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Abstract

Multicarrier systems based on orthogonal frequency division multiplexing (OFDM) are well suited for ap-
plication in broadband radio access networks because of their intrinsic robustness for transmission over very
dispersive multipath fading channels. In this paper we examine a modulation technique related to OFDM,
calledfiltered multitone(FMT) modulation, which exhibits significantly lower spectral overlapping between
adjacent subchannels than other OFDM schemes, such asdiscrete multitone(DMT). In particular, we present
a comparison of the performance of FMT and DMT systems in the presence of phase noise introduced by the
frequency down-conversion circuit, as well as multipath fading of the radio channel. As a measure of system
performance we consider theachievable bit rate, which is evaluated by a general analytical procedure.

*This work has been supported in part by MURST (Roma, Italy) in the framework of the project “Variable rate mobile
multimedia systems”.



1 INTRODUCTION

Wireless local area networks (WLAN) and wireless asynchronous transfer mode (ATM) are emerging as
solutions for wideband wireless access. In particular, WLANs allow computer networks to be established
in dynamic environments. A first standard for WLANs where stations transmit information at high bit rates
(23.5 Mbit/s) was HIPERLAN Type 1 [1], issued by the European Telecommunications Standards Institute
(ETSI) RES-10 Group. A further development was HIPERLAN Type 2 [2], intended for local wireless
access to ATM networks. Moreover, it provides short-range broadband wireless access to Internet Protocol
(IP) networks and to the Universal Mobile Telecommunication System (UMTS). Another proposal in the
area of broadband radio access networks (BRAN) is HIPERLINK [3], which would provide point-to-point
interconnection at very high data rates, up to 155 Mbit/s, over distances up to 150 m.

The current proposal for HIPERLAN Type 2 physical layer (see ETSI Project BRAN #9) is based on
DMT modulation [4], which can be regarded as a version of OFDM employingM orthogonal subcarriers
for parallel transmission of blocks ofM symbols overM subchannels. The peculiarity of DMT systems
is that the modulation/demodulation processes are efficiently implemented by means of fast Fourier trans-
formations. Moreover, equalization of dispersive radio channels is obtained by the simple mechanism of
multiplying the signal at the output of each subchannel by one complex gain related to the channel fre-
quency response. However, this simple scheme requires that redundancy be inserted in the modulated signal
in the form of a prefix, the length of which is at least equal to that of the overall channel impulse response.

These considerations motivate the investigation of OFDM architectures with higher spectral efficiency.
In this paper, we consider a filter-bank [5] modulation scheme related to OFDM, which is calledfiltered mul-
titone (FMT) modulation [6, 7, 8], that exhibits significantly lower spectral overlapping between adjacent
subchannels than DMT. In FMT systems, orthogonality between signals transmitted over different subchan-
nels is obtained without the need for a cyclic prefix. Signal distortion is compensated by per-subchannel
equalization, which is achieved, for example, by employing decision feedback equalizers (DFE). In general,
some amount of excess bandwidth may be considered for transmission within a subchannel. Equalization
may then be performed by fractionally spaced equalizers, which simplifies the synchronization circuits at
the receiver [9].

In this paper, we focus on the performance comparison of DMT and FMT systems in the presence of
multipath fading, and phase noise introduced by the frequency down-conversion circuit at the receiver. For
a given channel, we consider theachievable bit rateas the measure of system performance [10], which is
given by the sum of the bit rates each subchannel is eligible to deliver with a certain bit error rate. System
performance is evaluated by an analytical procedure. With regard to other works on the same subject [11],
here we also take into account the filtering operations both at the transmitter and the receiver side.

In our study the radio channel is approximated as being static, i.e., the Doppler spread is considered
negligible within a few OFDM symbols corresponding to the transmission of one packet. However, because
of the large extensions of the environments where the stations are intended to operate, the channel dispersion
may be significant when compared to the modulation interval. For the channels considered here, it turns
out that in terms of achievable bit rates, FMT systems are significantly more efficient than DMT for a
number of subchannels limited to 128. This increase in efficiency is obtained at the expense of larger
implementation complexity due to per-subchannel equalization. The loss in efficiency experienced by DMT
systems becomes negligible for a large number of subchannels, e.g., more than256.

The paper is organized as follows. In Section 2 we illustrate the filter-bank system model on which we
rely for our analysis. In Section 3, features of the radio channel are discussed. In Section 4 we present
a unified analysis for the general modulation scheme. The signal-to-distortion ratio is evaluated for each
subchannel by taking into account the equalization achieved by appropriate filters. In Section 5 we compare
the performance of DMT and FMT systems for different values of the parameters involved.
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2 SYSTEM MODEL

Figure 1 illustrates the block diagram of the baseband equivalent of a filter-bank modulation scheme [5, 12].
In this system1 the m-th, 0 6 m < M, subchannel complex symbols data sequence,dm(i), i 2 Z,
with symbol rate1=T , is upsampled by a factor ofK (even) and filtered by a pulse shaping filter with
impulse responsehm(n). At the receiver side, dual transformations are implemented. We denote bygm(n)
the impulse response of them-th receive filter. In Fig. 1c(t) denotes the baseband equivalent channel
impulse response, and A/D and D/A denote, respectively, the analog-to-digital and the digital-to-analog
converters. In the A/D and D/A converter blocks, filtering operations are included that approximate ideal
square-root raised cosine low-pass filtering with Nyquist frequencyK=(2T ). The overall discrete-time
channel impulse response is denoted byco(n). The general structure of Fig. 1 allows us to introduce the
following multicarrier schemes.

A DMT System

DMT is the most popular and the conceptually simplest OFDM scheme. In this caseK = M, fm = m
T ,

0 6 m <M, andhm(n) is a rectangular pulse, namely

hm(n) =

�
1
T ; 0 6 n <M
0 ; otherwise

: (1)

Moreover,gm(n) = h�m(�n). Hence, all subchannels overlap in frequency. Perfect reconstruction of the
transmitted sequences is possible, i.e., neither interchannel interference (ICI) nor intersymbol interference
(ISI) is present on each subchannel, provided an ideal channel is considered.

To maintain orthogonality of signals over different subchannels, the transmitted frames in a DMT system
are usually extended with a prefix of lengthC. If L0+1 is the support ofco(n) in number of samples and we
chooseC > L0, it is well known [4] that both ICI and ISI can be avoided. From ananalytical point of view,
a DMT system with a cyclic prefix can be obtained from the scheme in Fig. 1 by assumingK = M + C,
fm = 0, 0 6 m <M, and

hm(n) =

�
1
T ej2�mn=M ; �C 6 n <M
0 ; otherwise

; (2)

gm(n) =

�
K
MT ej2�mn=M ; �M < n 6 0
0 ; otherwise

: (3)

For an efficient implementation of the DMT system, either with or without a prefix, carried out by an IDFT
we refer to several papers (see [4, 10, 13] and references therein for more details). Here we mention that,
in the DMT with a prefix, modulation of blocks ofM input symbols is performed by the IDFT at the rate
M=T 6 K=T = (M + C)=T . In fact, after modulation, each block ofM samples at the output of the
IDFT is cyclically extended by copying the lastC samples in front of the block. The sequence obtained is
transmitted over the channel at the rateK=T . At the receiver, blocks of samples of lengthK are taken. The
first C samples are discarded and the lastM samples of the block are demodulated by the DFT.

If C > L0, equalization of a DMT system is rather simple. In particular, with reference to the scheme of
Fig. 2a and in the absence of noise, we have

~xm(iK) = �mdm(i) (4)
1Notation. E [�],<[�],=[�], j, �,Z,R, (I)DFT stand for expectation, real part, imaginary part, imaginary unit, complex conju-

gate, set of integer numbers, set of real numbers, (inverse) discrete Fourier transform, respectively. A signal and its corresponding
Fourier transform are indicated by a lower and an upper-case letter, respectively.
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where the coefficientsf�mg, m = 0; : : : ;M � 1, are the samples of theM-point DFT of the channel
impulse response,2

�m =

L0X
k=0

T

K
co(k) e

�j2�m(k�k0)=M ; (5)

andk0 is a suitably chosen delay. Once the coefficientsf�mg are known, e.g. by inserting known data (pilot
symbols) at regular time intervals of length calculated on the basis of the maximum channel Doppler spread,
equalization on each subchannel is obtained for example by dividing~xm(iK) by�m. If C 6 L0, interchannel
interference arises and more complex equalization procedures, e.g., impulse response shortening [10, 14],
must be introduced.

One drawback of DMT systems is the loss in spectral efficiency equivalent to a factor of� = M=K.
The ideal condition� ' 1 is achieved only when the number of subchannels,M, is much larger than
the length of the channel impulse response, so that reduction in the data rate due to the cyclic extension
may be considered negligible. Moreover, in DMT systems, to limit distortionV virtual subchannels,3 i.e.,
subchannels with null input symbols, are usually inserted in the roll-off region of the D/A interpolation filter
[4].

B FMT System

The above considerations motivate the investigation of FMT systems, which are obtained from the scheme in
Fig. 1 by assuming that all subchannel filtershm(n) are equal to a givenprototype filter, sayhm(n) � h(n),
and equally spaced carrier frequencies, i.e.,fm = mK

MT . At the receiver, we choosegm(n) � g(n) =
h�(�n). If K = M we get a so-calledcritically sampledsystem [15], whereas ifK > M we get anon-
critically sampledsystem [5, 6]. Here the filterh(n) is a linear phase FIR filter appropriately designed
to have an out-of-band energy lower than 40 dB with respect to the in-band energy such that, to a good
approximation, we can write

H(f) =

(��� 1+e�j2�fMT=K

1+�e�j2�fMT=K

��� ; jf j < K
2MT

0 ; otherwise
; (6)

where� = 0:9. As the orthogonality conditions do not hold for transmission within a subchannel, it is
necessary to equalize the signal further to eliminate ISI introduced by both the filters and the channel. On
the other hand, residual ICI can be considered negligible even for moderate lengths of the prototype filter.
In order to simplify the receiver, we use an equalizer that consists of two parts (see Fig. 2b):

1. A complex gain that compensates for the gain/rotation introduced by the dispersive channel, as in
DMT systems. This coefficient can be determined by channel identification and can be made adaptive.
This procedure assumes that the channel coherence bandwidth is much greater than1=T so that each
subchannel approximately behaves like a flat-fading one.

2. A fixed DFE that compensates for the ISI. WhenK >M aT=2 fractionally spaced DFE can be used
[6] and the system is labelled FMT-FS (scheme shown in Fig. 2b).

By using standard procedures [9], this equalizer is designed by taking into account the impulse responses
of the prototype filterh(n), D/A and A/D filter gI(t), and an expected signal-to-noise ratio (SNR) for
transmission in the presence of the additive white Gaussian noise (AWGN)�(n) with power spectral density
(PSD) isN0. The SNR is defined as

SNR =
E
�
jr(n)j2

�
N0K=T

: (7)

2In this paper the discrete-time Fourier transform of the sequencex(n) with samples spaced ofT is defined asX(f) =P
1

n=�1 Tx(n)e�j2�fnT .
3UsuallyV is assumed to be even because the virtual carriers are evenly divided at the edges of the D/A and A/D filter frequency

responses.
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3 CHANNEL MODEL

The radio channel is represented by a baseband impulse response,c(t), given by

c(t) =

P�1X
p=0

cp Æ(t� �p) ; t 2 R ; (8)

whereP is the number of paths,cp is the complex gain of thep-th path,Æ(�) is the Dirac pulse and�p
is the delay of thep-th path. Herefcpg are assumed to be zero-mean, independent complex Gaussian
random variables with an exponentially power delay profile [16]. The actual number of paths,P, depends
on the root-mean-square (rms) delay spread,�c, of the channel and may be of the order of some hundred
of ns if large areas are considered [16]. Here, the rms delay spread normalized to the system bandwidth,
�� = �cK=T , will be considered. The channel impulse response, in the form given by (8), represents a
static channel, as we assume for the duration of one data packet. However, to get meaningful performance
measures, several realizations of the channel impulse response will be generated.

Possible non-ideal behaviors of the synchronization circuits may introduce further performance degra-
dation of the system. In particular, phase noise plays a fundamental role in OFDM signals transmitted in
the frequency region of 5 GHz (HIPERLAN) and 17 GHz (HIPERLINK) and possibly 40 GHz [11, 17].
In this work, we assume that the frequency down-conversion circuit consists both of a voltage controlled
oscillator and a digital phase-locked loop [18]. Hence, on the basis of the results reported in [19, 20], the
residual phase noise#(t) can be modeled by a stationary zero-mean Gaussian process independent of the re-
ceived microwave signal. The zero-mean assumption for#(�) implies that a possible phase offset is exactly
compensated at the receiver. The PSD of#(�) is given by4

S#(f) = 10�c# +

�
10�a# ; jf j 6 f 0#
10�(jf j�f

0
#)b#=(f

00
#�f

0
#)�a# ; jf j > f 0#

: (9)

Typical values for the parameters may bea# = 7:5, b# = 4, c# = 10:5, f 0# = 1 kHz andf 00# = 10 kHz
[19, 20]. The value ofc# determines the noise floor, which has been assumed at�105 dB. Because of
the values off 0# andf 00# , a reduction of the PSD of 40 dB/decade is assumed. However, various values
of the above parameters will be considered, as they are dependent on the tuner technology used. In the
baseband model of Fig. 1 the phase noise contribution is taken into account by the product termej#(n),
which introduces a phase rotation of#(n). By assuming the standard deviation of#(n), �# � 1, we can
write to a good approximation

ej#(n) ' 1 + j#(n) : (10)

4 DISTORTION EVALUATION

In this section we evaluate, by using a general analytical approach, the error on each subchannel of the
filter-bank modulation scheme of Fig. 1, which is given by

�m(i) � sm(i)� dm(i��) ; 0 6 m <M ; (11)

where� is the delay introduced by the system. In general�m(i) is due to modulation filters, multipath,
phase noise and channel noise. Here we assume that the input data sequences are complex-valued, zero-
mean, independent and wide-sense stationary random processes. This means that

E [dm(i)] = 0 and Sdmdn(f) = Sdm(f)Æmn ; (12)
4Some processes involved in the scheme in Fig. 1 turn out to be cyclostationary and their correlation function depends both on

the reference instant and the shift; consequently, their PSD is the bidimensional Fourier transform of the correlation function. The
spectral density of a stationary signal, instead, is a function of one variable and will be denoted byS(f).
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whereÆmn is the Kronecker delta. In this work, based on the central limit theorem [21], we also assume that
the error (11) is a Gaussian process. In particular, the real and the imaginary parts of�m(i) are zero-mean,
equal power, uncorrelated Gaussian random variables [22]. The power of (11) is given by

M�m = E
�
jsm(i)� dm(i��)j2

�
= E

�
jsm(i)j

2
�
�2<fE [sm(i)d

�
m(i��)]g+E

�
jdm(i��)j2

�
: (13)

As sm(i) = vm(i) + wm(i) (see Fig. 2b), the first two terms in (13) can be written as

E
�
jsm(i)j

2
�
= E

�
jvm(i)j

2
�
+ E

�
jwm(i)j

2
�
+ 2<fE [vm(i)w

�
m(i)]g (14)

and
E [sm(i)d

�
m(i��)] = E [vm(i)d

�
m(i��)] + E [wm(i)d

�
m(i��)] : (15)

For the computation of the expectations of the above signals we evaluate the corresponding average PSD
and then we calculate their integral over[0; 1=T ) [9]. For example, (14) becomes

Msm =

Z 1=T

0

�
Svm(f) + Swm(f) + 2<

�
Svmwm(f)

	�
df ; (16)

whereas (13) can be written as

M�m =

Z 1=T

0

h
Svm(f) + Swm(f) + Sd�m

(f) + 2<
n
Svmwm(f)� Svmd�m

(f)� Swmd�m
(f)

oi
df ;

(17)
whered�m denotes the sequencedm(i��). By using a general procedure, outlined in Appendix A, expres-
sion of each PSD in (16) and (17) is reported in Appendix B. For a given channel, the ratio

SNDRm =
Msm

M�m

(18)

represents the signal-to-error (noise plus distortion) power ratio on themth subcarrier.

5 NUMERICAL RESULTS

Here we report the results of a performance comparison of DMT and FMT systems in the presence of
multipath and phase noise. The results are obtained under the following assumptions:

I the available transmission bandwidth is the same for both DMT and FMT, equal toK=T = 25 MHz;

I ideal estimation of subchannel gains is performed, i.e., the channel impulse response isknown;

I ideal compensation of a possible phase offset is carried out at regular time intervals, thus the phase
noise has zero mean.

The phase noise spectral density has been chosen with the parameter values of Section 3. The D/A and A/D
low pass filters belong to the square-root Nyquist class with the following characteristics:(i) unitary gain,
(ii) Nyquist frequency= K=2T , (iii) roll-off factor = 0:07 and(iv) attenuation= �50 dB. For DMT the
cyclic prefix length,C, has been set atb5�� c; moreover, owing to the slowly decaying characteristics of
the prototype filter frequency response, the numberV of virtual carriers was selected equal to1=16 of the
number of subcarriersM, i.e., 4, 8, and 16 forM equal to 64, 128, and 256, respectively. Higher values of
V yield a greater signal-to-distortion ratio (SDR) at the expense of lower spectral efficiency. However, the
gain in SDR may be not significant compared to the SNR values of 20–25 dB considered here.

For FMT systems, only two virtual carriers have been assumed, independent of the numberM of sub-
channels. Per-subchannel equalization is achieved byT -spaced or fractionallyT=2-spaced DFE, as de-
scribed in Section 2. The number of coefficients of the linear feed-forward filters is chosen equal to 16 for
both FMT and FMT-FS. The lengths of the feedback filters are 15 and 8, respectively, for FMT and FMT-FS.
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It is interesting to report values of the signal-to-noise plus distortion ratioSNDRm at the decision point
of them-th subchannel. In particular, in Table 1 we report the normalized degradation,Dm, due to various
system and channel impairments,

Dm =
SNR

SNRDm
; (19)

for m =M=2, the central subchannel, and an ideal AWGN channel with SNR of 25 dB. We see that the best
performance is achieved by DMT and that FMT and FMT-FS achieve similar performances. We remark that
this behavior depends on the parameters chosen for the prototype and DFE filters. For example, an FMT-FS
system employing an ideal prototype filter with square-root raised cosine characteristic would also exhibit
zero normalized degradation. We also remark that the impact of phase noise is more apparent on FMT than
on DMT because of the longer impulse response of the prototype filter.

However, for a fair comparison of different systems, as a performance measure we consider the achiev-
able bit rate. We introduce the modified SNDRm, in dB, as [9, 10]

(SNDRm)dB = (SNDRm)dB � 12:8 ; (20)

where the value of12:8 dB has been calculated assuming a bit error rate of10�7 and a coding gain of 3 dB.
Then, the achievable bit rate�m on them-th subchannel for given channel characteristics is expressed as

�m =
1

T
log2(SNDRm + 1) ; [bit=s] ; (21)

where 1
T = 25

K [Mbaud] for FMT and 1
T = 25

M+C [Mbaud] for DMT. In turn, the achievable bit rate� is
obtained by summing up the values given by (21) over the active subchannels allocated for transmission, i.e.

� =

M�1�V=2X
m=V=2

�m ; [bit=s] : (22)

For comparison purposes we consider the complementary cumulative distribution function of� evaluated
over 500 realizations of the multipath fading channel. In our numerical results we have assumed channels
with three normalized rms delay spread, namely�� = 1, 2 and 4.

For three values of the phase noise (a# = 1 corresponds to no phase noise) and three values of the
multipath rms delay spread, in Figure 3 and 4 we show the achievable bit rate� for a DMT system with
M = 64 andM = 128, respectively. It is apparent that� improves asM increases. Moreover, the phase
noise may affect� especially for higher values ofM and when the channel has a low dispersion.

Similar curves are reported in Figure 5 and 6 for a FMT system withK =M = 64 andK =M = 128,
respectively. Also for FMT, for large values ofM, performance is affected by the presence of phase noise.
In any case, performance of FMT is significantly better than that of DMT.

Figure 7 shows a comparison between FMT and FMT-FS for different values ofM andK in the absence
of phase noise. From the results it appears that it is not desirable to chooseM much lower thanK. Slightly
better behavior of FMT-FS with respect to FMT is seen for higher values of�� . Similar behaviour is seen
also in the presence of phase noise (results not shown). Finally, Fig. 8 shows the same comparison of Fig. 7
whenK = 128 instead ofK = 64. As the DFE filters for FMT-FS have a shorter time span, FMT-FS yields
worse performance than FMT.

In conclusion all results show a higher spectral efficiency of FMT and FMT-FS with respect to DMT.
Indeed, for a given bandwidth, there is no need for a cyclic prefix nor for many virtual carriers in FMT due
to the negligible spectral overlapping between adjacent subchannels. This allows for reliable transmission
over subchannels where no transmission is possible for a DMT system, unless a substantially higher D/A e
A/D filter complexity is afforded. Moreover, the slightly better behavior of DMT in the presence of phase
noise is compensated and exceeded by the better spectral efficiency of FMT. However, we remark that the
better performance of FMT is achieved at the expense of additional computational complexity required by
per-subchannel equalization.
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In summary, the robustness and efficiency of FMT suggest its use for HIPERLAN and HIPERLINK
transceivers.

6 CONCLUSION

In this paper we have considered two transmission schemes, namely DMT and FMT, which are suitable for
application to HIPERLAN Type 2 and HIPERLINK transceivers. The performance of the two systems has
been investigated assuming very dispersive Rayleigh fading channels, and taking into account the presence
of phase noise introduced by the frequency tuner at the receiver side. The results, expressed in terms of
achievable bit rates, indicate that FMT exhibits a significantly higher efficiency than DMT, also in the pres-
ence of non negligible phase noise. For the application considered, satisfactory per-subchannel equalization
in FMT systems is achieved by a fixedT -spaced or fractionally-spaced DFE and a variable complex gain.

APPENDIX A

General Procedure

We briefly recall the basic steps of the spectral analysis method, which will be used in Appendix B.
We assume thatx(�) is a (in general) non-stationary process andy(�) is a random process obtained by a
linear transformation ofx(�). We want to evaluate the PSD ofy(�). For this purpose, we first determine the
relationship between their Fourier transforms,Y (�) andX(�), respectively. Then, we evaluate the product
Y (f)Y �(f � �) and formally replaceY (f)Y �(f � �) by Sy(�; f) andX(f 0)X�(f 0 � �0) by Sx(�0; f 0)
[21]. To motivate this approach we remark that, when dealing with cyclostationary processes, it is not always
possible to carry out spectral analysis by using the relationships that hold between the average PSDs.

APPENDIX B

Spectral Density Evaluation

By using the method outlined in Appendix A, five spectral evaluations are reported.
1. EVALUATION OF Svm(f). This evaluation is split into three steps:(i) PSD ofr(n), (ii) PSD of~r(n)
and(iii) PSD ofvm(i) (signals~r(�) andvm(i) are defined in Fig. 1).
(i) Sr(�; f): The Fourier transform ofr(n) is

R(f) = Co(f)

M�1�V=2X
m=V=2

Dm(f � fm)Hm(f � fm) : (B1)

Hence

R(f)R�(f � �) =Co(f)C
�
o (f � �)

M�1�V=2X
m1=V=2

Dm1(f � fm1)Hm1(f � fm1)

�

M�1�V=2X
m2=V=2

D�
m2

(f � �� fm2)H
�
m2

(f � �� fm2) ;

(B2)
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and

Sr(�; f) =Co(f)C
�
o (f � �)

M�1�V=2X
m1=V=2

Hm1(f � fm1)

�

M�1�V=2X
m2=V=2

H�
m2

(f � �� fm2)Sdm1dm2
(�+ fm2 � fm1 ; f � fm1) :

(B3)

From the assumption on the statistics of the input data sequences we get

Sdm1dm2
(�; f) = Sdm1

(�; f) Æm1m2 = Sdm1
(f)

1X
p=�1

Æ
�
�+

p

T

�
Æm1m2 ; (B4)

whereSdm1
(f) is the average PSD ofdm1(i) andÆ(t) is the Dirac delta. In conclusion, by introducing (B4)

in (B3), we obtain

Sr(�; f) = Co(f)C
�
o (f��)

M�1�V=2X
m=V=2

Hm(f�fm)H
�
m(f���fm)Sdm(f�fm)

1X
p=�1

Æ
�
�+

p

T

�
(B5)

(ii) S~r(�; f): By using (1) approximation (10), (2) the statistical independence amongr(n), #(n) and�(n),
and (3)E [#(n)] = E [�(n)] = 0, we get

S~r(�; f) = Sr(�; f) + [Sr(�; f
0)� S#(f

0)](�; f) + S�(�; f) ; (B6)

where� denotescyclic convolution[23].
(iii) Svm(�; f): We obtain

Vm(f) = �m

1X
h=0

QFF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�
~R

�
f + fm +

h+ 2k

T

�
; (B7)

and

Vm(f)V
�
m(f � �) = j�mj

2
1X

h1=0

Q
FF

�
f +

h1
T

�K=2�1X
k1=0

Gm

�
f +

h1 + 2k1
T

�
~R

�
f + fm +

h1 + 2k1
T

�

�
1X

h2=0

Q�
FF

�
f � �+

h2
T

�K=2�1X
k2=0

G�
m

�
f � �+

h2 + 2k2
T

�
~R�
�
f � �+ fm +

h2 + 2k2
T

�
;

(B8)
which yields

Svm(�; f) = j�mj
2

1X
h1=0

Q
FF

�
f +

h1
T

�K=2�1X
k1=0

Gm

�
f +

h1 + 2k1
T

� 1X
h2=0

Q�
FF

�
f � �+

h2
T

�

�

K=2�1X
k2=0

G�
m

�
f � �+

h2 + 2k2
T

�
S~r

�
��

h2 � h1
T

�
2k2 � 2k1

T
; f + fm +

h1 + 2k1
T

�
:

(B9)
As S~r(�; f) is composed of three additive contributions [due, respectively, tor(�), �(�) and#(�)], we get,
respectively

Svm(�; f) = Sa
vm(�; f) + Sb

vm(�; f) + Sc
vm(�; f) : (B10)
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Now we start with the evaluation ofSb
vm(�; f). By using (B5), after some algebraic manipulations we obtain

Sb
vm(�; f) = j�mj

2

Z K=T

0

M�1�V=2X
n=V=2

(
Sdn(f

0 � fn)S#(f + fm � f 0)

1X
h1=0

Q
FF

�
f +

h1
T

�

�

K=2�1X
k1=0

Gm

�
f +

h1 + 2k1
T

�
Co

�
f 0 +

h1 + 2k1
T

�
Hn

�
f 0 � fn +

h1 + 2k1
T

�

�

1X
h2=0

Q�
FF

�
f � �+

h2
T

�K=2�1X
k2=0

G�
m

�
f � �+

h2 + 2k2
T

�
C�
o

�
f 0 � �+

h2 + 2k2
T

�

�H�
n

�
f 0 � fn � �+

h2 + 2k2
T

�)
df 0

1X
p=�1

Æ
�
�+

p

T

�
:

(B11)
Moreover, by taking into account the periodicity of the functions in (B11), we further obtain

Sb
vm(�; f) = S

b
vm(f)

1X
p=�1

Æ
�
�+

p

T

�
; (B12)

where

S
b
vm(f) = j�mj

2

Z K=T

0

M�1�V=2X
n=V=2

(
Sdn(f

0 � fn)S#(f + fm � f 0)

�

������
1X

h=0

Q
FF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�
Co

�
f 0 +

h+ 2k

T

�
Hn

�
f 0 � fn +

h+ 2k

T

�������
2)

df 0 :

(B13)
It is apparent that (B13) yields the PSDSa

vm(�; f) by lettingS#(f) =
P1

p=�1 Æ(f + pK=T ). The result is

Sa
vm(�; f) = S

a
vm(f)

1X
p=�1

Æ
�
�+

p

T

�
; (B14)

where

S
a
vm(f) = j�mj

2

M�1�V=2X
n=V=2

Sdn (f + fm � fn)

�

������
1X

h=0

Q
FF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�
Co

�
f + fm +

h+ 2k

T

�
Hn

�
f + fm � fn +

h+ 2k

T

�������
2

:

(B15)
For the evaluation ofSc

vm(�; f) we introduce the PSD of noise�, S�(f) = N0, in (B9) to obtain

Sc
vm(�; f) = S

c
vm(f)

1X
p=�1

Æ
�
�+

p

T

�
; (B16)

where

S
c
vm(f) = N0j�mj

2

������
1X

h=0

Q
FF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�������
2

: (B17)
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2. EVALUATION OF Swm(f). Sequencewm(i) is obtained fromdm(i) by filtering operations; hence it is
immediate to write [21]

Swm(f) = jQ
FB
(f)j2 Sdm(f) : (B18)

3. EVALUATION OF Svmwm(f). By applying the general procedure, we get

Vm(f)W
�
m(f � �) =�m

1X
h=0

Q
FF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�
~R

�
f + fm +

h+ 2k

T

�
�Q�

FB
(f � �)D�

m(f � �)ej2�(f��)�T

(B19)

which yields

Svmwm(�; f) =�m

1X
h=0

QFF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�

�Q�
FB
(f � �) ej2�(f��)�TS~rdm

�
�+ fm +

h+ 2k

T
; f + fm +

h+ 2k

T

�
:

(B20)

Now we observe that the correlation between~r(�) anddm(�) is

E [~r(t+ �)d�m(t)] = E [[r(t+ �) + �(t+ �)] [1 + j#(t+ �)]d�m(t)] = E [r(t+ �)d�m(t)] ; (B21)

so that in (B20) we may replaceS~rdm(�; f) with Srdm(�; f), whose expression is

Srdm(�; f) = Co(f)Hm(f � fm)Sdm(f � fm)
1X

p=�1

Æ
�
�� fm +

p

T

�
: (B22)

The result is

Svmwm(�; f) = Svmwm(f)

1X
p=�1

Æ
�
�+

p

T

�
; (B23)

where

Svmwm(f) = �m Sdm(f)Q
�
FB
(f) ej2�f�T

�
1X

h=0

Q
FF

�
f +

h

T

�K=2�1X
k=0

Gm

�
f +

h+ 2k

T

�
Co

�
f + fm +

h+ 2k

T

�
Hm

�
f +

h+ 2k

T

�
:

(B24)
4. EVALUATION OF Svmd�m

(f). It is apparent that this proof can be obtained as a particular case of the
previous one. The result is

Svmd�m
(�; f) = Svmd�m

(f)

1X
p=�1

Æ
�
�+

p

T

�
; (B25)

where
Svmd�m

(f) = Svmwm(f)=Q
�
FB
(f) : (B26)

5. EVALUATION OF Swmd�m
(f). Aswm(i) is obtained fromd�m(i) by filtering operations, we get

Swmd�m
(f) = QFB(f)Sdm(f) : (B27)

REMARKS ON NUMERICAL COMPUTATION. The above formulas seem to require an extremely high
computational complexity. Hence, it is worthwhile to say a few words about how to evaluate them in a
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reasonable computing time. This issue is relevant because each value of SNDRm must be evaluated for
several realizations of the radio channel (typically 500 or more) in order to get fair average performance
for a dynamic environment. The method adopted is very simple. First, we observe that the PSDs involved
in (16) and (17) are very smooth (thanks to the fact the input sequences are assumed white) and a limited
number of abscissas is required to evaluate the integrals. A precision of approximately0:1 dB is obtained
experimentally by using just15 points in the numerical integration procedure. Hence, the various Fourier
transforms need to be evaluated only on a limited set of frequencies. In particular these functions are
evaluated only once, and stored in memory. In this way, computing time is reduced significantly.
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DMT FMT FMT-FS
no phn phn no phn phn no phn phn

K = 64 0:0 1:0 1:5 2:3 1:5 2:3

K = 128 0:0 1:8 1:6 3:1 1:8 3:2

K = 256 0:0 3:2 2:6 5:2 2:9 5:4

Table 1: Normalized degradationDm, in dB, for the central subchannel (m = M=2), due to noise and
distortion in the absence (no phn) and in the presence (phn) of phase noise (a# = 7:5). The channel is
AWGN with a SNR of 25 dB. Moreover,M = K for DMT and FMT, whereasM = b1516 Kc for FMT-FS.
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Figure 1: Baseband block diagram of a filter-bank modulation system: (a) transmitter and radio channel, (b)
receiver.
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Figure 3: Achievable bit rate for DMT for various choices ofa# and�� . K = M = 64, V = 4, f 0# = 1
kHz, f 00# = 10 kHz, b# = 4, c# = 10:5, SNR= 25 dB.
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Figure 4: Achievable bit rate for DMT for various choices ofa# and�� . K = M = 128, V = 8, f 0# = 1
kHz, f 00# = 10 kHz, b# = 4, c# = 10:5, SNR= 25 dB.
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Figure 5: Achievable bit rate for FMT for various choices ofa# and�� . K =M = 64, V = 2, f 0# = 1 kHz,
f 00# = 10 kHz, b# = 4, c# = 10:5, SNR= 25 dB.
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Figure 6: Achievable bit rate for FMT for various choices ofa# and�� . K = M = 128, V = 2, f 0# = 1
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Figure 7: Comparison, in terms of achievable bit rate, between FMT and FMT-FS. Solid lines: FMT with
K =M = 64, DFE(16,15); dashed lines: FMT-FS withK = 64, M = 60, DFE(16,8).
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Figure 8: Comparison, in terms of achievable bit rate, between FMT and FMT-FS. Solid lines: FMT with
K =M = 128, DFE(16,15); dashed lines: FMT-FS withK = 128, M = 120, DFE(16,8).
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