
RZ 3162 (# 93208) 8/23/99
Computer Science/Mathematics 8 pages

Research Report

On Sliding Window Exponentiation

L. O'Connor

IBM Research
Zurich Research Laboratory
8803 R�uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside
publication, requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research

Almaden � Austin � Beijing � Haifa � T.J. Watson � Tokyo � Zurich

On Sliding Window Exponentiation

L. O'Connor

IBM Research, Zurich Research Laboratory, 8803 R�uschlikon, Switzerland

Abstract

The sliding window method is a general purpose algorithm to determine the exponentiation
ge in a general group. Let snk(e) and mnk(e) denote, respectively, the number of squarings
and multiplications required by the sliding window method when ge is computed using k-
bit windows, and e is a uniformly distributed n-bit exponent. In this paper we prove that
E[snk(e)] = n � k + O(1) and E[mnk(e)] = 2k�1 + n=(k + 1) + O(1), and further that both
distributions are concentrated around their respective means.

Keywords : Exponentiation; Cryptography; Formal languages; Combinatorial problems.

1 Introduction

The sliding-window method for (modular) exponentiation is a variant of the well-known b-ary
method [8], and is the `recommended method' for general exponentiation [9, p.617]. When
b = 2k, the 2k-ary method can be considered as parsing an exponent e into adjacent windows
of k-bits, where the least signi�cant window may cover less than k bits. The idea of the sliding-
window method is to select the placement of each k-bit window so that its most and least
signi�cant bit are equal to one. The advantage of such a partition over the 2k-ary method is
that (1) the number of windows is expected to be reduced as runs of zeroes may occur between
consecutive windows, and (2) the amount of precomputation is reduced as the windows only
represent odd powers. The precomputation requires one squaring and 2k�1�1 multiplications
[9, p.616], while the main computation loop requires wnk(e)� 1 multiplications, where wnk(e)
is the number of windows produced by the window partition. The exact number of squarings
will depend on k and the exponent length n, but will be between (n� 1)� (k� 1) and n� 1.
The sliding-window method for k-bit windows is shown in Figure 1.

Though the sliding window method has been used by practitioners since at least the early
80's [13], it did not begin to appear in the literature until later. The method is alluded to by
Bos and Coster [1], and we �nd the algorithm being reinvented a few years later by Hui and
Lam [6]. There is no mention of the sliding window method in Knuth [8], and some authors
still invent `improved' exponentiation algorithms without reference to the method (see [12] for
example).

References to analyses of the sliding window method appear to be scattered, and not widely
known. The average number of windows, E[wnk(e)], is approximately n=(k + 1) since the
average length of the precomputed exponents is (k � 1) bits, and on average a window will
be followed by approximately two zeros. Further, computational results from sampling in the
range of 512 � 1024 bits, even for a relatively small number of exponents, reveals the trend
that the number of windows is concentrated around n=(k+1). Thus it is now common to �nd
references stating that the k-bit sliding window method requires n=(k+1) windows on average
(see [4, 2]). However no average case analysis of wnk(e) was reported in [9, p.617]. The �rst
attempted analysis (we found) is due to Hui and Lam [6] who gave a recurrence for E[wnk(e)]
without proof or solution. Shortly after, K�oc [7] analysed two variants of the partitioning
method given in Figure 1 using Markov chains, and presented several tables of computational
results for various parameter choices. A thorough analysis of various average case parameters

Precompute g2i�1; 2 � i � 2k�1 ;
X 1; i (n� 1) ;
while i � 0 do

if ei = 0 then
X X2; i i� 1 ;

else

Find the longest string eiei�1 � � � et such that i� t+ 1 � k and et = 1

X X2i�t+1
� geiei�1���et; i t� 1 ;

�

od

output X ;

Figure 1: The sliding-window exponentiation method.

1

for the sliding window method was given by Cohen [3] for n-bit exponents e where the most
signi�cant bit is one (that is 2n�1 � e < 2n). No reference in [3] was made to either [6] or [7].

In this paper we extend the work of [10] with some results of [3] to determine the expectation
and variance of snk(e) and mnk(e) when e is a uniformly distributed n-bit exponent. We
show that both distributions are concentrated around their expectations, where E[snk(e)] =
n � k + O(1) and E[mnk(e)] = 2k�1 + n=(k + 1) + O(1). Throughout the paper we assume
that e is n bits in length, and that the sliding window method uses k bit windows, k � 2. To
emphasize these conditions s(e); m(e) and w(e) should be written as snk(e); mnk(e) and wnk(e)
but we will use the former notation for simplicity, and hope that no confusion arises.

2 The multiplication distribution

Since m(e) = 2k�1+w(e)�2 we may determine the distribution of m(e) from the distribution
of w(e). Let the generating function Gk(x; z) be de�ned as

Gk(x; z) =
X

n;m�0

anmx
nzm =

X
n;m�0

(2n � Pr(w(e) = m)) xnzm; (1)

so that anm is the number of n-bit binary strings e for which w(e) = m.

Theorem 2.1 If Gk(x; z) =
P

n;m�0 anmx
nzm then

Gk(x; z) =
1� 2x+ zx� zxk2k�1

(1� x� zxk2k�1)(1� 2x)
: (2)

Proof. Consider the following regular expression

Rk = R�
1R2 =

0 + 10k�1 +

k�2X
i=0

1(0 + 1)k�2�i10i
!�

�+
k�2X
i=0

1(1 + 0)i
!
:

R1 generates the single word 0 and all words of length k that start 1. Then R�
1 generates all

words corresponding to k-bit windows separated by runs of zeroes. R2 generates either the
empty string or a word beginning with 1, of length less than k, which corresponds to the case
where Ww(e) is less then k bits in length.

We now mark R1 for length and weight as follows: 0 is marked x, 10k�1 is marked zxk

meaning it has length k and corresponds to one nonzero window in the parse of the exponent,
and 1(0 + 1)k�2�i10i is similarly marked as zx2(x + x)k�2�i. Using the same rules for R2 we
have that

GR1(x; z) = x + zxk + zx2
k�2X
i=0

(x+ x)k�2�i = x+ zxk + zxk2k�2
�
2� 22�k

�
;

GR2(x; z) = 1 + zx

1� xk�12k�1

1� 2x

!
:

Since each substring in R1 and R2 is unique then GR1(x; z) and GR2(x; z) are the generating
functions for length and weight of R1 and R2 respectively. We need only derive the generating
function for R�

1. We observe that if e0 is any string generated by R�
1 then there is only one

way to combine the words of R1 to produce e0. Hence R�
1 is said to be unambiguous and it is

known [11, p.378] that given GR1(x; z) enumerates R1 then 1=(1�GR1(x; z)) enumerates R�
1.

The theorem follows from simplifying Gk(x; z) = 1=(1�GR1(x; z)) �GR2(x; z). 2

2

As a check on our derivation, we observe that Gk(x; 1) = 1=(1 � 2x), the generating func-
tion for length of all binary strings. For computational purposes, Gk(x; z) can be expanded
as a power series and the distribution of w(e), and hence m(e), examined. We summarize the
distribution of m(e) through its expectation and variance in the following corollary.

Corollary 2.1 Let m(e) = mnk(e) be the number of multiplications required by the sliding
window method to compute ge for the n-bit exponent e using k-bit windows. Then for a
uniformly distributed n-bit exponent e

E[mnk(e)] = 2k�1 � 2 +
n

(k + 1)
+

k(k � 1)

2(k + 1)2
+ o(1); (3)

Var[mnk(e)] =
2n

(k + 1)3
+
k(k3 + 4k2 � 19k � 18)

4(k + 1)4
+O(1): (4)

Proof. We will prove the corollary by considering the expectation and variance of w(e). To
this end, let Fk(x) be de�ned as Fk(x) =

P
n�0E[w(e)]x

n where

Fk(x) = G0
k(x=2; 1) =

@Gk(x=2; z)

@z

�����
z=1

=
x

(1� x)(2� x� xk)
: (5)

We �rst note that since

(2� x� xk) = (1� x)

1 +

1� xk

1� x

!
def
= (1� x)pk(x); (6)

the partial fraction expansion of Fk(x) then has the form

Fk(x) =
A

(1� x)2
+

B

(1� x)
+

q(x)

pk(x)
(7)

where q(x) is a polynomial of degree less than (k � 1). It is known [3, Lemma 2.2] that the
(k � 1) roots of the reected polynomial [5, p.325] associated with pk(x) are all less than 1,
so that [xn](q(x)=pk(x)) ! 0 with n. Thus we will only be concerned with �nding A and B.
Multiplying by (1�x)2 and setting x = 1 it follows that A = 1=(1+ pk(1)) = 1=(k+1). Since
(1� x) is a double root and we wish to avoid considering the roots of pk(x) explicitly, we will
determine B from the partial fraction expansion of Fk(x)�A=(1� x)2. It can be shown that
for k � 1,

Fk(x)�
A

(1� x)2
=

(k � 1)
�Pk�2

i=1 x
i
�
�
�Pk�2

i=1 ix
i
�
� 2

(k + 1)(2� x� xk)
=

B

(1� x)
+

q(x)

pk(x)

which yields the value of B to be

B =
(k � 1)

�Pk�2
i=1 x

i
�
�
�Pk�2

i=1 ix
i
�
� 2

(k + 1)pk(x)

������
z=1

=
(k � 1)(k � 2)� 4

2(k + 1)2
: (8)

Since E[w(e)] = A(n+ 1) +B + o(1), and E[m(e)] = 2k�1 +E[w(e)]� 2, we have proven (3).
To determine Var[m(e)], let Hk(x) = G00

k(x=2; 1) where

Hk(x) =
2xk+1

(1� x)(2� x� xk)2
=

2xk+1

(1� x)3pk(x)2
(9)

3

k 2 3 4 5 6 7 8 9 10
j�kj 0:5 0:707 0:823 0:885 0:922 0:944 0:956 0:969 0:976
Ck 0:296 0:148 0:058 0:0 �0:038 �0:065 �0:084 �0:098 �0:109

Table 1: Tabulation of the constants for Corollary 2.1.

and pk(x) is as in (6). We note that Var[(w(e)] = [xn](Hk(x) + Fk(x)) � ([xn]Fk(x))
2, and

Var[(m(e)] = Var[(w(e)]. The partial fraction expansion of Hk(x) can be shown to have the
form

Hk(x) =
2

(k + 1)2(1� x)3
�

2(1 + 3k)

(k + 1)3(1� x)2
+

r(x)

(1� x)pk(x)2
; (10)

which implies that

[xn]Hk(x) =
(n + 1)(kn+ n� 4k)

(k + 1)3
+O(1): (11)

Simplifying the expression for Var[(w(e)] in terms of [xn]Hk(x) and [xn]Fk(x) yields (4).
2

The formulas in the statement of Corollary 2.1 both contain low order terms, which we now
consider. The low order term in E[m(e)] corresponds to o(1) = O(j�kj

n), where �k < 1 and is
the root of largest modulus of xkpk(1=x) = 2xk � xk�1 � 1, the reected polynomial of pk(x).
The low order term ofVar[m(e)] corresponds to O(1) = Ck+O(nj�kj

n) where Ck is Ck=(1�x)
in the partial fraction expansion for Hk(x). The value of Ck was not determined in (10) as
the tedious algebra required to do so only yields a small increase in the accuracy of (4). Both
�k and Ck are tabulated in Table 1 for k in the range 2 � k � 10.

n k E[mnk(e)] Var[mnk(e)] 0:50 0:60 0:75 0:90 0:95 0:99
512 4 108.6 8.3 5 5 6 10 13 29
512 5 99.6 4.8 4 4 5 7 10 23
512 6 103.4 3.1 3 3 4 6 8 18
512 7 126.3 2.1 3 3 3 5 7 15
1024 4 211.0 16.5 6 7 9 13 19 41
1024 5 184.9 9.6 5 5 7 10 14 31
1024 6 176.6 6.1 4 4 5 8 12 25
1024 7 190.3 4.1 3 4 5 7 10 21

Table 2: The distribution of mnk(e) for n 2 f512; 1024g, and k in the range 4 � k � 7. The
columns show Æ(mnk(e); p); p 2 f0:50; 0:60; 0:75; 0:90; 0:95; 0:99g.

Table 2 shows E[m(e)] and Var[m(e)] for several relevant values of n and k, which were
calculated exactly by expanding Fk(x) and Hk(x) as power series. The table also gives a
measure of the deviation from the mean in terms of the function Æ(X; p) de�ned as

Æ(X; p) = min
d

"
�2

d2
< (1� p)

#
; (12)

4

which states that d is the smallest value for which Pr(jX � �j < d) > p according to bounds
derived by Chebyshev's inequality. Even using this bound we see that m(e) is concentrated
around its expectation, which is thus representative of the distribution as a whole.

Accurate statements concerning m(e) can be made using Table 2. For example when n =
1024 we �nd that E[m(e)] is minimized when k = 6, which is the usual criterion for selecting
k for a given n. The m(e) value for k = 6 and k = 7 are close, but the table shows that for
over half the exponents m(e) < (176:6+4) < 181 when k = 6, while m(e) > (184:9�5) > 179
when k = 7, indicating that k = 6 is the better choice. Further since Chebyshev's inequality
is a general bound, the deviation from E[m(e)] will be even smaller than as suggested in
Table 2, so the separation between m(e) for the cases of k = 6 and k = 7 will be more
pronounced in practice. When k = 6 is used, at least three quarters of all exponents will
require less than 176:6� 5 multiplications, and at least 99% of exponents will require no more
than 202 > (176:6+ 25) multiplications. On the other hand, almost all exponents will require
151 < (176:6� 25) multiplications.

Of course the optimal choice of k depends not only on m(e) but also on s(e), the number
of squarings. However in the next section we show that E[s(e)] = n + 1 � k + O(1) with
an essentially constant variance. Thus the di�erence in s(e) between various values of k
considered in practice (such as k = 5; 6; 7 for 1024-bit exponents) is small almost always, so
the dominant consideration is to minimize m(e). This statement will need to reconsidered in
groups where there is a signi�cant di�erence in the cost of a single squaring as compared to
a single multiplication. Over the integers, squaring is faster than multiplication by at most a
factor of 2 [9, p.597].

Our analysis in this section of m(e) is based on its relation to the number of windows w(e)
produced by the sliding window partition, given as m(e) = 2k�1+w(e)� 2. We then modeled
the distribution of w(e) via a regular expression, but other recurrences could have been used
for this purpose. For example, Hui and Lam [6] de�ned E[w(e)] = fn;k, and then stated that

fn;k =

8<
:

2
n
�1

2n
if 0 � n � k,

1

2
+

fn�1;k
2
+

fn�k;k
2

if k < n.
(13)

The k < n case follows from observing that if the leading bit of e is one then an additional
1 + fn�k;k windows will be required, and if the leading bit is zero then an additional fn�1;k

windows will be required. We now solve this recurrence and show equivalence to Gk(x; z).

Lemma 2.1 Let Fk(x) =
P

n�0 fn;kx
n be the generating function for the sequence fn;k. Then

Fk(x) =
x

(1� x)(2� x� xk)
: (14)

Proof. Assuming that fn;k = 0 for n < 0 then for all n, (13) can be written as

2fn;k = 1 + fn�1;k + fn�k;k � [n � 0]; (15)

where [n � 0] is a boolean predicate evaluating to 0 or 1. Then summing on xn it follows that

2Fk(x) =
X
n

xn +
X
n

fn�1;kx
n +

X
n

fn�k;kx
n �

X
n

[n � 0]: (16)

But since
P

n x
n �

P
n[n � 0] = x=(1� x) then

2Fk(x) = xFk(x) + xkFk(x) +
x

1� x
(17)

5

from which the lemma follows. 2

It is easy to verify that

G0
k(x=2; 1) =

@Gk(x=2; z)

@z

�����
z=1

= Fk(x): (18)

Similar recurrences to Fk(x) were also derived by Cohen [3], however we argue that the gen-
erating function Gk(x; z) is preferable over both alternatives since the variance of m(e) is
available directly from Gk(x; z)

3 The squaring distribution

To analyse the squaring distribution it is convenient to consider an exponent e being parti-
tioned into w(e) windows W1;W2; : : : ;Ww(e) of the form

e = 0j0W10
j1W20

j2 � � � 0jw(e)�1Ww(e)0
jw(e) (19)

where ji � 0 for 0 � i � w(e) (assuming the convention that 00 = �, the empty string),
and Wi = 1 or Wi = 1(1 + 0)di1 with 0 � di � k � 2 for 1 � i � w(e). From (19) and the

precomputation, the number of required squarings is s(e) = 1+
Pw(e)

i=1 (ji+jWij)
def
= 1+(n��(e))

where �(e) = j0 + jW1j. In the next theorem we use regular languages to determine the
distribution of �(e), and hence the distribution of s(e).

Theorem 3.1 Let s(e) = snk(e) be the number of squarings required by the sliding window
method to compute ge for the n-bit exponent e using k-bit windows. Then for a uniformly
distributed n-bit exponent e

E[snk(e)] = n+ 1� k � 2�k +O(n=2n);

Var[snk(e)] = 4 +
1� 2k

2k�1
�

4

22k
+O(n2=2n):

Proof. The theorem can be proved by determining the distribution of �(e). To this end,
consider the following regular expression R = R1 +R2 +R3 where

R = 0� + 0�

k�2X
i=0

1(1 + 0)i
!
+ 0�

10k�1 +

k�2X
i=0

1(0 + 1)k�2�i10i
!
(1 + 0)�:

Here R1 denotes the all-zero string, implying w(e) = 0 and �(e) = n; R2 denotes strings that
end with a window of length less than k, implying w(e) = 1, jW1j < k, j1 = 0 and �(e) = n;
�nally R3 denotes strings that have at least one window Wi for which (jWij+ji) � k, implying
w(e) � 1 and 0 < �(e) � n. Clearly all binary strings will be generated by either R1; R2 or
R3, and since these regular expressions are unambiguous, we may use the same enumeration
techniques as employed in Theorem 2.1.

As before we will use x to mark length, but z will be used to accumulate �(e). If no
window exists the expression will be marked using z0 = 1. Then R1 is marked to give
GR1(x; z) = 1=(1� x), and R2 is marked as

GR2(x; z) =
xz

1� xz

1� (2xz)k�1

1� 2xz

!
: (20)

6

Finally the summation term of R3 is marked as
Pk�2

i=0 (xz)(2xz)
k�2�i(xz)xi yielding

GR3(x; z) =
1

1� xz

zxk +

xk

4

1� (2z)k+1

1� 2z
� 2z � 1

!!
1

1� 2x
: (21)

Letting Gk(x; z) =
Q3

i=1GRi
(x; z) we �rst observe that Gk(x; 1) = 1=(1 � 2x) as expected.

Then it can be shown that for k � 2,

G0
k(x=2; 1) =

2k�1
�
1 + x +

Pk�2
i=0 x

i
�
� xk�1

�
x+ 2k�1 � 2

�
2k�1(1� x)(2� x)2

;

=
k + 21�k

(1� x)
+

r1(x)

(2� x)2
; (22)

implying [xn]G0
R(x=2; 1) = E[�nk(e)] = (k + 21�k) + O(n=2n) since [xn](2 � x)�2 = O(n=2n).

Similarly for k � 2, using partial fractions it can be shown that

G00
k(x=2; 1) =

4 + k(k � 1)

(1� x)
+

r2(x)

(2� x)3
; (23)

implying that [xn]G00
k(x=2; 1) = 4 + k(k � 1) +O(n2=2n) since [xn](2� x)�3 = O(n2=2n). The

theorem now follows by expanding Var[snk(e)] in terms of [xn]G0
k(x=2; 1) and [xn]G00

k(x=2; 1).
2

Since the variance is essentially constant we �nd that s(e) is concentrated around its ex-
pectation, even more so than m(e).

References

[1] J. Bos and M. Coster. Addition chain heuristics. Advances in Cryptology, CRYPTO 89,
Lecture Notes in Computer Science, vol. 218, G. Brassard ed., Springer-Verlag, pages
400{407, 1990.

[2] G Cohen, A. Lobstein, D. Naccache, and G. Z�emor. How to improve an exponentia-
tion black-box. Advances in Cryptology, EUROCRYPT 98, Lecture Notes in Computer
Science, vol. 1403, K. Nyberg, ed., Springer-Verlag, pages 211{220, 1998.

[3] H. Cohen. Analysis of the exible powering algorithm. submitted for publication, available
at http://www.math.u-bordeaux.fr/�cohen/.

[4] J. F. Dhem. Design of an eÆcient public key cryptographic library for RISC-based
smart cards. PhD thesis, Universit�e catholique de Louvain, 1998. Available at
http://www.dice.ucl.ac.be/crypto/dhem/dhem.html.

[5] R. L. Graham, D. E. Knuth, and O. Patshnik. Concrete Mathematics, A Foundation for
Computer Science, First Edition. Addison Wesley, 1989.

[6] L. Hui and K.-Y. Lam. Fast square-and-multiply exponentiation for RSA. Electronics
Letters, 30(17):1396{1397, 1994.

[7] C. K. K�oc. Analysis of sliding window techniques for exponentiation. Computers and
Mathematics with Applications, 30(10):17{24, 1995.

7

[8] D. E. Knuth. The Art of Computer Programming : Volume 2, Seminumerical Algorithms
(3rd Edition). Addsion Wesley, 1997.

[9] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
press, 1996.

[10] L. J. O'Connor. An analysis of exponentiation based on formal languages. Advances in
Cryptology, EUROCRYPT 99, Lecture Notes in Computer Science, vol. 1592, J. Stern,
ed., Springer-Verlag, pages 375{388, 1999.

[11] R. Sedgewick and P. Flajolet. An introduction to the analysis of algorithms. Addison-
Wesley Publishing Company, 1996.

[12] C. D. Walter. Exponentiation using division chains. IEEE Transactions on Computers,
47(7):757{765, 1998.

[13] M. Wiener. Personal communication.

8

