
RZ 3202 (# 93248) 01/17/00
Computer Science/Mathematics 9 pages

Research Report

Optimistic Asynchronous Byzantine Agreement

Klaus Kursawe

IBM Research
Zurich Research Laboratory
8803 R�uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside
publication, requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research

Almaden � Austin � Beijing � Haifa � T.J. Watson � Tokyo � Zurich

Optimistic Asynchronous Byzantine Agreement

Klaus Kursawe

IBM Research, Zurich Research Laboratory, 8803 R�uschlikon, Switzerland

Abstract

Agreement problems are a fundamental building block for constructing reliable distributed systems.
While robust and eÆcient protocols exist in the crash-failure setting, protocols resilient against a
Byzantine adversary tend to have problems with either eÆciency or security.

This paper proposes an optimistic approach to the Byzantine agreement problem, combining the
eÆciency of fully synchronous protocols with the robustness of asynchronous ones. If the system
satis�es certain timing assumptions, and all parties are honest (the optimistic case), the protocol
reaches optimal performance.
Otherwise, if the timing assumptions are violated or parties become corrupted the protocol invokes
an asynchronous \fallback" protocol. Neither liveness nor security are violated in the transition, and
the performance overhead is minimal.

Furthermore, no expensive cryptographic operations are needed in the optimistic case, unlike in most
practical Byzantine agreement protocols. Thus, the optimistic approach gives a maximum of security
while being more eÆcient than most (less secure) protocols.

Keywords: Asynchronous Consensus, Byzantine Faults, Optimism, Hybrid model.

1 Introduction

When modeling a reliable distributed system, one of the most important factors one has to consider
lies in the underlying timing assumptions. On the one hand, a fully synchronous system allows for
nice, simple and fast algorithms; on the other hand, timing assumptions are dangerous to rely on,
especially in large scale, heterogeneous networks that might be inuenced by an adversary. This is
the case for the Internet, where the performance of the network and the connected computers has a
high variety, and maliciously slowing down individual components is relatively easy. Asynchronous
protocols are robust against timing misbehavior, and an adversary cannot prevent the protocol from
succeeding by slowing down the network. This stability comes with a price, however; although most
asynchronous agreement protocols do not su�er a signi�cant slowdown in the presence of adversaries,
they are slower than their synchronous counterparts if nothing goes wrong.

This paper presents an approach that combines the eÆciency of the synchronous system with the
reliability of the asynchronous one to solve the Byzantine agreement problem. In the optimistic case,
i.e., if the protocol is not disturbed by adversaries and all timing assumptions hold, the protocol
terminates as eÆciently as any synchronous protocol; otherwise, the protocol is slowed down, but
consensus is still reached.

The timing information required to distinguish between the optimistic and the pessimistic case
is minimal and easily achievable in a practical system. Furthermore, the worst that can happen
if all timing assumptions fail is that the protocol is permanently in the pessimistic case; neither
liveness nor safety are endangered if the timing is completely controlled by a malicious adversary.
This holds especially on the transition between the optimistic and the pessimistic case, i.e., if some
parties act optimistically and others act pessimistically. not corrupt it, this synchronous protocols,
as endangering security.

Background.

Byzantine agreement is the problem of several parties agreeing on a certain value, in spite of some of
the participants being corrupt and actively trying to prevent the protocol from succeeding. We say
a protocol achieves Byzantine agreement, if every party gets an input value and produces an output
(decision) value such that the following properties hold:

Validity. If all honest parties start with input value �, then � is the only possible decision value.

Agreement. If one honest party decides �, then no honest party decides anything but �.

Termination. All honest parties eventually decide.

In their seminal paper, Fischer et al. prove that in an asynchronous environment, Byzantine agree-
ment is impossible for a deterministic algorithm if even one party crashes [FLP85]. Two ways to
solve it nevertheless have emerged:

Weakening the Model. Various models have been proposed for a system that behaves realistically,
but that o�ers enough synchrony to solve the Byzantine agreement problem [DLS88, VA95,
CF95]. For most recent implementations, the failure detector approach [CT91] has been chosen.
Most practical protocols implemented in a failure-detector model deal only with crash failures,
as failure detectors in this model are much easier to handle. Recently, several groups started
moving the failure-detector approach into the Byzantine setting [Rei95, KMMS97, DS98].

Randomized Protocols. A randomized protocol can circumvent the impossibility proof by guar-
anteeing agreement with probability one [BO83, Rab83]. So far, most randomized proto-
cols are either ineÆcient or require strong assumptions such as a periodically available dealer
[CR93, BG93].
To the best of my knowledge, there are no implementations of a randomized Byzantine agree-
ment protocol in the literature.

1

In the synchronous model, a combination of randomized and deterministic protocols has been
studied in [GP90]. However, the protocol does not make use of the power a randomized protocol can
o�er in the asynchronous model, and depends on timing assumptions.

More recently, a combination of randomization and failure detectors has been proposed [AT96],
but they still rely on the correct working of the failure detectors and work only in the crash-failure
model. Pedone and Schiper apply optimism to the consensus problem [PS98], but their approach also
works only in the crash-failure model and requires a reliable broadcast as well as a failure detector
in the pessimistic case. To the best of my knowledge, no protocol has combined the synchronous
and the asynchronous model, maintaining the strength of the asynchronous model (i.e., no timing
assumptions at all) and the high optimistic performance of a timed protocol.

Contribution of this paper.

This paper introduces an optimistic pre-protocol that can be used in conjunction with an asyn-
chronous consensus protocol. Basically, any protocol in the literature will do; the exact requirements
are stated in section 2.2.

In the optimistic case, i.e., network timing assumptions hold and no adversary exists, consensus
is reached in optimal time. Furthermore, no expensive computation is needed. In a normal system,
the probability that a transaction falls into this case is very high, and for eÆciency considerations
this case is the important one.

In the pessimistic case, the optimistic pre-protocol invokes the \normal" Byzantine agreement
protocol (the fallback protocol) without endangering any liveness or security assumptions. Further-
more, if few failures occur (i.e., there is a small number of traitors and network failures), the fallback
protocol is invoked with all honest parties having the same initial value. This causes most Byzantine
agreement protocols to terminate quite fast.

2 Model

2.1 Optimistic Asynchrony

This section describes the optimistic asynchronous timing model. Note that all timing assumptions
spelled out here could be incorporated into a failure detector (see section 5). To allow a precise
eÆciency analysis and stress that the protocol does not need any hidden synchrony assumptions for
anything but eÆciency improvements, the presentation of the protocol will use concrete timeouts
instead of an abstract failure detector.

The system consists of n parties P1; : : : ; Pn, up to t; t < n
3
of which might be controlled by an

adversary. The interconnecting network is an asynchronous point-to-point network. In our model,
the network is completely controlled by the adversary, which has all freedom to delay, reorder or
duplicate messages. The only restriction we put upon the adversary is that every message send
between two honest parties has to be delivered eventually.

However, we have an optimistic assumption. In the optimistic case, no active adversary is attacking
the system. If this case occurs, two bounds on network and processing speed hold most of the time:

� The maximum time allowed between Pi receiving a message, Pi generating the response and
and other parties receiving it (assuming Pi sends them something) is �.

� The minimum allowed time between Pi receiving a message, Pi generating the response and
the other parties receiving it is Æ.

If the network performance has a high variety, the timing uncertainty �

Æ
might be rather large.

Therefore we de�ne another timing constant for each run of the protocol. This timing model is
similar to the one used in [ADLS94].

� The maximum time between Pi receiving a message and other parties receiving the response
during one execution of the protocol that occurs during one run of the protocol is d.;

2

The value � can be freely chosen and might be adapted to the network performance. Tighter
bounds decrease the time needed to detect \bad" behavior, but increases the probability that the
protocol falls out of the optimistic case.

2.2 The Fallback Algorithm ABA

Let us assume that we have access to a protocol ABA that solves Asynchronous Byzantine agreement.
As ABA is invoked only in the pessimistic case, its eÆciency plays a secondary role; however, the
more eÆcient the fallback protocol is, the more aggressive timeouts can be chosen for the optimistic
protocol. In a separate paper [CKS00], a practical protocol is introduced that is suitable for an
implementation of our approach.

Each party Pi takes three input parameters to execute ABA:

� A transaction identi�er �, and

� an input value vi:

� a veri�cation value � that is used to verify if vi is a legal input value.

With these inputs, ABA must satisfy the following conditions:

Weak Validity. If the only legal input-value for �, i.e., an input value that satis�es a consistency
check with the veri�cation value �, is �, then all honest parties will decide �.

Agreement. If one honest party decides � for transaction �, then no honest party decides anything
other than � for �.

Termination. If every honest party starts ABA on transaction �, then every honest party eventually
decides for �.

Because of the weak validity condition, we require a consistency check. This check guarantees
that if one honest party could have optimistically decided �, then � is the only possible initial value
for the fallback protocol. It can be implemented easily using digital signatures [RSA78] , as has been
done in the protocol below. In this case, � is a collection of signatures. Using a reliable Broadcast
primitive [Bra84], the signatures can be omitted at the cost of more communication, and � is not
needed anymore. In this case, a party Pi only accepts Pj's input vi after receiving all the votes that
led to this input value.

Note that the consistency check becomes obsolete if we assume a stronger validity condition, i.e.,
that a value � is the only possible decision value if all honest parties have it as an initial value. Many
protocols in the literature do not meet this validity condition, however.

Another problem is caused by the termination condition. If cryptographic assumptions are used
(e.g., in the digital signature scheme), the adversary has to be computationally restricted. This model
is incompatible with the notion of eventual decision, where the algorithm can take an arbitrarily long
time to terminate.

Owing to space limitations, let us skip the discussion of a more consistent treatment of timing,
which can be found in [CKS00].

Optimistic-ABA works on the same set of input values as ABA. Especially, if ABA is multi-valued,
then so is Optimistic-ABA. The eÆciency of ABA is only relevant in the presence of an adversary or
network misbehavior.

The optimistic protocol does not need to put any further restrictions on the adversary, e.g.,
bounded computation power or static corruption, as long as the adversary cannot forge the con-
sistency check. However, the Asynchronous Byzantine agreement protocol might require a more
restricted adversary model.

3

2.3 Brief Discussion of the Validity Condition

In a hybrid synchronous-asynchronous model, the precise de�nition of the validity condition and the
origin of the input values play an important role.

The main condition we want to put on validity to make it useful for practical purposes is the
following:

Robustness. Suppose all parties are honest and the input values are generated in a way that �
is the only possible decision according to the validity condition. Then, if up to t parties are
corrupted, � still should be the only possible decision.

Non-triviality. Suppose all parties are honest and the only input value generated is �. Then � is
the only possible decision value.

In the multivalued setting, one might want to add another condition, namely, if no party initially
started with some value �, then � cannot be the decision value. This property is not straightforward;
most multivalued Byzantine agreement protocols can decide on a value no party initially wanted
[Rab83]. The current protocol satis�es the stronger validity condition, as long as ABA does.

Several models are conceivable that satisfy these conditions, all having their advantages and
drawbacks.

Unauthenticated Source. If the values are generated from outside of the system, for example by
a higher level application, the straightforward validity condition would read:

Validity. If all uncorrupted parties have initial value �, then � is the only possible decision.

This de�nition causes some problems with the timing, as we need a clean de�nition as to when
a party receives its input value and therefore starts the protocol. The assumption that all
parties start simultaneously is nice, but not very realistic. Otherwise, the di�erence in the
starting time has to be speci�ed precisely, as the synchronous part of the protocol may not
do anything unless t+ 1 parties received their input values. This draws additional, quite ugly
timing assumptions into the protocol.

Byzantine Generals Agreement. In the Byzantine Generals agreement, the input values are is-
sued by some source inside the system. The validity condition then reads:

Validity. If the source issues only input value �, then � is the only possible decision.

This is almost the same as the unauthenticated source, with two di�erences. First, as the
source is a part of the system, its timing behavior is cleanly de�ned and therefore we know
when to expect every party to start the protocol. Second, the source might be corrupt as well
and, for example, send out only t inputs at all. Termination of the protocol is impossible, as
no decision can be made on the basis of t input values, and the corruption of the source cannot
always be detected in an asynchronous system.

Signing source. In the signing source model, the input values are generated and signed by some
(external) source S. The validity condition then reads:

Validity. If any uncorrupted party decides �, then S issued a signature on �.

This is particularly nice to work with as no timing assumptions about the generation of the
input values are necessary. Any party that starts the protocol can simply broadcast its input
(or send it to some leader, who will then broadcast his decision), and all other parties can verify
the signature and use this value as their own input without needing to be contacted by the
source.

For the presentation of the protocol, we assume the easiest model. A source exists that starts all
parties simultaneously with their initial values. Thus, we do not need to assume authentication on
the input or synchronize the system �rst. The modi�cations for di�erent models are straightforward.

4

3 Optimistic ABA

This section presents the optimistic protocol. Each party Pi, 1 � i � n, gets an input value vi and
a corresponding transaction identi�er �. The protocol outputs some decision value � or invokes the
fallback protocol ABA.

A party Pi that decides optimistically may not entirely terminate the protocol, however. It is
still possible that some other party could not decide and invokes the fallback protocol. Thus, even
though the decision is �nal, the participation of Pi might be required to assist other parties to reach
the same decision. It is important to note that if an honest party decides � in the optimistic part of
the protocol, then the decision in ABA can only be �, as will be shown in the validity paragraph in
the proof.

Basically, Optimistic ABA works in three steps:
Synchronize (not done here) (Init-Vote). A simple non-Byzantine agreement is invoked by every
party broadcasting its preference and waiting for all other parties to answer.
Step 2 (Main-Vote and Check for decision). A simple vote suÆces to �nd out if agreement exists; if
this is the case, the protocol decides. It can not terminate completely, however, as it is still possible
that another party requests a fallback into the pessimistic case.
Step 3 (Fall back to pessimistic protocol ABA). A party that gets either inconsistent or not enough
answers broadcasts a complaint; on receiving such a complaint, an honest party starts the \pessimistic
part" of the protocol, i.e., enters the fallback protocol ABA.
To legally enter ABA with an initial value �, a consistency check has to be made. This check proves
that no party could have decided for �0 6= � in step 2. This is done by redoing to last vote using
digital signatures and supplying enough signatures that are not �0; if computation is expensive and
communication is cheap, the signatures can be replaced by a reliable broadcast [Bra84].

We assume a signing function sign(x) that takes one parameter and creates a digital signature on it.
The term sign(xjjy) denotes a signature on the concatenation of the messages x and y. Furthermore,
� denotes a collection of signatures or a threshold signature.

Recall � is an upper bound on the message delivery time when the network behaves normally,
i.e., in the optimistic case all messages are delivered in time �.

Protocol Optimistic ABA for party Pi asynchronous start, so a starting party must inform all
others; away slightly cheaper if we assume everybody knows when to start

1. Init-Vote
On getting an input value vi

send(�, init, vi) to all parties;
wait � time units or until n votes are received;
if n votes were received

vi simple majority of the received votes;

/* Now, if no traitors exist and the timing conditions hold, on receiving this broadcast all parties
are agreed. We have to �nd out whether that was the case. */

2. Main-Vote

let w be the time passed since the init broadcast was sent;
send (�, main, vi,) to all parties;
wait 2�� w time units or until n votes are received;

/* If less than n votes were received, we now waited exactly 2� after issuing the �rst broadcast.
This is enough time for Pi to have received all main-votes. This value has to be increased in
the case of an asynchronous start */

3. Check for Decision

if n main-votes for some � were received
decide �;

5

else

send (�, pessimism, vi, sign(�jjmainjjvi)) to all parties;

4. Fall Back to Pessimistic Protocol

On receiving a message (�, pessimism, vi, : : :)
if Pi did not broadcast a pessimism message yet,

send(�, pessimism, vi, sign(�jjmainjjvi)) to all parties as soon as vi is known;
wait for n� t signed main-votes;

vi The value that got the simple majority from the received signed main-votes;
if one value � got at least t+ 1 votes

�i t+ 1 signatures on main-votes on �.;
else

�i n� t signatures, no t+ 1 of which sign the same vote;

/* The else case only occurs in multivalued settings. */

enter ABA with parameters (�; vi;�i)
/* The decided parties run ABA only for the others. Therefore, they will simply ignore the
decision made in ABA. */

3.1 Proof of Correctness

Theorem 1. Given an asynchronous Byzantine agreement protocol ABA as de�ned above, Opti-
mistic ABA solves Byzantine agreement.

Proof. To prove the correctness of our protocol, we have to show that the protocol reaches validity,
agreement and termination.

Validity. Suppose all honest parties start with �. All honest parties will main-vote either the
majority of the received init-votes or their own initial value, both being �.
As no party can see more than t main-votes on something di�erent from �, all honest parties
will either immediately decide � (if the timing conditions hold and every party is honest), or
enter ABA with initial value � as the only possible legal value (if something went wrong). By
the validity condition of ABA, the decision will be � in either case.

Agreement. Suppose one honest party decides � before entering ABA. Then this party received n
main-votes for �, n� t of which have been issued by honest parties.

If all honest parties decide before entering ABA, all decide � and the protocol is �nished. It
still might happen that a corrupted party sends a pessimism message to some parties. This
might cause them to continue and enter ABA, but the result is irrelevant and does not change
their decision.

Suppose now that some honest party did not decide. This party will broadcast the pessimism
message. All honest parties will, on receiving this message, send out a signed main-vote. As
they initially voted �, this signed vote will also be �.

Every set of n � t signed main-votes contains at least t + 1 votes issued by honest parties.
Thus if all honest parties voted �, the simple majority of any set of n � t votes must be �.
Therefore, no party can enter ABA with a legal vote for anything other than �, and by the
validity condition of ABA all honest parties can only decide �.

In the case that no honest parties decides before entering ABA, the agreement condition in
ABA enforces agreement of the Optimistic ABA protocol.

Termination. Either every honest party decides optimistically (and thus the protocol terminates
without entering ABA), or every honest party enters ABA, in which case ABA's termination
condition holds.

6

4 EÆciency

The eÆciency of the protocol has to be examined both in the optimistic and in the pessimistic case,
although the optimistic case is more important.

The Optimistic case.

Suppose all parties are honest and all timing assumptions hold. Recall that d denotes the maximum
message delivery time that occurred during the run of the protocol, while Æ and � are the lower
and upper bound that are considered \normal" in the implementation of the protocol. The time
minfd;�g is also called a synchronous round for the corresponding run of the protocol (note that
d might be larger than �, but this implies the system is in the pessimistic case). After time � 2d,
every party received n main-votes and will decide. This is the theoretic optimum for synchronous
Byzantine Agreement.

Besides authenticating the links (which is unavoidable), no cryptography is needed, so the com-
puting e�ort for all parties is negligible.
The message complexity is n messages per party and round, resulting in 2n2 messages altogether.
All messages have constant (short) size, so the bit-complexity is O(n2) as well.

So far, no Asynchronous Byzantine agreement protocol can reach agreement within three rounds
of communication. The best failure-detector implementations [Rei95, KMMS97, DS98] need at least
four rounds. Furthermore, they require every message to be signed, which might be a relatively
expensive operation.

The Pessimistic case.

In the pessimistic case, the protocol basically performs like the fallback protocol ABA, with an
overhead created by the optimistic part. The time needed to detect the pessimistic case and start
ABA is two synchronous plus one asynchronous round. The number of messages is 3n2.
Besides, if one honest party decides, then all parties will enter ABA with the same initial value, thus
speeding it up. If no party decides before entering ABA, then all honest parties will broadcast the
\pessimism" message simultaneously, saving one asynchronous round.

5 Variations

Asynchronous Start.

The model assumed so far is convenient to work with, but a synchronous start of all parties is not
realistic. We now describe the changes needed for an asynchronous start, assuming an authenticated
source.
To make the algorithm work, the init-vote has to be modi�ed; any party that is aware that the
protocol is starting has to inform the other ones, and the timeouts have to be increased:

1. Init-Vote
On getting an authenticated input value vj for the �rst time, broadcast it, including the

authentication.
wait 2� time units or until receiving n legal votes;
if n votes were received

vi simple majority of the received votes;

We have to wait 2� time units, as some of the parties might only be aware that the protocol
started after time �. This also implies that the time-out in the main-vote has to be increased to
3�� w. Besides this, we have a new validity condition; however, the modi�cations to the proof are
straightforward.

7

If the parties do not start synchronously, we need up to three synchronous rounds to reach agree-
ment. Furthermore, as an authenticated source is assumed, at least one (transferable) authentication
has to be veri�ed.

Using Failure Detectors.

Instead of assuming �xed timeouts, we can also implement the optimistic part of the protocol using
failure detectors [CT91]. In this case, all timeouts are removed from the protocol; a party broadcasts
the pessimism message as soon as a failure detector suspects some other party of being faulty prior to
decision. In this model, nothing changes for the optimistic case; the eÆciency of the pessimistic case
becomes impossible to analyze however, as its performance depends on the speed of failure detection.
Note that we need a very weak failure detector; no accuracy is needed at all (if all parties are sus-
pected, we simply start the pessimistic protocol), and for completeness it suÆces if one faulty party
is once suspected by at least one honest party for a short time, thus not even weak completeness is
required.

6 Conclusions

We have presented a protocol that can be combined with any asynchronous Byzantine agreement
protocol to increase eÆciency under optimistic conditions.

The protocol is optimal in the optimistic case, needing three synchronous rounds with synchro-
nization and two rounds without; furthermore, the protocol adapts to the real network speed, so a
varying network performance is compensated.

In the pessimistic case, the optimistic part of the protocol generates a small overhead; this is a
small price to pay for a signi�cant speedup in the optimistic case.

This protocol is an important step towards implementations of eÆcient, fully asynchronous Byzan-
tine agreement primitives; especially, the optimistic protocol for Byzantine agreement is no less eÆ-
cient than protocols that solve consensus in a crash-failure setting with failure detectors only; thus
we can provide a high degree of additional security at no extra cost.

References

[ADLS94] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty. Journal of the ACM, 41(1):122{152,
January 1994.

[AT96] M. K. Aguilera and S. Toueg. Randomization and failure detection: A hybrid approach
to solve consensus. In �O. Babaoglu and K. Marzullo, editors, Distributed Algorithms,
10th International Workshop, WDAG '96, volume 1151 of Lecture Notes in Computer
Science, pages 29{39, Bologna, Italy, 9{11 October 1996. Springer.

[BG93] P. Berman and J. A. Garay. Randomized distributed agreement revisited. 23rd Int. Conf.
on Fault-Tolerant Computing (FTCS-23), pages 412{419, 1993.

[BO83] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proceedings of the Second Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pages 27{30, Montreal,
Quebec, Canada, 17{19 August 1983.

[Bra84] G. Bracha. An asynchronous [(n�1)=3]-resilient consensus protocol. In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, pages 154{162,
Vancouver, B.C., Canada, 27{29 August 1984.

[CF95] F. Cristian and C. Fetzer. Timed asynchronous systems: A formal model. Technical
Report CSE95-454, UCSD, 1995.

8

[CKS00] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople: Practical
Asynchronous Byzantine Agreement using Cryptography. In ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, 2000. To appear.

[CR93] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC93, pages 42 { 51, 1993.

[CT91] T. D. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems
(preliminary version). In Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, pages 325{340, Montreal, Quebec, Canada, 19{21 August
1991.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288{323, April 1988.

[DS98] A. Doudou and A. Schiper. Muteness Detectors for Consensus with Byzantine Processes,
1998.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374{382, April 1985.

[fST91] N. I. for Standards and Technology. Digital Signature Standard (DSS). Federal Register,
56(169), August 30 1991.

[GP90] O. Goldreich and E. Petrank. The best of both worlds: Guaranteeing termination in
fast Byzantine Agreement protocols. Information Proceeding Letters, 36:45{49, October
1990.

[KMMS97] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solving consensus in a Byzantine
environment using an unreliable fault detector. In Proceedings of the International Con-
ference on Principles of Distributed Systems (OPODIS), pages 61{75, December 1997.

[PS98] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings of the 12th Inter-
national Symposium on Distributed Computing (DISC'98, formerly WDAG), September
1998.

[Rab83] M. O. Rabin. Randomized Byzantine generals. In 24th Annual Symposium on Founda-
tions of Computer Science, pages 403{409, Tucson, Arizona, 7{9 November 1983. IEEE.

[Rei95] M. K. Reiter. The Rampart Toolkit for Building High-Integrity Services. Theory and
Practice in Distributed Systems, pages 99 { 110, 1995.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120{126, 1978.

[VA95] P. Verissimo and C. Almeida. Quasi-synchronism: a step away from the traditional fault-
tolerant real-time system models. Winter 1995 Bulletin of the Technical Committee on
Operating Systems and Application Environments (TCOS), 7 (4):35 { 39, 1995.

9

