., “Supporting
Cooperative WWW Browsing: a Proxy-based Approach,”
Proceedings of the 7th Euromicro Workshop on Parallel and
Distributed Processing (PDP’99), Funchal, Portugal, pp. 138-
145, February 1999.

[7] Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., and
Seguin, C., “Java Object-Sharing in HABANERO - A new
framework for collaborative tool development uses any
platform that supports Java,” Commun. ACM, Vol. 41, No. 6,
pp. 69-76, ACM Press, NY, June 1998. Also available at
http://havefun.ncsa.uiuc.edu/habanero/.

[8] Flanagan, D., Java in a Nutshell: A Desktop Quick
Reference, O'Reilly & Associates, MA, February 1996.

[9] Frier, A.O., Karlton, P., and Kocher, P.C., The SSL

Protocol Version 3.0, Netscape Communications Corp.,

- 11 -

November 1996. Available at http://home.netscape.com/eng/
ssl3/draft302.txt.

[10] Fuentes, L., and Troya, J.M., “A Java Framework for
Web-based Multimedia and Collaborative Applications,”
IEEE Internet Computing, pp. 55-64, March-April 1999.

[11] Gall, U., and Hauck, F.J., “Promondia: A Java-based
Framework for Real-time Group Communication in the
Web,” Proceedings of the 6th International World Wide Web

Conference, Santa Clara, California, April 1997.

[12] Garfinkel, S., and Spafford, G., Web Security &
Commerce, O’Reilly & Associates, MA, June 1997.

[13] Goodman, D., Dynamic Html: The Definitive Reference,
O'Reilly & Associates, MA, July 1998.

[14] Graham, I.S., HTML Stylesheet Sourcebook, John Wiley &
Sons, NY, October 1997.

[15] Graham, T.C.N., “GroupSpace: Integrating Synchronous
Groupware and the World Wide Web,” Proceedings of IFIP

TC.13 International Conference on Human-Computer
Interaction (INTERACT’97), Sydney, Australia, pp. 547-554,
July 1997.

[16] Greenberg, S., and Roseman, M., “GroupWeb: A WWW
Browser as Real Time Groupware,” Companion Proceedings
of CHI ’96, British Columbia, Canada, pp. 271-272, ACM
Press, NY, April 1996. Available at http://www.acm.org/
sigchi/chi96/proceedings/shortpap/Greenberg4/sg3txt.htm.

[17] Greenberg, S., Gutwin, C., and Roseman, M., “Semantic
Telepointers for Groupware,” Proceedings of the Sixth
Australian Conference on Computer-Human Interaction

(OzCHI’96), Hamilton, New Zealand, pp. 24-27, November
1996.

[18] Greenberg, S., “Collaborative Interfaces for the Web,” in
Forsythe, C., Grose, E., and Ratner, J. (eds.), Human Factors
and Web Development, pp. 241-254, LEA Press, 1997.

[19] Gundavaram, S., CGI Programming on the World Wide
Web, O'Reilly & Associates, MA, March 1996.

[20] Gutwin, C., and Greenberg, S., “Design for Individuals,
Design for Groups: Tradeoffs Between Power and Workspace
Awareness,” Proceedings of CSCW’98, Seattle, Washington,
pp. 207-216, November 1998.

[21] Hunter, J., Crawford, W., and Ferguson, P. (eds.), Java
Servlet Programming, O'Reilly & Associates, MA, November
1998.

[22] Jacobs, S., Gebhardt, M., Kethers, S., and Rzasa, W.,
“Filling HTML Forms Simultaneously: CoWeb - Architecture
and Functionality,” Proceedings of the 5th WWW Conference,
Paris, France, May 1996. Available at

http://www5conf.inria.fr/fich_html/papers/P43/Overview.html
.

[23] Kobayashi, M., Shinozaki, M., Sakairi, T., Touma, M.,
Daijavad, S., and Wolf, C., “Collaborative Customer Services
Using Synchronous Web Browser Sharing,” Proceedings of

CSCW ’98, Seattle, Washington, pp. 99-108, ACM Press, NY,
November 1998.

[24] Lee, J.H., Prakash, A., Jaeger, T., and Wu, G., “Supporting
Multi-user, Multi-applet Workspaces in CBE,” Proceedings of
CSCW’96, Boston, pp. 344-353, November 1996.

[25] Marsic, I., and Dorohonceanu, B., “An Application
Framework for Synchronous Collaboration Using Java
Beans,” Proceedings of the Hawaii International Conference

on System Sciences (HICSS-32), Maui, Hawaii, January 1999.

[26] McKinley, P.K., Barrios, R.R., and Malenfant, A.M.,
“Design and Performance Evaluation of a Java-based
Multimedia Browser Tool,” Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems,
Austin, Texas, pp. 314-322, June 1999.

[27] McKinley, P.K., Malenfant, A.M., and Arango, J.M.,
“Pavilion: A Middleware Framework for Collaborative Web-
based Applications,” Proceedings of ACM Group’99,
Phoenix, Arizona, pp. 179-188, November 1999.

[28] Miura, M. and Tanaka, J., “A Framework for Event-
Driven Demonstration Based on the Java Toolkit,”
Proceedings of APCHI ’98 (Asia Pacific Computer Human
Interactions), pp. 331-336, Japan, July 1998.

[29] Moatti, Y., Orell, D., Rochwerger, B., Shuklin, G., and
Wecker, A., Remote AWT for Java. Available at
http://www.alphaworks.ibm.com/tech/remoteawtforjava.

[30] Netscape Communications Corp., Netscape's DDE
Implementation. Available at http://developer.netscape.com/
docs/manuals/communicator/DDE/index.htm.

[31] Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit,” ACM

Transactions on Computer Human Interaction, Vol. 3, Issue
1, pp. 66-106, ACM Press, NY, March 1996.

[32] Sakairi, T., Shinozaki, M., and Kobayashi, M.,
“CollaborationFramework: A Toolkit for Sharing Existing
Single-User Applications without Modification,” Proceedings
of APCHI’98 (Asia Pacific Computer Human Interactions),
Japan, pp. 183-188, July 1998.

[33] Shinozaki, M., Kobayashi, M., and Sakairi, T., “A Web-
based Application Framework of Synchronous
Collaboration,” Proceedings of International Conference on
Computer Communication, Tokyo, Japan, September 1999.

- 12 -

[34] Shirmohammadi, S., Oliveira, J.C., and Georganas, N.D.,
“Applet-based Telecollaboration: A Network-centric
Approach,” IEEE Multimedia Magazine, Vol. 5, No. 2, pp.
64-73, April-June 1998.

[35] Tang, J., “Findings from Observational Studies of
Collaborative Work,” International Journal of Man Machine
Studies, Vol. 34, No. 2, Academic Press, pp. 143-160,
February 1991.

[36] Trevor, J., Koch, T., and Woetzel, G., “MetaWeb:
Bringing Synchronous Groupware to the World Wide Web,”
Proceedings of the European Conference on Computer
Supported Cooperative Work (ECSCW’97), Lancaster, UK,
Kluwer Academic Publishers, Dordrecht, The Netherlands,
September 1997.

[37] W3C (World Wide Web Consortium), Document Object

Model. Available at http://www.w3.org/DOM/.

[38] Wolf, C.G., Lee, A., Touma, M., and Daijavad, S., “A
Case Study in the Development of Collaborative Customer
Care: Concept and Solution,” Proceedings of IFIP TC.13

International Conference on Human-Computer Interaction
(INTERACT’99), Edinburgh, UK, pp. 54-61, August-
September 1999.

[39] Zahavi, R., and Linthicum, D.S., Enterprise Application
Integration with CORBA Component and Web-based

Solutions, John Willey & Sons, NY, November 1999.

