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(0,G/I) codes are a subclass of MTR codes

R. D. Cideciyan and E. Eleftheriou

IBM Research, Zurich Research Laboratory,

Säumerstrasse 4, 8803 Rüschlikon, Switzerland

Abstract: Maximum transition run (MTR) codes are defined that avoid
quasicatastrophic error propagation in Viterbi detectors matched to partial response channels
with spectral nulls both at DC and the Nyquist frequency. It is shown that the new class of
MTR codes includes (0,G/I) codes as a subclass. 

Introduction: (0,G/I) codes [1] are constrained codes that facilitate gain and timing
recovery and avoid quasicatastrophic error propagation [2] in Viterbi detectors matched to
partial response channels with spectral nulls both at DC and the Nyquist frequency. The
G-constraint limits the run of 0’s in the encoder output to G, whereas the I-constraint limits
the run of 0’s in both the odd and even interleaves of the encoder output to I. In general, 

. Figure 1 shows the (0,G/I) encoder followed by the  precoder and theG [ 2I 1/(1/D2)
partial response channel represented by the polynomial , where  is ah(D) = (1 − D2)f(D) f(D)
generalized partial-response polynomial that may have spectral nulls, if any, only at DC
and/or the Nyquist frequency. At the input of the partial response channel in this
configuration, the G-constraint limits the runs of identical and alternating symbols to G+2,
whereas the I-constraint limits the run of identical symbols in both interleaves to I+1.

MTR(j=2,k) codes eliminate dominant error sequences to enhance the performance of
magnetic recording systems [3]. At the input of the  precoder, the j-constraint limits1/(1/D)
the run of 1’s in the MTR encoder output sequence to j, whereas the k-constraint limits the
run of 0’s in the MTR encoder output sequence to k. MTR(j=2,k) codes, however, suffer from
rate loss. MTR codes satisfying a j=2 or 3 time-varying constraint [4], [5] as well as
MTR(j=3,k) codes [6] both allow a further increase in code rate. Until now, (0,G/I) and MTR
codes have been studied independently. The purpose of this paper is to introduce a new
constraint into MTR codes in order to avoid quasicatastrophic error propagation, and
consequently to reveal a connection between (0,G/I) and MTR codes.

Pairs constraint: Quasicatastrophic error propagation is inherent in maximum
likelihood sequence detection for partial response channels with spectral nulls. In general,
MTR(j,k) codes do not avoid quasicatastrophic error propagation in Viterbi detectors matched
to partial response channels with spectral nulls both at DC and the Nyquist frequency. The
k-constraint avoids channel input error sequences that have spectral energy only at DC,
whereas the j-constraint avoids channel input error sequences that have spectral energy only
at the Nyquist frequency. An additional constraint is needed to limit the maximum length of
channel input error sequences of type ... 1 0 1 0 1 0 ... and ... –1 0 –1 0 –1 0 ...  that have
spectral energy both at DC and the Nyquist frequency. To this end we introduce a constraint
at the input of the  precoder that limits the maximum number of consecutive pairs1/(1/D)
of 0’s or 1’s (“twins”) in the MTR encoder output to t pairs. For example, the sequence ... 0 0

 



1 1 0 0 1 1 1 1 ... would be allowed if t=5, whereas it would not be allowed if t=4. The
t-constraint limits the length of sequences of type ... a1 1 a2 1 a3 1 a4 1 a5 ... and ... a1 0 a2 0 a3 0
a4 0 a5 ... , , at the input of the partial response channel to . It is worthai c {0, 1} 2t + 3
pointing out that in general  and . Figure 2 shows the MTR(j,k,t) encoderj [ 2t + 1 k [ 2t + 1
followed by the  precoder. A similar constraint has been used in [4] and [6] to1/(1/D)
eliminate periodic quasicatastrophic sequences of type ... 0 0 1 1 0 0 1 1 0 0 ... at the input of
the  precoder for E2PR4 and modified E2PR4 systems. Note though that for 1/(1/D) j m 4
these sequences are not necessarily periodic as claimed in [4].

Capacity of MTR sequences: Sequences satisfying a MTR(j,k,t) constraint can be
exhaustively characterized by state transition diagrams. We label the states with 3-tuples
(x,y,z), where x is the runlength of 1’s ending at the current state, y is the runlength of 0’s
ending at the current state, and z is the runlength of sequences of type ... a5 a5 a4 a4 a3 a3 a2 a2 a1

a1 or ... a5 a5 a4 a4 a3 a3 a2 a2 a1 ending at the current state. For example, ...1 0 0 0 1 1 1 1 leads
to the state (4,0,6), whereas ...1 0 0 0 1 1 1 1 0 leads to the state (0,1,7), indicating that there
is a transition from the state (4,0,6) to the state (0,1,7) labeled with 0. The capacity of a
constrained system represents the maximum achievable code rate of an encoder generating
constrained sequences.  It is given by , where  is the greatest reallog2 kmax(A) kmax(A)
eigenvalue of the nonnegative adjacency matrix A associated with a finite-state transition
diagram that presents the constrained system [7]. The capacity of the constrained system of
MTR(j,k,t) sequences has been computed from the adjacency matrix associated with state
transition diagrams for MTR(j,k,t) constraints that have been constructed. Tables 1-4 list the
capacity of MTR(j,k,t) constraints for various values of j, k, and t by truncating the numbers
after the sixth digit following the decimal point.

Fig. 1    Block diagram of (0,G/I) constrained partial response channel.

Connection between (0,G/I) and MTR codes: For our purposes here, the (0,G/I) code
is defined as the set of all allowable bi-infinite sequences at the output of the 1/(1/D2)
precoder following the (0,G/I) encoder shown in Fig. 1. Similarly, the MTR(j,k,t) code is
defined as the set of all allowable bi-infinite sequences at the output of the 1/(1/D)
precoder following the MTR(j,k,t) encoder shown in Fig. 2. In other words, the code is
defined in both cases as the constrained system at the partial response channel input. 

Fig. 2    Block diagram of MTR(j,k,t) constrained partial response channel.

Proposition: (0,G/I) codes are a subclass of MTR(j,k,t) codes.

Proof: The key observation leading to this result is that the  precoder1/(1/D2)
following the (0,G/I) encoder can be represented as the serial concatenation of two 1/(1/D)
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   Encoder
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 MTR(j,k,t)
  Encoder
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precoders as shown in Fig. 3. It can be readily shown that the G-constraint at the output of the
(0,G/I) encoder translates into the j-constraint, , as well as the k-constraint, ,j = G + 1 k = G + 1
at the output of the first  precoder in Fig. 3. Similarly, the I-constraint at the output1/(1/D)
of the (0,G/I) encoder translates into the t-constraint, , at the output of the first t = I 1/(1/D)
precoder in Fig. 3. Therefore, the (0,G/I) code is identical to the MTR(G+1,G+1,I) code.
Clearly then, the class of (0,G/I) codes is within the larger class of MTR(j,k,t) codes.

Fig. 3    Connection between (0,G/I) and MTR(j,k,t) constraints.

As the capacity of a constrained system is not affected by the presence of a precoder, a
direct consequence of the proposition is that the capacity of the (0,G/I) constrained system is
equal to the capacity of the MTR(G+1,G+1,I) constrained system. This can be readily
verified by comparing the capacity of the (0,G/I) constraint (see e.g. [8]) with the capacity of
the corresponding MTR(G+1,G+1,I) constraint in Tables 1-4. Finally, the connection
between (0,G/I) and MTR codes suggests a new approach for constructing a (0,G/I) code that
employs the  precoder instead of the commonly used  precoder. 1/(1/D) 1/(1/D2)

Conclusion: MTR codes that satisfy an additional constraint to avoid
quasicatastrophic error propagation in partial response systems have been introduced. The
capacity of this new class of MTR(j,k,t) codes has been computed. It has been demonstrated
that (0,G/I) codes and MTR(j,k,t) codes are intimately related. 
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TABLE 1

Capacity of MTR(2,k,t) constraints, j=2

--

--

--

0.860525

0.869204

0.872960

0.874618

0.875360

0.875694

0.875846

0.875915

--

--

0.839656

0.859157

0.867323

0.870693

0.872139

0.872753

0.873022

0.873139

0.873190

--

--

0.836644

0.855144

0.862591

0.865673

0.866995

0.867569

0.867820

0.867929

0.867978

--

0.786634

0.831134

0.847904

0.854013

0.856337

0.857283

0.857653

0.857803

0.857863

0.857887

--

0.772712

0.814167

0.828494

0.833940

0.836133

0.837013

0.837377

0.837527

0.837589

0.837614

0.637088

0.747205

0.781989

0.790071

0.793352

0.794181

0.794533

0.794624

0.794662

0.794672

0.794677

0.551463

0.650899

0.679286

0.688789

0.692203

0.693470

0.693948

0.694130

0.694199

0.694225

0.694235

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

0.405685

1

2

3

4

5

6

7

8

9

10

11

87654321t

k

TABLE 2

Capacity of MTR(3,k,t) constraints, j=3

--

--

--

0.932231

0.939691

0.942654

--

--

0.912597

0.931518

0.938345

0.941002

--

--

0.910964

0.928302

0.934762

0.937201

--

0.858590

0.907863

0.922734

0.928056

0.929879

--

0.850147

0.893311

0.907137

0.911889

0.913612

0.694241

0.834520

0.867061

0.875696

0.878139

0.878850

0.637088

0.747205

0.781989

0.790071

0.793352

0.794181

0.551463

0.5514630
.551463

0.551463

0.551463

0.551463

0 551463

1

2

3

4

5

6

87654321t

k

 



0.944341

0.944543

0.944626

0.944661

0.942439

0.942599

0.942662

0.942687

0.938539

0.938689

0.938749

0.938772

0.930778

0.930865

0.930896

0.930908

0.914476

0.914563

0.914595

0.914607

0.879120

0.879138

0.879144

0.879145

0.794624

0.794662

0.794672

0.794677

0.551463

0.551463

0.551463

0.551463

8

9

10

11

 



TABLE 3

Capacity of MTR(4,k,t) constraints, j=4

--

--

0.955858

0.965677

0.969965

0.971883

0.972754

0.973154

0.973338

0.973423

0.973462

--

0.932243

0.955281

0.964625

0.968639

0.970393

0.971168

0.971514

0.971670

0.971739

0.971771

--

0.930853

0.952674

0.961585

0.965376

0.967037

0.967776

0.968108

0.968258

0.968325

0.968356

0.871955

0.928185

0.948104

0.955975

0.959137

0.960445

0.960999

0.961233

0.961333

0.961375

0.961393

0.864320

0.915723

0.934253

0.941533

0.944539

0.945812

0.946359

0.946595

0.946698

0.946742

0.946762

0.850147

0.893311

0.907137

0.911889

0.913612

0.914243

0.914476

0.914563

0.914595

0.914607

0.914612

0.772712

0.814167

0.828494

0.833940

0.836133

0.837013

0.837377

0.837527

0.837589

0.837614

0.837625

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

0.617446

2

3

4

5

6

7

8

9

10

11

12

87654321t

k

TABLE 4

Capacity of MTR(5,k,t) constraints, j=5

--

--

0.968263

0.978607

0.983009

0.984952

--

0.943204

0.967752

0.977687

0.981801

0.983581

--

0.941942

0.965442

0.974822

0.978755

0.980449

0.879146

0.939505

0.961366

0.969628

0.972929

0.974273

0.871955

0.928185

0.948104

0.955975

0.959137

0.960445

0.858590

0.907863

0.922734

0.928056

0.929879

0.930538

0.786634

0.831134

0.847904

0.854013

0.856337

0.857283

0.650899

0.650899

0.650899

0.650899

0.650899

0.650899

2

3

4

5

6

7

87654321t

k

 



0.985820

0.986210

0.986387

0.986467

0.986504

0.984354

0.984693

0.984842

0.984908

0.984938

0.981189

0.981515

0.981659

0.981723

0.981752

0.974828

0.975059

0.975156

0.975196

0.975213

0.960999

0.961233

0.961333

0.961375

0.961393

0.930778

0.930865

0.930896

0.930908

0.930912

0.857653

0.857803

0.857863

0.857887

0.857897

0.650899

0.650899

0.650899

0.650899

0.650899

8

9

10

11

12

 


