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Abstract

We introduce a precise de�nition of the security of reactive systems following the simulatability
approach in the synchronous model. No simulatability de�nition for reactive systems has been
worked out in similar detail and generality before. Particular new aspects are a precise switching
model that allows us to discover timing vulnerabilities, a precise treatment of the interaction
of users and adversaries, and independence of the trust model.

We present several theorems relating the de�nition to other possible variants. They sub-
stantiate which aspects of such a de�nition do and do not make a real di�erence, and are useful
in larger proofs. We also have a methodology for de�ning the security of practical systems by
simulation of an ideal system, although they typically have imperfections tolerated for eÆciency
reasons.

We sketch several examples to show the range of applicability, and present a very detailed
proof of one example, secure reactive message transmission. Its main purpose is to validate
the model by an example of a class that has also been considered in other models, but we did
encounter new problems related to our strict requirements on timing security.1

1A larger and more novel example is shown in detail in [PfSW2 00, Schu 00]. We also believe to have a proof
of a general composition theorem. A short overview of the current paper (without the theorems and the proof
of the example), together with discussions on the relation to formal methods, is given in [PfSW 00].



1 Introduction

Most practically relevant cryptographic systems are reactive, i.e., user and system interact mul-
tiple times, and both keep state between interactions. In some systems, already the individual
operations only make sense in a reactive scenario, e.g., in an electronic cash system where users
can perform payments based on withdrawals, and deposits based on payments. But actually
all systems secure against active attacks (in the sense of chosen-message or chosen-ciphertext)
must be de�ned reactively because such an attack presupposes that the system gets several
inputs or makes several outputs.

We introduce de�nitions which allow us to rigorously specify and prove the security of general
reactive systems. We follow the simulatability paradigm: A system is speci�ed by means of an
ideal system that has all the desired security properties by construction, but typically makes
the unrealistic assumption that a machine trusted by all parties is available (\trusted host"). A
real system is de�ned to be as secure as this ideal system if anything an adversary can achieve
there can also be achieved by an adversary attacking the ideal system.

There are two main approaches at de�ning the security of reactive systems under the sim-
ulatability paradigm, both based on work on secure function evaluation [Yao 82, GoLe 91,
MiRo 92, Beav5 91, Cane 96].

The �rst, constructive, approach describes the ideal system as a global state-transition ma-
chine, and requires the state to be shared among all participants in the real system. Computing
the state-transition function by secure multi-party function evaluation yields a general construc-
tion for any such reactive system [GMW 87, Gold 98]. However, sharing the entire global state
among all participants is not feasible or desirable in scenarios like secure channels or payment
systems, where many participants carry out many 2- or 3-party protocol runs at di�erent times.

The second, descriptive, approach only considers the \outside" behaviour of the system.
More precisely, we will consider both honest users and an adversary as stateful machines apart
from the system, and the de�nition will be that whatever an adversary can achieve in the real
system with respect to any given honest users, another adversary can achieve with respect to the
same honest users in the ideal system. This type of de�nitions was �rst sketched in [PfWa 94]
(presented in [P�t6 96, PfWa3 98]). A similar sketch, based on a speci�c de�nition of multi-
party function evaluation [Cane 96], is given in [Cane 00]. The �rst precise de�nition|still for a
somewhat restricted class of systems in order to achieve general constructions, and with another
(but also synchronous) timing model than ours|was given in [HiMa 00]. Such a de�nition was
also worked out in [LMMS 98] for a formal language (�-calculus) as machine model, but without
any distinction of user and adversary, which does not allow protocol-independent de�nitions
as we aim at. Protocol independence means in particular that systems like secure message
transmission or payment systems, which can be implemented with a variety of cryptographic
primitives, have de�nitions independent of these primitives.

The simulatability paradigm has also been applied to speci�c problems, such as veri�able
secret sharing [GeMi 95], secure key agreement [BeCK1 98, Shou 99] and threshold decryption
[CaGo 99]. The �rst one follows the constructive approach, the others the descriptive approach.
Not all issues of the general case arise in these examples. Moreover, we hope that a general
de�nition signi�cantly eases the speci�cation part of speci�c problems in the future.

We make the de�nition for a synchronous network model. An asynchronous model might
appear more general, but it hides security exposures via timing channels.2 Our notion of security
implies that there are no distinguishable timing di�erences between real and ideal system.
Timing channels are well known from operating-systems security, where information that should

2Of course, a precise general de�nition for asynchronous systems is also needed. But it does not exist yet
either, and we only argue that neither model comprises the other. We also do not consider dynamic corruptions
yet.
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be hidden by the access control mechanisms may be leaked by the timing of otherwise harmless
events. To our knowledge, this was �rst mentioned in [Lipn 75], and it is still a research topic
for information-ow security also in networks and databases, e.g., [Brow 95, VeWo 95, Tros 98].
For low-level cryptography, timing channels were �rst treated in [Koch 96]. We are not aware
of a treatment of timing behaviour in higher-level cryptographic protocols. We needed a new
switching model for it, and we found that typical real-life protocols, even after the cryptography
has been adapted to enable simulation, do not correspond to \naive" ideal hosts where every
participant in a subprotocol makes an input at the same time and obtains an output at the
same time. More motivation, based on an example, follows in Section 6.

Most practical systems also have further tolerable imperfections, e.g., they allow traÆc
analysis, that cannot be avoided or only at a price (e.g., communication overhead) that one
is not willing to pay in most applications. Nevertheless, it should be possible to de�ne the
achieved security precisely. The consequence for our general de�nitions is that we allow the
ideal system to provide a richer service to the adversary than to the honest users. This is one
reason why we need a distinction of two kinds of interfaces already in the system de�nitions.

In Section 2, we present our primary de�nitions. In Section 3, we show how to specialize
the de�nitions to the typical trust models of cryptology, and we sketch a few other examples
to motivate why we made the de�nition more general. Section 4 contains some basic lemmas.
In Section 5, we de�ne some model variants and prove that most of them are equivalent to
our primary de�nitions. Hence the model appears to capture the notion of secure reactive
systems well. Moreover, the equivalent variants are useful in proofs.3 Finally, in Section 6, we
present one cryptographic example in detail, secure reactive message transmission. Its main
purpose is to validate the de�nition by an example that seems simple.4 Nevertheless, we were
not sure in advance what message format would be right, and certain timing problems and
other imperfections like traÆc analysis had to be dealt with. The proof is rigorous in both the
cryptographic and the non-cryptographic aspects.

2 De�nitions

We �rst present the general machine model we use in Section 2.1, and we introduce timing
models. Section 2.2 contains de�nitions of systems with adversaries and honest users. In
Section 2.3 we present our primary de�nition of simulatability for those systems.

2.1 General System Model

Intuitively, when a reactive system is running, there are some connected correct machines,
adversaries, and honest users, i.e., an environment to which we want to guarantee a service,
see Figure 1. We will call this a con�guration. We now de�ne the di�erent parts of such
con�gurations, how di�erent con�gurations are derived from a \system", and the executions of
and views in a con�guration.

As machine model, we use normal probabilistic extended �nite-state machines (e.g., essen-
tially equivalent to the I/O automata in [Lync 96]). For clarity, we �x one particular notation.
We only use point-to-point connections in the basic model. (This is discussed in Section 3.2.3.
Hence the connection graph and the \endpoints" of the connections essentially determine each
other uniquely. We call these endpoints ports. For instance, a machine that makes outputs to
three connections with other machines has three output ports. There are connection-based and

3We also have composition theorems enabling modular construction of reactive systems based on ideal versions
of their subsystems; this should be presented separately soon.

4As a larger example, and of a class that had not previously been de�ned rigorously or considered under a
simulatability approach, we treat certi�ed mail in a separate paper [PfSW2 00, Schu 00].
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Figure 1: Con�guration of a reactive system. The gray part shows that the adversary has
typically replaced some machines.

port-based notations. For our purpose, a port-based notation is easiest because we consider the
same machines in di�erent settings (e.g., a real and an ideal system) and have to express that
they are connected in a similar way (e.g., a user who used a correct machine in the real system
must be connected with a trusted host at the same port in the ideal system).

De�nition 2.1 (Ports)

a) A name is a string over a �xed alphabet �.

b) A port p is a pair (namep; dir p) of a name and a Boolean value, called port name and
direction. Concretely, we write output ports namep! and input ports namep?, inspired by
the CSP notation [Hoar2 85].

c) We write pc for the complement of a port p, i.e.

namep!
c = namep?

and vice versa; also for sets of ports.

d) For a set P of ports, let In(P) := fp 2 P jdir p = ?g denote the input ports and Out(P ) :=
fp 2 P jdirp = !g the output ports.

3

De�nition 2.2 (Machines)

a) A machine M for a synchronous system is a tuple

M = (PortsM; ÆM; IniM;FM)

of a �nite set of ports, a probabilistic state-transition function, and sets of initial and �nal
states. The states are strings from ��. The inputs are tuples I = (Ip)p2In(PortsM) of one
input Ip 2 �� per input port, and the outputs tuples O = (Op)p2Out(PortsM) with Op 2 ��.

By \probabilistic state-transition function" we mean that ÆM(s; I) is a �nite probability
distribution over pairs (s0; O) for each pair (s; I).

b) For a set M of machines, let ports(M ) :=
S

M2M PortsM.
5

c) If we say that a machine M1 has a machine M2 as a (blackbox) submachine, we mean
that it gets the state-transition function as a blackbox (or \oracle"), not an object with its
own clock. Hence M1 can \clock" M2, i.e., decide when to cause state transitions.6

5We mostly use a straight font for machines, functions and constants, and italics for sets and other variables.
6This model also enables M1 to reset M2 to a prior state, but we will not use this. Our type of probabilism

does not allow M1 to set the random inputs of M2; in other cryptographic proofs where one needs this, ÆM must
be re�ned into a deterministic function with an additional random input.
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For computational aspects, we assume that each machine is implemented by a probabilistic
interactive Turing machine [GoMR 89] and each port by a communication tape.7 The com-
plexity of a machine is, as usual, measured in terms of the length of the initial state (often a
security parameter; regarded as a distinguished input).8 We use uniform complexity because
the security proofs will be reduction proofs between either two uniform or two non-uniform
statements, and a reduction in uniform complexity is also one in non-uniform complexity.

Below, we distinguish correct machines, adversaries and users in particular in how they are
clocked w.r.t. each other. However, in proofs we sometimes need di�erent combinations; hence
we de�ne collections of machines and their runs with a clocking scheme in general.

De�nition 2.3 (Machine Collections, Runs and Views)

a) A collection is a �nite set of machines with pairwise disjoint sets of ports.

b) Given a collection C , we assume that all complementary ports are connected, i.e., we
call each set c = fp; pcg � ports(C ) a connection and the set of these connections the
connection graph G(C ).9

c) By free(C ) we denote the free ports, i.e., p 2 ports(C ) but pc 62 ports(C ). The others are
called inner ports, inner(C ). A collection is closed if free(C ) = ;.

d) A clocking scheme is a mapping � from a set f1; : : : ; ng to the powerset of C , i.e., it
assigns each number a subset of the machines.

e) For a closed collection C , a clocking scheme �, and a tuple ini 2 Ini := �
M2C

IniM of

initial states, we de�ne runs (or \executions" or \traces"): Each global round i has n
subrounds. In Subround [i:j], all machines M 2 �(j) switch simultaneously, i.e., each
state-transition function ÆM is applied to M's current inputs and state and yields a new
state and output according to the distribution. Then the outputs are transported to the
corresponding input ports of other machines, where they are available until that machine
switches next. If several inputs arrive until that time, they are concatenated. This gives
a family of random variables

runC = (runC ;ini)ini2Ini :

More precisely runC ;ini is a function mapping each triple (M; i; j) 2 C �N�f1; : : : ; ng to
the quadruple of the old state, inputs, new state, and outputs of machine M in subround
[i:j], with a symbol � for machines that do not switch in this subround.

f) For a subset M of a closed collection C , we de�ne the view of M as the family of random
variables

viewC (M ) = (viewC ;ini(M ))ini2Ini

where (viewC ;ini(M )) is the restriction of runC ;ini to M � N � f1; : : : ; ng.10

7Detailed models for the multi-party case exist in [Beav5 91] and the report version of [MiRo 92]. They are
still slightly abstract in assuming that all machines compute as long as they want per round, and then magically
the transport function and new round are started.

8If only the state-transition function were polynomial-time, two interacting polynomial-time machines could
easily gain exponential power, e.g., if each output is twice as long as the previous input.

9A connection is intuitively directed, although it is de�ned as a set, because it consists of one output and one
input port.

10For the view of a polynomial-time machine in interaction with unrestricted machines, one should only consider
the inputs as far as the machine read them. Such a notion of \read" can be de�ned in the Turing machine
realization.
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g) For a number l 2 N of rounds, we de�ne l-round pre�xes runC ;ini;l and viewC ;ini;l(M )
of runs and views in the obvious way. For a function l : Ini ! N, we de�ne a family
runC ;l = (runC ;ini;l(ini))ini2Ini and similarly viewC ;l(M ).

3

Remark 2.1. To avoid that timing di�erences within a round leak, implementations of syn-
chronous machines have to ensure that input reading and outputting are both clocked. Æ

2.2 Speci�c System Model

We now de�ne more speci�c collections of machines for security purposes. We begin with the
system part and then add an environment, i.e., users and adversaries.

De�nition 2.4 (Structures and Systems)

a) A structure is a pair struc = (M ;S ) where M is a collection of machines called correct
machines, and S � free(M ) is called speci�ed ports.

We de�ne �S := free(M ) n S and forb(M ;S ) := ports(M ) [ �S c.

b) A system Sys is a set of structures.

3

Essentially, the speci�ed ports are those where a certain service is guaranteed. Typical examples
of inputs at speci�ed ports are \send message m to id" for a message transmission system, \set
up session to id" for a key exchange system, \pay amount x to id" for a payment system,
or \play out card x" in a game. The ports in �S are additionally available for the adversary.
The ports in forb(M ;S ) will therefore be forbidden or at least unusual for an honest user to
have, those from ports(M ) to avoid name clashes and those from �S c because they would give
connections to �S .

Such a speci�cation style over services o�ered at free ports may seem unusual in cryptog-
raphy, but it is quite normal in other �elds, because it is a useful way to o�er abstraction and
concentrate on those aspects of a system that are relevant for the environment. Moreover, sim-
ilarity to other speci�cation styles is an advantage in itself, because in the end, cryptographic
systems must be employed in larger systems and their speci�cation be usable as a component
in a \normal" overall design.

Typically, a cryptographic system is described by an intended structure, and the actual
structures are derived using a trust model, see Section 3.1. However, as one can imagine a
wide range of trust models, e.g., with semi-correct machines, we kept the remaining de�nitions
independent of this by the general system model.

The following de�nition was already illustrated in Figure 1; the clocking scheme is explained
after the de�nition.

De�nition 2.5 (Con�gurations and their Runs and Views)

a) A con�guration conf of a system Sys is a tuple (M ;S ;H;A) where (M ;S ) 2 Sys is a
structure and H and A are machines modeling the honest users and the adversary. The
union M [ fH;Ag must be a closed collection. We call H and A a compatible user and
adversary for the structure.11

11Hence the conditions are that PortsA and PortsH are disjoint with each other and with ports(M ), and that
no ports remain free. We could relax the condition by considering only the free ports of M , but that would
require de�ning port visibility, and we can always achieve this condition by pre�xes to the names of inner ports.
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b) We denote the set of all con�gurations of a system by Conf(Sys), and those with
polynomial-time adversary and user by Confpoly(Sys), omitting \poly" if it is clear from
the context.

c) The clocking scheme is (M [ fHg; fAg; fHg; fAg), i.e., in Subround [i:1], the machines
from M and H switch, in Subround [i:2] the adversary A, etc.12

d) Runs and views of a con�guration are now given by De�nition 2.5. However, for simplicity
we now assume that the initial states of all machines are only a security parameter k (in
unary representation).13 We therefore consider the families of runs and views restricted
to the subset Ini 0 = f(1k)M2C jk 2 Ng of Ini , and we identify Ini 0 with N.

We write runconf and viewconf (M ) for runC and viewC (M ) restricted to Ini 0 (although
the collection C is M [ fH;Ag).

3

We �nd such a model with explicit honest users much more intuitive than models without:
Honest users should not be modeled as part of the machines in M because they are arbitrary,
while the machines have prescribed programs. For example, they may have arbitrary strategies
which message to input next to the system after certain outputs. They may also be inuenced in
these choices by the adversary, e.g., in chosen-message attacks on a signature scheme; therefore
they typically have ports connected to the adversary. These strategies and inuences are also
why we cannot simply quantify over input sequences instead of machines H, at least for the
computational case.) Honest users are not a natural part of the adversary either because
they are supposed to be protected from the adversary. In particular, they may have secrets,
and we want to de�ne that the adversary learns nothing about those except what he learns
\legitimately" from the system (this depends on the speci�cation) or what the user tells him
directly.14

We currently model a single adversary who coordinates all malicious behavior in the con-
�guration. Multiple adversaries only make a di�erence if we limit the communication between
them.15

The fact that the adversary is clocked between the correct machines is the well-known model
of \rushing adversaries" (the earliest references we are aware of are [BrDo 84] for the concept
and [ChDw 89] for the name).16 Our separate clocking of users is new. For human users,
the non-synchrony with the system rounds is clear: Even an honest human user might react
on a message as soon as it appears on a display. Application programs may also have their
own timing quite di�erent from the rounds of the underlying cryptographic protocol, e.g., in
a real-time system. Hence in particular, the users might interact with an adversary several
times within one system round. However, we show in Section 5.5 that this \dialogue model" is
equivalent to the simpler model above, at least in all cases where security in the dialogue model
can be achieved at all.

12Letting H switch not only in Subround [i:3], but also in [i:1] is not really necessary: We see in Section 5.5
that arbitrary dialogues can be simulated without. However, it simpli�es composition, where machines of one
system are users of another system.

13See Section 5.3 for de�nitions with auxiliary inputs and that they do not make much di�erence.
14This is di�erent for pure integrity speci�cations [P�t4 93].
15This looks fairly straightforward: One also �xes the ports of the di�erent adversaries. But we have not

worked out any theorems or examples for this case (e.g., wallets with observers [ChPe1 93]). Mixed adversaries
as in [FiHM 99] are still centrally controlled and �t under our standard de�nition.

16The reason is that synchrony is usually not absolute, but implemented by certain bounds in which messages
may arrive. Hence an adversary controlling the network can usually base his outputs in one round on the
correct machines' outputs of the same round. A standard example where this would harmful is if the machines
implemented coin ipping by simply exoring random bits that each of them outputs in the same round.

6



We make no special de�nition of ideal systems. Typically, an ideal system Sys contains only
structures of the type (fTHg;S ), i.e., with only one correct machine called trusted host. The
fact that we allow several such structures in an ideal system and that TH may have speci�c
connections to the adversary is di�erent from other models and allows us to de�ne systems with
tolerable imperfections.

2.3 Simulatability

We now de�ne what it means that one system Sys1 is \at least as secure as" another system
Sys2. Typically, Sys1 is real and Sys2 ideal. The essential aspect is that we compare the view of
the same honest users once in Sys1, once in Sys2. Security means that whatever can happen to
the honest users in Sys1 with some adversary can also happen to them, with another adversary,
in Sys2. (Di�erent choices of what to compare are discussed in Section 5.) A simple case is
illustrated in Figure 2.

HH Sys1 ≥sec Sys2
f

A2
A1

struc1

struc2 ∈ f(struc1) ⊆ Sys2

S1
S2

M1,1 M1,2
M2M1,3

Figure 2: Simulatability de�nition. The gray line delimits the view of the user H, which must
be indistinguishable. The standard case S1 = S2 is drawn.

However, we only want to compare each structure of Sys1 with certain \corresponding"
ones in Sys2. Typically these are the ones with the same set of speci�ed ports (see Section 3
for both typical and untypical examples). For the general case, we allow an almost arbitrary
mapping f that maps structures struc1 of Sys1 to sets of \corresponding" structures of Sys2.
The following conditions are mainly naming conventions, and become clear in the remarks at
the end of this chapter and the proof of transitivity.

De�nition 2.6 (Valid Mapping, Suitable Con�guration) Let two systems Sys1 and Sys2
be given. A function f from Sys1 to the powerset of Sys2 is called a valid mapping (between
Sys1 and Sys2, but we usually omit this phrase) i� for all corresponding structures (M2;S2) 2
f(M1;S1)

pc 2 free(M1)) p 62 forb(M2;S2) ^ pc 2 S2 ) p 62 forb(M1;S1):

That is, ports for connecting to (M1;S1) are not \forbidden" in (M2;S2), nor ports for connecting
\legally" to (M2;S2) forbidden in (M1;S1).

17

Given Sys2 and f , we de�ne a set Conff (Sys1) � Conf(Sys1) of suitable con�gurations
as follows: (M1;S1;H;A1) is suitable if H has no ports from forb(M2;S2) for any (M2;S2) 2
f(M1;S1). 3

Remark 2.2. Given a suitable con�guration and p 2 PortsH, then p 62 ports(M2) and pc 2
ports(M2) ) pc 2 S2. The latter holds because p

c 2 inner(M2) by the �rst condition. We will
often use suitability in this form. Æ

17We could restrict the �rst precondition to pc 2 S1 if we generally excluded users (here of Sys1) that connect
to unspeci�ed ports, see Section 5.6.
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We need the de�nition of indistinguishability of families of random variables over N, essen-
tially from [Yao1 82].

De�nition 2.7 (Indistinguishability) Two families (vark)k2N and (var0k)k2N of random vari-
ables (or probability distributions) are called

a) perfectly indistinguishable (\=") if for each k, the two distributions are identical;

b) statistically indistinguishable for a class SMALL of \small" functions (\�SMALL") if the
distributions are discrete and their L1-distance is small. More precisely, SMALL must
be a class of non-negative functions from N to R, and with any function also contain
any smaller function. The statistical distance � of two discrete random variables with a
domain Dk is de�ned as

�(vark; var
0
k) =

1

2

X
d2Dk

jP (vark = d)� P (var0k = d)j:

Then we require that
�(vark; var

0
k) 2 SMALL

(as a function of k). Typical classes SMALL are the class EXPSMALL of all functions
bounded by Q(k) � 2�k for a polynomial Q,18 and the (larger) class NEGL of all negligible
functions as in Part c).

c) computationally indistinguishable (\�poly") if for any algorithm Dist (the distinguisher)
that is probabilistic polynomial-time in its �rst input, the di�erences of its results on the
two distributions are negligible:

jP (Dist(1k; vark) = 1)� P (Dist(1k; var0k) = 1)j �
1

poly(k)
:

Hence Dist gets the security parameter and an element chosen according to either vark or
var0k as inputs and makes a Boolean output. The notation g(k) � 1=poly(k), equivalently
g 2 NEGL, for a function g means that for all positive polynomials Q, 9k08k � k0 :
g(k) � 1=Q(k).

We write � if we want to cover all cases. 3

De�nition 2.8 (Simulatability) Let two systems Sys1 and Sys2 and a valid mapping f be
given.

a) We call Sys1 perfectly at least as secure as Sys2 for f and write

Sys1 �
f;perf
sec Sys2

if for any suitable con�guration conf 1 = (M1;S1;H;A1) 2 Conff (Sys1), there exists a
con�guration conf 2 = (M2;S2;H;A2) 2 Conf(Sys2) with (M2;S2) 2 f(M1;S1) (and the
same H) such that

view conf 1
(H) = view conf 2

(H):

18Often a concrete bound 2�k can be shown, but, e.g., the transitivity lemma below requires that SMALL is
closed under addition.
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b) We call Sys1 statistically at least as secure as Sys2 for a class SMALL and write

Sys1 �
f;SMALL
sec Sys2

i� the same as in a) holds with statistical indistinguishability of all families view conf 1;l
(H)

and view conf 2;l
(H) of l-round pre�xes of the views for polynomials l.

c) We call Sys1 computationally at least as secure as Sys2 and write

Sys1 �
f;poly
sec Sys2

i� the same as in a) holds with con�gurations from Conf
f
poly(Sys1) and Confpoly(Sys2) and

computational indistinguishability of the families of views instead of equality.

In all cases, we call conf 2 an indistinguishable con�guration for conf 1 and write

conf 2 2 Indistf (conf 1):

Where the di�erence between the types of security is irrelevant, we simply write �fsec, and we
omit the indices f and sec if they are clear from the context. 3

The restriction to suitable con�gurations Conff (Sys1) in this de�nition has two purposes;
recall that it means that users H that have ports from forb(M2;S2) = ports(M2) [ �S c

2 for any
(M2;S2) 2 f(M1;S1) are not considered. First it excludes users that are incompatible with
(M2;S2), i.e., those with port names that already occur inM2. This is a mere naming convention.
Without it, at least in the typical case where each image f(M1;S1) contains precisely one
structure (M2;S2), we could not ful�l the de�nition.19

Secondly, it excludes that H communicates with unspeci�ed free ports of (M2;S2). This is
where the notion of speci�ed ports is really used.20 The typical example is an ideal system that
speci�es a system with tolerable imperfections, and thus has channels to the adversary to make
certain events visible to him in an abstract way. (Examples are shown in Section 6.) If we would
allow H access there, these exact events would have to be indistinguishable from some events
in the real system. This would seriously limit the possible abstraction in the speci�cation.

Remark 2.3. With regard to (M1;S1), the restriction to suitable con�gurations is w.l.o.g.: For
every conf e;1 = (M1;S1;He;Ae;1) 2 Conf(Sys1) n Conf

f (Sys1), there is a con�guration conf 1 =

(M1;S1;H;A1) 2 Conff (Sys1) such that viewconf 1
(H) equals view conf e;1

(He) except for port
renaming.

We construct H by giving each port p 2 PortsHe \ forb(M2;S2) a new name.21 As conf e;1
is closed, the ports pc also occurs in it. The �rst condition on a valid mapping f implies
pc 62 free(M1). Hence p

c belongs to Ae;1 or He and we can indeed rename it. Then the runs and
in particular the user's view are unchanged except for this renaming.

Remark 2.4. At least intuitively, the conditions on valid mappings (which are mainly naming
conventions) also do not seem to exclude anything interesting: The only ports that really need
to have the same names in two systems are corresponding speci�ed ports. If the names of all

19If jf(M1; S1)j > 1, we have an OR-semantics, i.e., (M1; S1) only needs to be as secure as one corresponding
structure. Thus it would be inappropriate to require such users to be compared with another (M 0

2; S
0

2) 2 f(M1; S1).
20Primarily, however, the distinction between the user and adversary interface of a system is in the de�nition

of f and the port names of the two systems: If structures (M1; S1) and (M2; S2) 2 f(M1; S1) have common
free ports, and a user H uses them in the �rst system, the same ports of H are automatically connected to the
corresponding ports of (M2; S2). Hence the service at these ports must be indistinguishable.

21By new name, we always mean one that does not occur in the systems and con�gurations already under
consideration. For this, we assume w.l.o.g. that no �nite set of systems contains all port names over the given
alphabet.
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other ports in Sys i are disjoint from the names of any speci�ed ports in (other structures of)
Sys i and all ports in Sysj for j 6= i for a set of systems, then the conditions are always ful�lled
except that p 2 Si; p

c 2 Sj is possible. This cannot be excluded generally, e.g., it is normal in
compositions, but it would be an extremely strange case for structures of which one is supposed
to replace the other. In particular, it is excluded in the standard case Si = Sj, because p; p

c 2 Si
would imply that they are connected, in contradiction to Si � free(Mi). Æ

3 Applications

Before we discuss variants of the model, we now present several specializations and small ex-
amples to give a more intuitive understanding. Recall that fully worked-out cryptographic
examples can be found in Section 6 and in [PfSW2 00].

3.1 Standard Cryptographic Systems

In this section, we re�ne the general de�nitions for a standard class of cryptographic systems.
The intuition is that in a real system Sys , there is one machine per human user, and each
machine is correct if and only if its user is honest. (Typically one calls the machine and its
user together a participant, and often Alice or Bob.) The system is derived from an intended
structure (M �;S �) and a trust model.

De�nition 3.1 (Standard Cryptographic Structures and Trust Model)

a) A standard cryptographic structure is a structure (M �;S �), where we denote the machines
by M � = fM1; : : : ;Mng: Each machine Mu has two ports inu? and outu! intended for its
user, i.e., these ports are free and their union is S �. All other ports have complements at
other machines, i.e., they correspond to a connection graph G(M �) among the machines
from M �.

b) A standard trust model for such a structure consists of an access structure and a channel
model.

An access structure, as usual, is a set ACC of subsets H of f1; : : : ; ng closed under inser-
tion (of more elements into a set) and denotes the possible sets of correct machines.

A channel model is a mapping � : G(M �) ! fs; r; ig. It characterizes each connection as
secure (private and authentic), readable (only authentic), or insecure (neither private nor
authentic).

3

Typical examples of access structures are threshold structures, i.e., all subsets with jHj � t for
some t. In the example in Section 6, everybody should be secure on their own, and thus ACC
is the entire powerset of f1; : : : ; ng.

De�nition 3.2 (Standard Cryptographic Systems) Given a structure (M �;S �) and a
trust model (ACC; �) as above, the corresponding system is Sys = f(M (H);S (H))jH 2 ACCg
with the following de�nitions:

a) The correct machines are
M (H) = fMu;Hju 2 Hg;

where each machine Mu;H is derived from Mu as follows. (Figure 1 was an example with
a readable channel between M1 and M2; a more detailed example follows in Figure 11.)22

22We rename more ports than necessary here for convenience in Section 6.
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{ The ports inu? and outu! are unchanged.

{ Now let any other port p 2 PortsMu
be given. Let v be the index with pc 2 PortsMv

and c = fp; pcg the attached connection.

� If v 2 H (i.e., c is a connection between two correct machines):

� If �(c) = s (secure), p is unchanged.

� If �(c) = r (readable) and p is an output port, Mu;H gets an additional new
port pd, where it duplicates the outputs at p. (This can be done by a trivial
blackbox construction.)23 This port automatically remains free, and thus the
adversary connects to it. If p is an input port, it is unchanged.

� If �(c) = i (insecure) and p is an input port, p is replaced by a new port pa.
(Thus both pa and pc become free, i.e., the adversary can get the outputs from
pc and make the inputs to pa and thus completely control the connection.) If
p is an output port, it is unchanged.

� If v 62 H (i.e., there is no machine Mv;H in M (H)), and p is an output port,
it is unchanged. If it is an input port, it is renamed into pa. (In both cases it
becomes free, and thus the adversary can connect to it.)

b) The speci�ed ports are S (H) = finu?; outu!ju 2 Hg, i.e., the user ports of the correct
machines.

3

A typical ideal system is of the form Sys2 = f(fTH(H)g;S (H))jH 2 ACCg with the same
sets S (H) as in the corresponding real systems Sys1. In cases without tolerable imperfections,
i.e., if adversaries should not have any advantage over honest users (although this seems unlikely
with precise timing and a one-machine-per-user system, see Section 6), TH(H) would be the
same in all these structures and only S (H) would vary, i.e., be the same as in Sys1.

24

The canonical mapping f between such systems is de�ned by f(M (H);S (H)) =
f(fTH(H)g;S (H))g for all H. In the comparison of the real and the ideal system, the in-
tuitive idea is that the honest users use precisely the correct machines and thus the ports in
S (H). Corollary 5.4 shows that this is equivalent to the actual de�nition.25

3.2 Other Examples

In this section, we sketch a few examples that are not of the type de�ned in Section 3.1 and
that motivated or tempted us to make the de�nitions more general.

3.2.1 Graceful Degradation

To see why it makes sense to allow several structures with the same set S in a system, and not
to require that f(M1;S1) = f(M2;S2) 2 Sys2jS2 = S1g, we consider graceful degradation with
a constant interface. Graceful degradation, known from fault tolerance, means that there are

23We assume w.l.o.g. that there is a systematic naming scheme for such new ports (e.g., appending \d") that
does not clash with prior names.

24We cannot use the original S� in all ideal structures: Then a honest user with PortsH � S�c would be
suitable for all structures (M1; S1) 2 Sys1. It would therefore use the ports of incorrect machines in the real
system, but there an adversary can behave in a di�erent way than the trusted host would.

25For many cryptographic examples, one could carry the specialization further, in particular for systems with
two-party transactions. Those would be more similar to concrete examples for which reactive security has
been proven before, e.g., [BeRo1 94, Shou 99]. One would de�ne that each input contains the identity of a
desired partner and starts a submachine (called \oracle" or \session"). However, at the level of this paper such
specializations are not helpful.
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di�erent goals depending on the strength of the adversary. Fail-safe properties are the simplest
case.

As a cryptographic example consider a third-party service, e.g., time-stamping, where the
third-party machine T is fully automated and therefore does not need a user interface, i.e.,
ports in S . One requires a certain good service if T is correct, but often also makes weaker
requirements for the other case, e.g., that T cannot entirely forge messages, only date them
incorrectly. Hence we need two types of ideal structures, and the ideal structures de�ning the
weaker requirements are not in the f -image of the real structures where T is correct, although
they all have the same set S .26

3.2.2 Unmasked Replication

Now we present an example where it is useful to compare structures with di�erent sets S1 and
S2, both for S1 � S2 and S1 � S2. It is illustrated in Figure 3.

We consider a 3-of-5 system as in fault tolerance, e.g., �ve devices M1; : : : ;M5 making
complicated physical measurements and related computations in a safety-critical control appli-
cation. They should all make the same output, but they have di�erent programs, hardware etc.
The users accept an output if three devices agree. No single other device is trusted to make
this majority decision. Hence the human user or the application software reads all �ve results,
and therefore each device has an output port pi!, and these form the set S � of the intended
structure. (For brevity, we omit all inputs to the devices.) The real structures are derived as
in Section 3.1, i.e., any subset of at least three device indices is a possible set H.

Intuitively, the main di�erence to the cryptographic examples is that a natural honest user
now has all �ve ports pi? (i.e., expects to connect to all �ve ports pi!) because he does not know
which of the devices are correct.

A
M3 M4 M5M2M1

H

S1

TH({1,2,3})

H

A2

S2 ⊂ S1

TH1-5

H

A2

S*2 ⊃ S1

or

p1? p5? f

H

Figure 3: Unmasked replication

The two easiest ways to specify the ideal system are shown on the right side of Figure 3.
First, one can de�ne one structure (fTH(H)g;S2(H)) for each 3-element set H � f1; : : : ; 5g.
Here TH(H) has the three ports pi! with i 2 H, and simply outputs the correct result at these
ports. A real structure with a set H1 of indices of correct devices is mapped by f onto one or
all ideal structures with H � H1.

Secondly, one can de�ne only one structure (fTH1�5g;S
�
2 ). The trusted host TH1�5 allows

the adversary to choose a set H with at least three elements. Then it outputs the correct results
at the ports pi! with i 2 H, and values chosen by the adversary at the other ports.

26Clearly, such an example with only two service classes could also be modeled by considering the structures
with and without T as di�erent systems.
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Of course, one can use additional ideal structures so that one ideal system has trusted hosts
with three, four, and �ve of the ports pi!. However, as a speci�cation we do not �nd it as
intuitive as the two variants above, and the goal of a general model is to allow as short and
intuitive speci�cations as possible.

3.2.3 Multicast

Many systems in cryptography and other �elds use multicast channels. Hence we were tempted
to include them as a primitive. However, it is well-known that based on point-to-point channels,
arbitrary other channels can be modeled as machines. (However, switching then takes one
round.) Multicast from a given machine can also be modeled by replicating the output port,
and thus without delay.

Nevertheless, it would be an elegant primitive, e.g., at the user interface. For instance, the
fact that a system outputs the same values to many users may be more intuitively speci�ed by
multicast from one port, and multicast from the environment would be a useful way to specify
the input from the physical environment (the values to be measured) in Section 3.2.2. However,
this requires a model where both ports and channels are explicitly speci�ed, and to specify
multicast at the user interface, the systems would end with free connections (see [PfSW 00]).
Our main reason to give this up was that it necessitates consistency conditions in compositions,
which get ugly together with the conditions on valid mappings.

3.2.4 Partially Correct Machines

In all examples so far, the real system was derived from an intended structure by taking di�erent
subsets of the intended machines (except for port renaming due to the channel model). A well-
known di�erent example is passive adversaries. Here a machine Mu is replaced by a machine
M0

u that acts identically, but forwards all received messages and internal states to the adversary.
Another example is a fail-stop machine, e.g., a tamper-detecting device that an adversary

may be able to destroy, but not to subvert. Here a machine Mu is replaced by a machine M00
u

that acts identically, but has an additional free input port stopu? and stops if 1 is input there.
In particular in fault tolerance, a whole range of other models is possible (e.g., independent

faults). The same holds for channels. Hence we made the general model independent of any
trust models and allow di�erent trust models as specializations, as described in Section 3.1 and
here.

4 Basic Lemmas

In this section, we prove a few basic but useful statements. The �rst lemma considers joining
and separating machines within a con�guration.

Lemma 4.1 (Combination of Machines) The following general facts are true about com-
binations of machines:

a) For a subset D � C of a collection, we de�ne two combinations Do and Dh (called open
and hiding) of D into one machine: Both have all the original machines as submachines.
While PortsDo = ports(D), in Dh all internal connections are hidden, i.e., PortsDh

=
free(D). Both machines are clocked whenever a machine from D is. The transition
function is de�ned by switching the submachines, and in Dh the internal connections, just
as they would be switched externally.

In the resulting collection C � = C nD [ fDg, where D = Do or Dh, the restriction of the
runs to any tuples of the original machines or ports is the same as in C . (The runs as
such get a slightly di�erent representation.)
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b) Such combinations are associative.

c) Such a combination of polynomial-time machines is polynomial-time.

d) If only D is clocked in a continuous range of subrounds, i.e., �(i + j mod n) = fDg for
j = 0; : : : ; l, one can instead clock it only once in these subrounds. The transition function
of the new machine D� is the appropriate concatenation of the individual transition func-
tions together with the internal message transport. We can either retain the now empty
subrounds or renumber the non-empty ones.

The restriction of the runs to any tuples of the original machines or ports is still the same
except for the renaming of subrounds.

e) The view of the combined machine D or D� can be identi�ed with that of the set D. This
implies that we can also say w.l.o.g. that the view of each Mi is a part of the view of M�.

2

Proof. For Part a), it is clear that C � is again a collection (and closed if C was). The rest
would follow immediately from a more formal de�nition of the global transition functions. This
also holds for Part b); recall that all machines belong to a collection C and thus have disjoint
port names, hence there is no question of what gets connected �rst. For Part c), the number
of steps of the combination is the sum of the steps of the submachines, plus an overhead for
internal switching linear in the length of the messages written. All this is polynomial in the
length of the initial states. Part d) would again follows directly from the de�nition. For Part
e), recall that the view of D consists of all the states, inputs, and outputs of its machines. For
Do this is the same, and for Dh the di�erence is only that the messages on internal connections
belong to the state, not to the in- and outputs.

In particular, combining machines of the same type in a con�guration, e.g., several correct
machines, gives a machine of that type again, and correct machines and a user give a correct
machine.

Lemma 4.2 (Indistinguishability) The following well-known facts are true about indistin-
guishability:

a) Perfect indistinguishability of two families of random variables implies perfect indistin-
guishability of any function � of them (in particular restrictions). The same holds for
statistical indistinguishability with any class SMALL, and for computational indistin-
guishability if � is polynomial-time computable.

b) Perfect indistinguishability implies statistical indistinguishability for any non-empty class
SMALL, and statistical indistinguishability for a class SMALL � NEGL implies compu-
tational indistinguishability.

c) Perfect and computational indistinguishability are equivalence relations, and so is statis-
tical indistinguishability for a class SMALL closed under addition (which is true for both
EXPSMALL and NEGL).

2

We omit the easy proofs.
Now we consider basic properties of the relation \at least as secure as."
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Lemma 4.3 (Types of Security) If Sys1 �
f;perf
sec Sys2, then also Sys1 �

f;SMALL
sec Sys2 for

any non-empty class SMALL, and Sys1 �
f;SMALL
sec Sys2 for a class SMALL � NEGL implies

Sys1 �
f;poly
sec Sys2. 2

Proof. This follows immediately from Lemma 4.2, the fact that equality of possibly in�nite
views implies equality of all their �xed-length pre�xes, that polynomial con�gurations only
produce polynomial-length runs and that the distinguisher is a special case of a function �.

Lemma 4.4 (Transitivity) If Sys1 �
f1 Sys2 and Sys2 �

f2 Sys3, then Sys1 �
f3 Sys3, unless

f3 is not a valid mapping. Here f3 := f2 Æ f1 is de�ned in a natural way: f3(M1;S1) is the
union of the sets f2(M2;S2) with (M2;S2) 2 f1(M1;S1).

This holds for perfect and computational security, and for statistical security if SMALL is
closed under addition. 2

Proof. Let a con�guration conf 1 = (M1;S1;H;A1) 2 Conff3(Sys1) be given. Hence, by the
de�nition of suitable con�gurations, if the name of a port p of H also occurs in some (M3;S3) 2
f3(M1;S1), then pc 2 S3.

If H has forbidden ports w.r.t. a structure (M2;S2) 2 f1(M1;S1), we give these ports new
names. By Remark 2.3, we obtain a con�guration conf t;1 = (M1;S1;Ht;At;1) 2 Conff1(Sys1),
where view conf t;1

(Ht) equals view conf 1
(H) except for the renaming.

Now there exists a con�guration conf t;2 = (M2;S2;Ht;At;2) 2 Conf(Sys2) with (M2;S2) 2
f1(M1;S1) such that view conf t;1

(Ht) � view conf t;2
(Ht).

As Ht only has ports from H and new ports, it has no forbidden ports w.r.t. any structure
(M3;S3) 2 f2(M2;S2), i.e., conf t;2 2 Conff2(Sys2). Hence there exists conf t;3 = (M3;S3;
Ht;At;3) 2 Conf(Sys3) with (M3;S3) 2 f2(M2;S2) and view conf t;2

(Ht) � viewconf t;3
(Ht).

Together, we have (M3;S3) 2 f3(M1;S1) by de�nition of f3 and view conf t;1
(Ht) �

view conf t;3
(Ht) because indistinguishability is transitive.

Finally, we must derive a con�guration conf 3 = (M3;S3;H;A3) with the original user H.
The new names of the changed ports do not occur in (M3;S3) by construction. Thus we can
change them back i� the old names also do not occur in (M3;S3), i.e., in this case view conf 3

(H)
equals view conf t;3

(Ht) except for this renaming. We had assured that the name of a port p of
H can only occur in (M3;S3) if p

c 2 S3. It was changed if p occurred in forb(M2;S2). As f2 is a
valid mapping, this is not possible together.

We conclude that viewconf 1
(H) � view conf 3

(H) because the same renaming transforms these
views into view conf t;1

(Ht) and view conf t;3
(Ht), respectively.

Lemma 4.5 (Reexivity) The relation �f is reexive with the identity function f = id if one
regards all free ports as speci�ed, i.e., strengthens all structures to (M; free(M )). Alternatively,
one can rename all ports in �S in one copy of the system (and modify the identity function
accordingly), or disallow users that connect to unspeci�ed ports. 2

The reason for the restrictions is that id must be a valid mapping, while the actual indistin-
guishability is clear. The �rst condition is

pc 2 free(M )) p 62 ports(M ) ^ pc 62 �S ;

and the second is weaker. For pc 2 S this follows directly from the de�nitions, while for pc 2 �S
it can be guaranteed or the case be excluded by the three possibilities mentioned.
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5 Relations Among Model Variants

In this section, we de�ne several variants of the model and investigate whether they are equiva-
lent to our standard model. (By \standard model", \standard user" etc., we now always mean
De�nitions 2.4 to 2.8.) We have the following results:

� Universality and blackbox simulation make a di�erence (as far as we know).

� An additional output \guess" of the adversary never makes a di�erence.

� Auxiliary inputs already give universality except in a case with very powerful honest users;
in universal and blackbox de�nitions they make no further di�erence.

� For the restricted class of valid mappings with S2 � S1 whenever (M2;S2) 2 f(M1;S1):

{ One only needs to consider users and no adversaries on the \left" side of the simu-
latability de�nition.

{ Universal and blackbox de�nitions are equivalent.

{ A \dialogue model" with unsynchronized users is equivalent to the standard model.

� Restricting honest users to the speci�ed ports allows more general valid mappings and
nicer reexivity, but is equivalent for the standard valid mappings.

The reductions are quite eÆcient except in the proof that auxiliary inputs typically imply
universality. This shows that our de�nition is quite general in the sense that it captures most
of the versions that one might naturally consider.

5.1 Universal Variants

Our standard simulatability allows a completely di�erent adversary A2 for each given con�gu-
ration (M1;S1;H;A1). This corresponds best to the intuition that everything that can happen
to a user with a structure from Sys1 can also happen to him with a corresponding structure of
Sys2. However, all typical examples ful�l stronger de�nitions where the construction of A2 is
more universal. We �rst show a de�nition where A2 is only independent of H.

De�nition 5.1 (Universal Simulatability) We call Sys1 universally perfectly at least as

secure as Sys2 for a valid mapping f and write �f;perfsec;uni, if for any structure (M1;S1) 2 Sys1
and adversary A1, there exists a structure (M2;S2) 2 f(M1;S1) and an adversary A2 such that
for all users H for which conf 1 = (M1;S1;H;A1) 2 Conff (Sys1), we have conf 2 = (M2;S2;
H;A2) 2 Conf(Sys2) and view conf 1

(H) = viewconf 2
(H).

We call Sys1 universally statistically at least as secure as Sys2, �
f;SMALL
sec;uni , if the same holds

with statistical indistinguishability of all families of polynomial-length pre�xes of the views, and
universally computationally, �f;polysec;uni, if it holds only for all polynomial-time adversaries A1 and
users H, with polynomial-time A2, and with computational indistinguishability. Indices of � are
omitted if they are clear from the context. 3

By this de�nition, each adversary is only universal for all users with a �xed set of ports.
This is no signi�cant restriction: The relevant aspects are only how the ports from free(M1)
and free(M2) are connected. For this, there is only a �nite number of choices (and we see in
Sections 5.4 and 5.6 that we can usually even �x one choice). All other communication between
H and A could be multiplexed over one connection with a �xed name.

Note that, if an adversary A1 forces users to have forbidden ports, i.e., free(M1 [ fA1g)
c

contains ports from forb(M2;S2), then nothing needs to be shown for it because always conf 1 62
Conff (Sys1).
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Obviously De�nition 5.1 implies De�nition 2.8, while the reverse is not necessarily true.
A possibly even stronger type of universality is achieved by blackbox simulations, similar
to [GoOr 94]. A reason to make the intermediate universal de�nition, too, is that it may
be realistic that the adversaries do not know the user behaviour, but that they know how they
would act in the other system.

De�nition 5.2 (Blackbox Simulatability) We call Sys1 blackbox perfectly at least as se-

cure as Sys2 for a valid mapping f and write �f;perfsec;b , if for each structure (M1;S1) 2 Sys1 and set
P of ports, called adversary ports, there is a structure (M2;S2) 2 f(M1;S1) and a �xed machine
Sim called simulator such that for any conf 1 = (M1;S1;H;A) 2 Conff (Sys1) with PortsA = P,
we have conf 2 = (M2;S2;H;Sim(A)) 2 Conf(Sys2) and view conf 1

(H) = viewconf 2
(H). Here

Sim(A) denotes that Sim gets A as a blackbox submachine.
We call Sys1 blackbox statistically at least as secure as Sys2 if the same holds with statis-

tical indistinguishability of all families of polynomial-length pre�xes of the views, and blackbox
computationally if it holds with a polynomial-time simulator Sim, for polynomial-time A and
H, and with computational indistinguishability. 3

The fact that the simulator is only universal for each set P is essentially w.l.o.g., similar to the
arguments in the universal case.

Recall that by a blackbox submachine we mean that the state-transition function is given
as a blackbox, so that Sim can clock A. It could also reset (typically called \rewind") A to a
prior state, but we do not use this. In a reactive scenario a simulator that rewinds back by
more than one switching step cannot be indistinguishable unless we make restrictions on the
user machines H: We allow adversaries to produce outputs to H and to expect answers from H

in each step. Hence any rewinding will be noticed by some H. (One cannot allow Sim to also
rewind H, both from a real-life point of view and because De�nition 5.2 should be a stronger
version of De�nition 2.8.)27

Corollary 5.1 (Basic Lemmas Universally) Lemmas 4.3, 4.4 and 4.5 are also true for
universal and blackbox simulatability. 2

Proof. The only property for which this is not immediately clear is transitivity. We want to show
that the �nal adversary A3 only depends on (M1;S1) and A1. For this, note that the renaming
from A1 to At;1 can also be described using only the ports of A1 and the structures, i.e., all
those ports of A1 are renamed that are complements of forbidden ports in any corresponding
(M2;S2). For At;2 and At;3 we use the given universality, and the last renaming into A3 is the
reverse of the �rst. Renaming can also be done as a blackbox construction.

5.2 Output of Guess by the Adversary

In the following guessing-output model, we also consider a �nal output of the adversary, or all
outputs the adversary makes to some unconnected result port. This is like the guessing-outputs
in semantic security [GoMi 84], and essential in current de�nitions of multi-party function
evaluation. It corresponds to the intuition that privacy means \whatever the adversary sees
is simulatable," while \whatever the honest users see is simulatable" is integrity. However, we
show that it makes no di�erence in the reactive case. Intuitively, with general active attacks,
anything the adversary sees can come back to some honest users.

The de�nitions are modi�ed as follows: Systems and valid mappings are unchanged. The
con�gurations are denoted Confg(Sys); the di�erence to Conf(Sys) is that for confg = (M ;S ;

27The fact that our de�nitions automatically rule out rewinding seems to be an important reason why we can
obtain a general composition theorem.
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H;Ag) 2 Confg(Sys), the adversary Ag has a distinguished unconnected port guess! (compare
Figure 4). By view confg(H; guess!) we denote the family of restrictions of the runs to the view
of H and the outputs at guess!. We obtain the following simulatability de�nition:

De�nition 5.3 (Simulatability with Guessing Output) Let two systems Sys1 and Sys2
and a valid mapping f be given. We call Sys1 (perfectly, statistically, or computationally) at

least as secure as Sys2 for f in the guessing-output model, Sys1 �
f
g Sys2, if for any con�guration

conf g;1 = (M1;S1;H;Ag;1) 2 Conffg (Sys1), there exists conf g;2 = (M2;S2;H;Ag;2) 2 Confg(Sys2)
with (M2;S2) 2 f(M1;S1) such that

view conf g;1
(H; guess!) � view conf g;2

(H; guess!):

Recall that � means perfect, statistical, or computational indistinguishability, respectively, and
for the statistical case refers to all families of polynomial-length pre�xes. 3

We again omit the indices f and sec at � if they are clear from the context, and write conf g;2 2

Indistfg(conf g;1). The universal and blackbox de�nitions are adapted in the same way.

Theorem 5.1 (Guessing-Output) For all systems Sys1, Sys2 and valid mappings f , we have

Sys1 �
f
g Sys2 , Sys1 �

f Sys2:

This is true for perfect, statistical and computational security, and also in the universal and
blackbox models. 2

Proof. We can treat perfect, statistical and computational security together. In the third
case all given adversaries and users are polynomial-time; this will imply that so are all the
constructed ones, see Lemma 4.1.

\�g)�": (This is the easy direction.) Let Sys1 �g Sys2, and let conf 1 = (M1;S1;
H;A1) 2 Conff (Sys1) be given. Let Ag;1 be A1 augmented by a port guess! (w.l.o.g., the
name guess is new) where it does not make any outputs.28 Then conf g;1 = (M1;S1;H;Ag;1) 2

Conffg(Sys1). Clearly, view conf g;1
(H) = view conf 1

(H). By the precondition, there exists
conf g;2 = (M2;S2;H;Ag;2) 2 Confg(Sys2) with (M2;S2) 2 f(M1;S1) and view conf g;1

(H; guess!) �
view conf g;2

(H; guess!): This implies view conf g;1
(H) � view conf g;2

(H) (Lemma 4.2). Let A2 be Ag;2

except that it suppresses the guessing-output. Then conf 2 = (M2;S2;H;A2) 2 Conf(Sys2), and
clearly viewconf 2

(H) = view conf g;2
(H). Altogether, this implies viewconf 1

(H) � view conf 2
(H).

For the universal case, note that Ag;1 is independent of H by construction, then Ag;2 by the

universal version of �fg , and thus A2 again by construction. In the blackbox model, we obtain
Ag;2 as a simulator Sim with Ag;1 as a blackbox, and thus A2 is Sim with A1 as a blackbox.

\�)�g": Let Sys1 � Sys2, and let conf g;1 = (M1;S1;Hg;Ag;1) 2 Conffg(Sys1) be given. We
construct a related con�guration conf 1 = (M1;S1;H;A1) where the former guessing output
belongs to the user's view (see Figure 4): The adversary A1 equals Ag;1, and H is like Hg except
for an additional input port guess?, where it ignores all inputs. We show conf 1 2 Conff (Sys1):
It is a closed collection because we required that no port guess? was there before and guess! was
the only free port, and H has no forbidden ports because Hg hasn't.

Now clearly view conf 1
(H) = view conf g;1

(Hg; guess!).
Otherwise, there exists conf 2 = (M2;S2;H;A2) 2 Conf(Sys2) with (M2;S2) 2 f(M1;S1) and

view conf 1
(H) � view conf 2

(H). As assumed in the �gure, A2 must have a port guess! because H

28This and subsequent simple machine modi�cations can be made by canonical blackbox constructions; we
tacitly assume that those are used.
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Figure 4: Standard simulatability implies simulatability with guessing outputs

has the port guess?, unconnected ports are not possible in Conf(Sys2), and guess! cannot belong
to M2 or H (and thus Hg) because the name guess was new.

Hence we can use Ag;2 = A2 to obtain a con�guration conf g;2 = (M2;S2;Hg;Ag;2) 2
Confg(Sys2). As H behaves like Hg, ignoring the inputs at guess?, the runs are essentially
unchanged, in particular view conf g;2

(Hg; guess!) = view conf 2
(H).

Altogether this implies view conf g;2
(Hg; guess!) � viewconf g;1

(Hg; guess!).
For the universal case, A1 does not depend on H by construction, and hence neither do A2 or

Ag;2. In the blackbox case, Ag;2 = A2 is a simulator with A1 = Ag;1 as a blackbox submachine.

Corollary 5.2 The equivalent of Theorem 5.1 also holds in the model where adversaries always
output their entire view at the port guess!. 2

The proof is identical to that of Theorem 5.1 except that in \�g)�", the adversary Ag;1

outputs its view at the new port guess!.

5.3 Auxiliary Inputs

We now show that auxiliary inputs add only a small intermediate variation to the model.
Recall that auxiliary inputs are important in de�nitions of zero-knowledge [Oren 87, ToW1 87],
because they are needed to model the adversary's prior information about the user's secrets from
earlier protocol runs. Intuitively, this is not necessary in a general reactive scenario because the
adversary can also get such information from H by an active attack via their direct connections
at the beginning of the current protocol.

Systems and valid mappings in the auxiliary-input model are as in the standard model. The
con�gurations confx = (M ;S ;Hx;Ax) 2 Confx(Sys) are di�erent: Hx and Ax have initial states
(1k; auxH ) and (1k; auxA) with arbitrary strings auxH and auxA.

29 For each such con�guration,
we obtain a family of views

view confx(Hx) = (view confx;(k ;auxH ;auxA)(Hx))k2N;auxH2��;auxA2��

29The correct machines do not get an auxiliary input: Typical internal results from some history would not be
the same in the real and ideal system and therefore no comparison could be made; a collection of related protocols
is one reactive system. (This is di�erent in the constructive approach to reactive simulatability mentioned in the
introduction.) Results that are necessarily the same in the real and ideal system are modeled as outputs to the
user and subsequent inputs.
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where (k; auxH ; auxA), written in the place of the initial states ini of all machines in De�ni-
tion 2.3, stands for a vector (1k; : : : ; 1k; (1k; auxH ); (1

k; auxA)).
For perfect security, the families must be equal. For computational security, as we are

using uniform complexity, we proceed as in [Gold 93]: We assume that the auxiliary inputs
have been generated from k by an arbitrary polynomial-time algorithm genx. As usual (see
[Gold 93]), we de�ne that one adversary Ax;2 must deal with all auxiliary inputs, i.e., there is
a certain universality. Hence auxiliary-input simulatability turns out to be closer to universal
simulatability than to our standard de�nition.

De�nition 5.4 (Simulatability with Auxiliary Inputs) Let two systems Sys1 and Sys2
and a valid mapping f be given. We call Sys1 (perfectly, statistically, or computation-

ally) at least as secure as Sys2 for f in the auxiliary-input model, Sys1 �
f
x Sys2, if for

any con�guration conf x;1 = (M1;S1;Hx;Ax;1) 2 Conffx (Sys1), there exists conf x;2 = (M2;S2;
Hx;Ax;2) 2 Confx(Sys2) with (M2;S2) 2 f(M1;S1) such that:

a) For perfect security:
view conf x;1

(Hx) = view conf x;2
(Hx);

i.e., for any k, auxH , and auxA, the views in the two con�gurations have the same distri-
bution.

b) For statistical security: For any polynomial l over N(denoting the length of considered
runs), there exists a function g 2 SMALL such that for all k, auxH , and auxA

�(view conf x;1;(k;auxH ;auxA);l(k)
(Hx); view conf x;2;(k;auxH ;auxA);l(k)

(Hx)) � g(k):

c) For computational security (with Confx;poly instead of Confx above): for any polynomial-
time algorithm genx,

(view conf x;1;genx(k)
(Hx))k2N �poly (view conf x;2;genx(k)

(Hx))k2N :

The notation Indistfx is de�ned accordingly. The universal and blackbox de�nitions are adapted
in the same way, i.e., the Parts a)-c) here replace the three types of indistinguishability in

De�nitions 5.1 and 5.2. We then write �fx;uni and �
f
x;b. 3

Remark 5.1. For any function genx from N to triples (k; auxH ; auxA), De�nition 5.4a implies
(view conf x;1;genx(k)

(Hx))k2N = (view conf x;2;genx(k)
(Hx))k2N . Similarly, De�nition 5.4b implies

(view conf x;1;genx(k);l(k)
(Hx))k2N �SMALL (view conf x;2;genx(k);l(k)

(Hx))k2N for all polynomials l.
For perfect security, this is clearly equivalent to the de�nition. Where we want to treat these
three cases together, we write

view conf x;1;genx
(Hx) � view conf x;2;genx

(Hx):

Æ

The distinguisher in Part c) of the de�nition sees the auxiliary input auxH in the view of
H. Hence, although the auxiliary inputs are generated separately with genx on both sides of
the comparison, the views are not only similar on average, but for the same values auxH . To
show that this also holds for auxA, we prove the theorem immediately also for the model with
guessing outputs, so that the distinguisher can see auxA in the outputs at guess!.

Theorem 5.2 (Auxiliary Inputs) Let two systems Sys1 and Sys2 and a valid mapping f
be given. The following holds for all security types introduced, i.e., perfect, statistical and
computational security, and also in the guessing-output model.
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a) If we restrict all con�gurations to users whose state-transition functions have a Turing-

machine representation for each k, then Sys1 �
f
x Sys2 , Sys1 �

f
uni Sys2.

b) The universal model and the blackbox model are not changed by the addition of auxiliary

inputs, i.e., Sys1 �
f
x;uni Sys2 , Sys1 �

f
uni Sys2 and Sys1 �

f
x;b Sys2 , Sys1 �

f
b Sys2.

c) If we quanti�ed over an algorithm genx (or even individual auxiliary inputs) before Ax;2

in De�nition 5.4, we would remain in the standard model.

2

The restriction in Part a) is automatically ful�lled in the computational case, but not in the
others: General machines can produce strings of any length for any k after a suÆcient number
of rounds. However, realistic users will have space or time limitations anyway.30

Proof. We treat the models with and without guessing output together. For this, we let
\standard model" mean either one in this proof and we omit all indices g, but we always write
view conf (H; guess!). We sometimes distinguish the perfect, statistical and computational case.

Part a) \�x)�uni": Let Sys1 �
f
x Sys2, and let a structure (M1;S1) 2 Sys1 and a compatible

adversary A1 be given. We can assume that free(M1[fA1g)
c contains no ports from forb(M2;S2)

for a structure (M2;S2) 2 f(M1;S1); otherwise we need not show anything (recall the text below
De�nition 5.1).

We construct a related suitable con�guration conf x;1 = (M1;S1;Hx;Ax;1) 2 Conffx (Sys1),
see Figure 5: Ax;1 simply ignores its auxiliary input and acts like A1. Hx is a universal Turing
machine with PortsHx = free(M1 [ fA1g)

c n fguess?g. It interprets its auxiliary input as a
machine H and executes H on its own (i.e., Hx's) initial state k. For the computational case, Hx

also expects a value k0 in unary as part of the auxiliary input and executes at most k0 steps of
H.31 The precondition on A1 guarantees that conf x;1 is indeed suitable.

ε
genx,H

H, k'
Hx

M1

H

M1 A1

Sys1 ≥x Sys2

M2

H

M2

Ax,1 ≈ A1

Ax,2

ε
genx,HHx

A2 ≈ Ax,2

H, k'

Define
Hx, Ax,1

Define
A2

Figure 5: Simulatability with auxiliary inputs implies universal simulatability. Gray machines
are �xed later (universality). The dashed adversary output is a possible guessing output.

Now there exists conf x;2 = (M2;S2;Hx;Ax;2) 2 Indistfx (conf x;1). By Remark 5.1, this im-
plies view conf x;1;genx

(Hx; guess!) � view conf x;2;genx
(Hx; guess!) for any function or polynomial-time

algorithm genx, respectively.
30However, the proof of Part a) also signi�cantly increases the complexity of the user, hence it is of smaller

practical relevance than our other theorems.
31Universal Turing machines are polynomial in the run-time of the simulated machines. But Hx must be

polynomial in its initial state alone.
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We claim that the machine A2 that acts like Ax;2 with auxA = � ful�ls the conditions for
universal simulatability. Let any machine H be given. We construct functions genx;H from N

to triples (k; auxH ; auxA). For the perfect or statistical case, let genx;H(k) = (k;H(k); �), where
H (k) means a Turing program for H on input k. For the computational case, let R be a
polynomial bounding the running time of H. Then let genx;H(1

k) = (k; (H; 1R(k)); �). (Here
the Turing program of H is constant.) This is a polynomial-time algorithm. In both cases,
for any k, Hx with the input from genx;H has the same input-output behaviour at its ports as
H. Thus the runs of a con�guration conf x;i (i = 1, 2) only di�er from those of conf i in the
internal states of this machine (and a small change between the internal states of Ax;i and Ai).
Furthermore, the internal states of Hx contain those that H would have in the same runs. Hence
(with Lemma 4.1) we obtain view conf 1

(H; guess!) � view conf 2
(H; guess!).

\�uni)�x": This follows from Part b), where we even show that �uni implies �x;uni.

Parts b) and c) In both directions, we �rst consider Part c) and then show that the construc-
tions are also valid in the universal and blackbox model.

\�x)�": (This is the easy direction.) Let a con�guration conf 1 = (M1;S1;H;A1) 2
Conff (Sys1) be given. Let Hx and Ax;1 be equal to H and A1 except for extra components auxH
or auxA in the initial states which they ignore. Then conf x;1 = (M1;S1;Hx;Ax;1) 2 Conffx (Sys1),
and view conf x;1

(Hx; guess!) consists of view conf 1
(H; guess!) and auxH . By the precondition there

exists conf x;2 = (M2;S2;Hx;Ax;2) 2 Indistfx (conf x;1). The indistinguishability holds in particu-
lar for the generation algorithm geneps that always outputs (�; �) (by Remark 5.1). For this case,
we construct a related con�guration conf 2 = (M2;S2;H;A2) 2 Conf(Sys2) by letting A2 act like
Ax;2 with auxA = �. In particular, viewconf 2

(H; guess!) equals view conf x;2
(Hx; guess!) except for

lacking auxH . Altogether, we therefore have view conf 2
(H; guess!) � view conf 1

(H; guess!).
In the universal case, as Ax;1 is independent of H, so is Ax;2 and thus A2. In the blackbox

case, Ax;2 consists of a simulator Sim and Ax;1 as a blackbox, and thus A2 of Sim and A1.

\�)�x": Let conf x;1 = (M1;S1;Hx;Ax;1) 2 Conffx (Sys1) be given and a generation algorithm

or function genx. We construct a con�guration conf 1 = (M1;S1;H;A1) 2 Conff (Sys1) by letting
H perform the generation in Round [0:1], see Figure 6. It sends auxA to A1 on a connection
between two new (w.l.o.g.) ports auxa! and auxa?. A1 simply gives its input from auxa? to
its submachine Ax;1 as auxiliary input auxA in its initial state before �rst clocking it in Round
[0:2]. Hence viewconf 1

(H; guess!) consists of viewconf x;1;genx
(Hx; guess!) and auxA.

By the precondition there exists a con�guration conf 2 = (M2;S2;H;A2) with (M2;S2) 2
f(M1;S1) and viewconf 1

(H; guess!) � view conf 2
(H; guess!). Here A2 must have a port auxa?

because H's port auxa! cannot be unconnected, nor connected to H or M2 because its name was
new.

We transform this into a con�guration conf x;2 = (M2;S2;Hx;Ax;2) 2 Confx(Sys2) where
Ax;2 equals A2 except that it does not have the port auxa?, but expects an auxiliary input,
which it forwards to this ports of its submachine A2. Then view conf 2

(H; guess!) consists of
view conf x;2;genx

(Hx; guess!) and auxA.
Altogether, we have view conf x;1;genx

(Hx; guess!) � view conf x;2;genx
(Hx; guess!).

For the universal case, note that A1 is independent of Hx and genx. Hence so is A2, and thus
Ax;2. In the blackbox case, A2 consists of a simulator Sim with A1 as a blackbox. Then Ax;2 is
Sim with Ax;1 as a blackbox without even any renaming.

5.4 Users Only in Real Systems

The following model variant, called user-only model, only makes sense if S2 � S1 whenever
(M2;S2) 2 f(M1;S1). (Recall that the standard case is even S2 = S1.) We show that in this
case, it is also equivalent to our standard model.
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Figure 6: Standard simulatability implies simulatability with auxiliary inputs, computational
case. The dashed adversary output is the guessing output.

In the user-only model, we consider users alone on the \left" side of a comparison of
two systems, see Figure 7.32 Formally, the systems are the standard ones, while user-only-
valid mappings are valid mappings where additionally S2 � S1 ) (M2;S2) 2 f(M1;S1). We
de�ne the set Confu(Sys) of user-only con�gurations as the subset of con�gurations (M ;S ;
H;Anull) 2 Conf(Sys), where Anull is a �xed machine without ports that does nothing.33 User-

only simulatability, written �fu , is de�ned just like De�nition 2.8 except that conf 1 is only
chosen from Conffu(Sys1).

A2

H

M1

Sys1 ≥u Sys2
H

M2

S2

with struc2 ∈ f(struc1)

Anull

Figure 7: De�nition of user-only model

Remark 5.2. We have Conffu(Sys1) = Confu(Sys1) for any user-only-valid mapping f : For
conf u;1 = (M1;S1;H;Anull) 2 Confu(Sys1), we have PortscH = free(M1) (closed collection).
Hence by the �rst condition on valid mappings, no port p 2 PortsH can lie in forb(M2;S2).
Thus conf u;1 2 Conffu(Sys1).

Remark 5.3. Universal and blackbox user-only simulatability are identical: As the adversary A1

= Anull is �xed, both require that for any structure (M1;S1) 2 Sys1, there is one machine A2

such that (M2;S2;H;A2) 2 Indistf (M1;S1;H;Anull) for all H.

Remark 5.4. The reason why the user-only model makes no sense for S2 6� S1 is that we always
want to be able to consider users that use all ports from S2. (Recall the example from Sec-

32We could also call H a combined user-adversary machine, but we treat it like a user in the clocking scheme
and by keeping it constant in a simulation. We could also call it an adversary and regard A2 as a blackbox
simulator with relatively little power over its blackbox (H) because some connections between correct machines
and blackbox are unchanged.

33We could also de�ne Confu(Sys) as a set of triples, but some proofs are simpli�ed by having a subset of the
standard con�gurations.
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tion 3.2.2 with four correct devices and a 5-port trusted host.) In this case, such users cannot
interact with (M1;S1) alone. (We will also see that the following proof does not work for them.)
Æ

Theorem 5.3 Let systems Sys1 and Sys2 and a user-only-valid mapping f be given. Then
Sys1 �

f
u Sys2 , Sys1 �

f Sys2. This is true for perfect, statistical and computational security,
and also for universal and blackbox de�nitions. 2

Proof. \�)�u": This is clear because user-only simulatability is de�ned as a weaker version
of standard simulatability. This is also true for the universal and blackbox case.

\�u)�": Let a con�guration conf 1 = (M1;S1;H;A1) 2 Conf(Sys1) be given. To transform it
into a user-only con�guration, we combine H and A1 into a machine Hu, see Figure 8. We de�ne
Hu as a hiding combination according to Lemma 4.1a). Then only Hu is clocked in subrounds 2
to 4, and by Lemma 4.1d) we can instead clock Hu once in subround 3. Thus we get the correct
clocking scheme for a user machine. (Internally it switches �rst A1, then H, and then A1 again
in each subround [i:3].) Hence conf u;1 = (M1;S1;Hu;Anull) 2 Confu(Sys1) = Conffu(Sys1) and
view conf 1

(H) equals the subview of H in view conf u;1
(Hu) by Lemma 4.1e).

H

M2

A1

H

M1

A1

Hu

Define
Hu

Sys1 ≥u Sys2

Define
A2

H

M1 A1

H

M2

A1

A2 Au,2Au,2

Hu

Figure 8: User-only simulatability implies standard simulatability

By the precondition, an indistinguishable con�guration conf u;2 = (M2;S2;Hu;Au;2) 2
Conf(Sys2) exists, i.e., (M2;S2) 2 f(M1;S1) and viewconf u;1

(Hu) � view conf u;2
(Hu).

We want to transform this into a con�guration conf 2 = (M2;S2;H;A2) with the origi-
nal user H by splitting Hu again and then joining A1 and Au;2. We must show that this
gives a valid con�guration.34 We show below that the ports of all machines in M2 and H,
A1 and Au;2 are disjoint. Then the proof �nishes as follows: We consider the intermediate
closed collection C where H, A1 and Au;2 are all separate machines and the clocking scheme is
(M2 [ fHg; fAu;2g; fA1g; fHg; fA1g; fAu;2g). Then taking the hiding combination of H and A1,
and joining subrounds 3 to 5 gives conf u;2 with its correct clocking scheme, while taking the
hiding combination of A1 and Au;2, and joining subrounds 2 with 3 and 5 with 6 gives a valid

34This would not be true for S2 6� S1 and if H had a port p with pc 2 S2 n S1 and which is connected to A1

in conf 1. The connection would remain hidden in Hu in conf u;1 and conf u;2, and we would get a name clash in
conf 2. Renaming does not help because H is connected to A1 at p, but should be connected to M2 because pc is
speci�ed. (These are ports where the user intends to use the trusted host.)
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con�guration conf 2 2 Conf(Sys2). Then, by Lemma 4.1e), viewconf 2
(H) equals the subview of

H in viewconf u;2
(Hu).

Altogether, this implies viewconf 1
(H) � view conf 2

(H).

Disjoint ports. We still have to show that the ports of all machines in M2 and H, A1 and Au;2

are disjoint.

� For H and M2 this holds because conf 1 is suitable (De�nition 2.6), for A1 and H because
conf 1 is a collection, and for Au;2 and M2 because conf u;2 is a collection.

� Au;2 and H: Let p 2 PortsAu;2 . Then pc 2 PortsHu or pc 2 free(M2) because conf u;2 is
closed.

If pc 2 PortsHu , then p 2 ports(M1) because conf u;1 is a user-only con�guration. Thus
p 62 PortsH because conf 1 is a collection. Note that then also p 62 PortsA1 .

Now let pc 2 free(M2), and assume p 2 PortsH. Then pc 62 �S2 because conf 1 is suitable.
Thus pc 2 S2 � S1 � ports(M1). Hence p is connected to M1 in conf 1 and becomes a port
of Hu. This contradicts the precondition p 2 PortsAu;2 because p cannot occur twice in
conf u;2.

� A1 and M2: Let p 2 PortsA1 . Then pc 2 free(M1) or p
c 2 PortsH because conf 1 is closed.

If pc 2 free(M1), then p becomes a port of Hu. Hence p 62 ports(M2) because conf u;2 is a
collection. Note that then also p 62 PortsAu;2 .

If pc 2 PortsH, then p 2 ports(M2) ) p 2 S2 � S1 � ports(M1). Then however, p would
occur twice in conf 1.

� Au;2 and A1: We have seen in the two previous items that p 2 PortsAu;2 \ PortsA1 would
imply pc 2 free(M2) and pc 2 PortsH. However, the ports of M2 and H are disjoint.

In the universal and blackbox case, the adversary Au;2 is independent of Hu. Thus A2 is a
�xed machine with A1 as a blackbox submachine.

As we have now shown that the original universal and blackbox de�nitions are both equiv-
alent to their counterparts in the user-only model, which are equal, we have the following
corollary:

Corollary 5.3 The universal model and the blackbox model according to De�nitions 5.1 and 5.2
are equivalent if S2 � S1 whenever (M2;S2) 2 f(M1;S1). 2

5.5 Dialogues Between Honest Users and Adversary

In Section 2.2 we claimed that splitting rounds into four subrounds is suÆcient, even though in
reality A and H might engage in a multi-round dialogue within a round of the correct machines.
We now show that this is true, at least if S2 � S1 whenever (M2;S2) 2 f(M1;S1). Otherwise, a
user H of Sys1 could have a port p 2 (S2 n S1)

c. If H performs multi-round dialogues with the
adversary via p in conf 1, whereas p is connected to a synchronous correct machine in conf 2, it
can clearly distinguish the two cases.35

We call the model with arbitrary dialogues the dialogue model. Systems are unchanged as
always, and dialogue-valid mappings equal user-only-valid mappings. We only allow an arbitrary

35Hence speci�cations in the standard model with S2 6� S1 only make sense if H indeed only uses such ports
synchronously. This is justi�able in the example in Section 3.2.2 because the user knows that this is a port to a
device from the system. In contrast, the user's ports to the adversaries in the cryptographic examples correspond
to his talking to other people or communicating with other entities from the application.
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but �xed number � of subrounds, so that we still have a valid clocking scheme according to
De�nition 2.3: ��(1) = M [ fHg, and then A is clocked in all even subrounds and H in all odd
ones up to �. (Otherwise we are in a semi-asynchronous model; it would lead too far to de�ne
the scheduling for that case here.) Hence the dialogue con�gurations Confd(Sys) are de�ned as
the set of pairs (conf , �) where conf is a con�guration and � 2 N, and the runs of conf are
de�ned by the clocking scheme ��.

Dialogue simulatability, �fd , is de�ned like standard simulatability with dialogue con�gura-
tions with the same � on both sides.

Theorem 5.4 (Dialogues) Let systems Sys1 and Sys2 and a dialogue-valid mapping f be

given. Then Sys1 �
f
d Sys2 , Sys1 � Sys2. This is true for perfect, statistical and computational

security, and also for universal and blackbox de�nitions. 2

By Corollary 5.3 this implies that universal and blackbox dialogue simulatability are equiv-
alent.

Proof. We use Theorem 5.3, i.e., that all the variants of the standard model are equivalent
to their user-only counterparts for dialogue-valid mappings (which equal user-only-valid map-
pings). We can treat the perfect, statistical and computational case together.

\�d)�u": Let a con�guration conf 1 2 Confu(Sys1) be given. Then (conf 1, 4) 2 Confd(Sys1).

Thus there exists a con�guration (conf 2; 4) 2 Indistfd((conf 1; 4)). This immediately implies
conf 1 2 Indistfu(conf 1). The uniform and blackbox case are proved in the same way.

\�u)�d": One can easily see that the part \�u)�" of the proof of Theorem 5.3 also
holds if conf 1 is a dialogue con�guration: For machine Hu, we join all subrounds 2 to �. The
clocking scheme �C of the intermediate collection C is �C(1) = M2 [ fHg; �C(2) = fAu;2g;
�C(i) = ��(i � 1) for i = 3; : : : ; � + 1; and �C(� + 2) = fAu;2g. We join subrounds 3 to � + 1
to get conf u;2; and we join subround 2 with 3 and �+ 1 with �+ 2 to obtain conf 2.

Remark 5.5. It makes no di�erence in the part \�u)�d" of this proof whether H also switches
in subround [i:1] or not. Hence the clocking scheme (M ; fAg; fHg; fAg) is also fully general. Æ

5.6 Speci�ed Ports as a Maximum User Interface

In particular in the cryptographic examples, we naturally expect honest users of a structure
(M ;S ) to use precisely the set S of speci�ed ports and to leave the other free ports to the
adversary. In the following speci�ed-user-interface model, we consider the slightly more general
set Confs(Sys) � Conf(Sys) of con�gurations with ports(H)\ �S c = ;. The conditions on a valid
mapping are relaxed: The precondition \pc 2 free(M1)" of the �rst condition is replaced by
\pc 2 S1".

36

Theorem 5.5 Let systems Sys1 and Sys2 and a valid mapping f be given. (Thus f is also valid

in the speci�ed-user-interface model.) Then Sys1 �
f
s Sys2 , Sys1 �

f
s Sys2. This is true for

perfect, statistical and computational security, and also for the universal and blackbox model. 2

Proof. \�s)�": Let a con�guration conf 1 = (M1;S1;H;A1) 2 Conff (Sys1) be given. We con-
struct a related speci�ed-user-interface con�guration conf s;1 = (M1;S1;Hs;As;1) as in Figure 9:
Hs equal H except that any port p of H with pc 2 �S1 gets a new name pa. As;1 equals A1 except

36Recall that reexivity holds without renaming for this case. Remark 2.3 and the proof of transitivity can
also easily be adapted to this case. Hence this extension of valid mappings at the cost of more restricted users
is a true alternative to our standard de�nition.
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that it gets additional ports p and pac for all ports renamed in Hs, and it simply forwards mes-
sages between p and port pac. Clearly conf s;1 is still suitable and thus in Conffs (Sys1). There is
no signi�cant di�erence in the executions because As;1 is clocked in subrounds between Hs and
M1. Hence view conf s;1

(Hs) equals viewconf 1
(H) except for the renaming.

As,2M2

pa

As,1M1

p

paH

M1

Define Hs,
As,1

Sys1 ≥s Sys2

Define A2

S1

p

M2

pac

A2 ≈ A2,s

Hs ≈ H

Hs ≈ HH p

S1

S2S2

pc pc

pacpc

A1

Figure 9: Speci�ed-user-interface simulatability implies standard simulatability

By the precondition there exists conf s;2 = (M2;S2;Hs;As;2) 2 Confs(Sys2) with (M2;S2) 2
f(M1;S1) and view conf s;1

(Hs) � view conf s;2
(Hs). As assumed in the �gure, As;2 has a port pac

for any new port pa of Hs because the collection is closed and pac cannot belong to Hs or M2

because the name was new.
We want to transform this into a con�guration conf 2 = (M2;S2;H;A2) 2 Conf(Sys2) with

the original H by giving each renamed port pa of Hs its old name p. To retain the connection, we
also rename pac of As;2 into p

c in A2. We have to make sure that p; pc do not occur elsewhere in
conf s;2 (and thus H should be connected di�erently). By the choice of p, we have pc 62 PortsH.
As conf 1 is suitable, p 62 ports(M2) and pc 2 ports(M2) ) pc 2 S2. The latter and the validity
of f would imply pc 62 �S1 in contradiction to our choice of p. Hence p and pc can only occur in
As;2. Then we also give these ports new names in A2. We have therefore ensured view conf 2

(H)
= view conf s;2

(Hs).
Altogether, this implies viewconf 1

(H) � view conf 2
(H).

\�)�s": Let conf s;1 = (M1;S1;Hs;As;1) 2 Conffs (Sys1) � Conff (Sys1) be given. Hence there
exists conf 2 = (M2;S2;Hs;A2) with (M2;S2) 2 f(M1;S1) and view conf s;1

(Hs) � viewconf 2
(Hs).

Suitability of conf s;1 implies ports(Hs) \ �S c
2 = ;, i.e., conf 2 2 Confs(Sys2).

If we have user-only valid mappings, we can restrict ourselves to user-only con�gurations in
the part \�s)�" of this proof. Then Hs uses all ports from S1. Hence we obtain the following
corollary:

Corollary 5.4 If f is user-only valid, the same theorem also holds for users that use precisely
the speci�ed ports, i.e., con�gurations with ports(H)c \ free(M ) = S. 2

5.7 Outlook on Model Variants

We have considered several natural model variants and proven that some are completely equiv-
alent to our primary de�nitions and the others at least in the most typical cases. Further
variants are conceivable. For instance, one can let H do its own distinguishing in the computa-
tional case, or consider the view of A alone. Or one can omit the honest users and quantify over
input sequences. We believe that none of these variants is equivalent to our primary de�nitions

27



in all cases, although in some cases they are. Given the equivalences shown above, we believe
that the primary de�nitions should stay what they are.

One can also ask what one has really gained by allowing the more exotic cases S1 6= S2 and
users with ports from �S1; for this one can prove some canonical equivalences between systems
with varying sets Si. Restrictions to the standard cases would allow some proofs to be shortened.

Another open question is whether standard and universal de�nitions are really di�erent.

6 Secure Message Transmission in Detail

We now de�ne and prove one reactive cryptographic system in detail, a system for secure
message transmission. The purpose of this example is to show

� why we model tolerable imperfections, and thus allow ideal systems with di�erent trusted
hosts containing speci�c capabilities for adversaries,

� the timing problems that occur in a synchronous system and why we think they should
not always be abstracted from,

� and that some system is actually provable with respect to our de�nition.

By secure message transmission, we mean the sending and receiving of private and authentic
messages, as usually achieved by encryption and authentication.

6.1 Tolerable Imperfections and Timing Problems

TraÆc Patterns and TraÆc Suppression The most intuitive version of an ideal sys-
tem for secure message transmission would be a trusted host that simply relays messages.
E.g., [Gold 99], Page 8, says that an encryption scheme is considered secure if it simulates an
ideal private channel between the parties, and that this means that an eavesdropping adversary
gains nothing over a user which does not tap this channel. This is indeed the most desirable
service. However, it implies that an adversary does not even see whether a message is sent
or not. Thus any real system as secure as this trusted host must also hide this fact, e.g., by
sending meaningless ciphertexts at all other times (see [Bara 64] for an early note of this and
[Abad 98] for one in a similar context as here). This may indeed be the method of choice
in a few applications, but it costs a lot of bandwidth. Usually one is therefore satis�ed with
encrypting the real messages only. Nevertheless, one may want to have a precise de�nition of
what one has achieved in the form of the simulation of a trusted host. For this, we introduce
an abstraction of the tolerable imperfection into the trusted host. For encryption, the trusted
host will tell the adversaries the traÆc pattern in the form of one \busy" bit per pair of honest
participants and round.

Similarly, as cryptography cannot prevent an adversary from destroying a message in transit,
the trusted host will allow the adversary to input a bit \suppress" for any message that was
signaled to him by \busy". Again, in some applications one will want a more ideal service,
and thus need a lot of replication in the underlying protocol, but typically one is satis�ed with
the much cheaper service, and hence this should also be de�ned and proved. Furthermore, for
availability one would need stronger assumptions on the number of corrupted machines than
for privacy and integrity, where only the two parties concerned must be honest.

Observable traÆc patterns also occur in many other systems, e.g., all typical key exchange
and authentication protocols or payment systems. Our approach enables us to separate vulner-
abilities of insecure implementations (such as cryptographic problems or protocol vulnerabilities
allowing replay attacks etc.) from such unavoidable imperfections of the service given certain
resource limitations.
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Timing Imperfections While, once noticed, the traÆc analysis imperfections may seem
clear, it is less obvious that even after these changes to the initially desired trusted host, no
real implementation will be as secure as it. (This would also be true if we had not allowed the
imperfections discussed so far.) The problem is that adversaries can react several rounds faster
than honest participants.37 We �rst present it in the synchronous model and then discuss why
it is not only a technical diÆculty of this model.

If an honest user sends a message using the real encryption system, the message goes via
the sender's machine and the recipient's machine. The corresponding timing must be modeled
in the trusted host, i.e., the trusted host delivers messages after two switching steps. Thus,
with the trusted host, an honest user cannot get an answer referring to his message earlier than
four rounds after his message. However, if the recipient in the real system is corrupted, he can
save the two rounds where his own machine would handle the message by taking it immediately
from the line, decrypting it (he knows his own decryption key), and composing and encrypting
the answer, all in one round. Thus an answer from a dishonest recipient can arrive two rounds
faster. We see no realistic way to improve the real system so that it corresponds to the same
trusted host for honest and dishonest recipients in this respect. We therefore model this tolerable
imperfection in the trusted host by o�ering a faster service at the ports for the adversary, so
that anyone basing an application on the trusted host must be aware of it.

It is reasonable to ask whether this problem would disappear in asynchronous models and
whether those aren't more realistic. (Or one can relax the timing requirements in the compar-
ison, i.e., not require that events in the ideal and the real system must happen in the same
rounds, as in [HiMa 00].) First, however, many cryptographic protocols are designed for syn-
chronous systems and it should be possible to de�ne their security.38 Secondly, in real life the
problem occurs whenever the users (not the machines of the system!) have access to real time.
This seems unavoidable because we cannot de�ne that cryptographic systems must never be
used in real-time applications or that human users must not look at their watches.39 Thus, in
a real system an adversary may indeed be faster (e.g., by bridging network delays), and honest
users can notice this. This will usually not have a very bad e�ect, but contradicts real-life
indistinguishability of the real and ideal system. Hence we believe that the timing di�erences
must be modeled in the trusted host. One can even construct arti�cial examples where users
tell secrets to someone who can react very fast, e.g., because they believe that the person must
have known the secrets before; such a problem might occur in a badly designed synchronous
protocol for mutual identi�cation.

Another problem is timing channels in the classical sense (see Section 1). For example,
consider a user who is known to answer all good news fast and all bad news slowly. An
adversary in the real system can, simply by the timing of the traÆc pattern, judge whether
this user gets good or bad news, but this imperfection is not visible in an asynchronous model.
Concrete examples of this type might be automatic message-processing systems that answer
certain types of requests faster than others.

Even more classical timing channels are those where the users are considered dishonest, e.g.,
a Trojan horse that tries to send secret information out from an infected program to its creator,
but without having subverted the operating system. Our model, with a universal quanti�er
over honest users H, also includes those that are actually two machines H1 and H2 without
connection, and requires that they cannot communicate better using the real system than in
the ideal system.

37This is di�erent from the problem of rushing adversaries within a round, which is already taken care of in
the switching model.

38Of course, the synchrony is typically virtual, i.e., derived from loosely synchronized clocks and bounds on
message delays after which a message will be considered lost.

39The rounds in a cryptographic protocol used over the Internet may have to be quite long to tolerate temporary
congestion or message retransmission. Hence they may indeed be observable with watches.
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6.2 An Ideal System

We now de�ne an ideal system that models secure message transmission with three tolerable
imperfections: observable traÆc patterns, suppressible messages, and faster service for the
adversary. As discussed in the previous subsection, this is the optimum that can be achieved
without a large increase in the network traÆc.

The ideal system is of the standard cryptographic type described at the end of Section 3.1.

Scheme 6.1 (Ideal System for Secure Message Transmission) Let a polynomial-time
decidable set Msg � f0; 1g�len of messages of length at most len be given with � 2 Msg, where �
is the empty word and stands for \no message". Let a number n 2 N of intended participants be
given and M := f1; : : : ; ng, and let R 2 N be the intended number of rounds. An ideal system
for secure message transmission is then de�ned as

Syssecmsg;id
Msg;n;R = f(fTH(H)g;S (H))jH �Mg;

(i.e., the access structure is the powerset of M), where TH(H) and S (H) are de�ned as fol-
lows. Let A =MnH be the set of corrupted participant indices. We often write \user u" or
\participant u" although u is only the index.

Ports: The speci�ed ports of TH(H) are S (H) := finu?; outu!ju 2 Hg and the unspeci�ed
ports �S2(H) = fadv out!; busy!; adv in?; suppress?g; thus PortsTH(H) = S (H) [ �S2(H) (see
Figure 10).

TH(H)

inu? outu!

• • •

inv? outv!

adv_out!
busy!

adv_in?
suppress?

S(H)
• • •

S2(H)
_

Figure 10: A structure of the ideal system for secure message transmission

The internal state of TH(H) consists of the current round number i, which it updates with every

transition, and a matrix ini�1 2 MsgM
2
. In Round 0, TH(H) does nothing. (This is time

reserved for initialization in the real system.) Now we consider the state transition for any
Round i > 0.

Inputs: At each port ins?, TH(H) expects an input vector (ini;s;r)r2M 2 MsgM. By \expects"
we mean that it replaces any other input by a vector of all �; similarly for other structures
in the following. (Hence every user s may send one message to every other user r in each
round.) At the ports adv in? and suppress?, it expects matrices adv ini 2 MsgA�H and
suppress i 2 f0; 1g

H2
:

Computation: For all s; r 2 H, the trusted host sets

out i;s;r :=

�
� if suppress i;s;r = 1

ini�1;s;r else;
(1)

busy i;s;r :=

�
1 if ini;s;r 6= �
0 else.

(2)
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Hence it delays messages between honest users for one round, but immediately tells the
adversary where such messages are in transit. For a 2 A, u 2 H, it sets

out i;a;u := adv ini;a;u; (3)

adv out i;u;a := ini;u;a: (4)

Hence messages to and from the adversary are delivered immediately.

Outputs: The matrices adv out i 2 MsgH�A and busy i 2 f0; 1g
H2

are output at the ports
adv out! and busy, and each tuple (out i;s;r)s2M at the port outr!.

3

Fixing a �nite message space is needed because otherwise the length of a message cannot be
secret. The bound on the number of rounds is not essential, but simpli�es the representation
and is no serious restriction. The input and output vectors at the speci�ed ports, i.e., for honest
users, could be implemented with a (�xed) compressed representation because they will usually
be sparse. The representation of the adversary in- and outputs is irrelevant because they only
occur in the ideal system.

6.3 A Real System

We now de�ne a real system for secure message transmission. The main part, composition and
decomposition of network messages, is Equations 5 and 6.

We use asymmetric encryption and digital signatures. Let Msg be the message space, R the
number of rounds, andM = f1; : : : ; ng as in Scheme 6.1.

The algorithms (genS; sign; test) denote a secure digital signature scheme [DiHe 76,
GoMR 88] whose message space includes MsgS := Msg � M � f1; : : : ;Rg (for all security
parameters).40 We use slightly abbreviated notation: We write (signu; testu)  genS(1

k) for
the generation of a signing key and a test key based on a security parameter k. By sig  
signu(m), we denote a signature on the message m 2 MsgS , includingm itself.41 We denote the
resulting signature space by SigS (k). The length of the signatures is polynomially bounded in
k. The veri�cation testu(sig) returns m if the signature is valid with respect to the included
message, else false.

By (genE;E;D), we denote an encryption scheme secure against adaptive chosen-ciphertext
attacks, e.g., [CrSh1 98]. We write (Eu;Du) genE(1

k�(k)) for the generation of an encryption
key and a decryption key. Here, k�(k) denotes a security parameter that allows us to securely
encrypt the message space M� SigS (k) for the given k.42 We denote the (probabilistic) en-
cryption of a message m by c Eu(m), and decryption by m Du(c).

The comma denotes tuple composition, not concatenation, and its implementation must
guarantee unambiguous decomposition.

Scheme 6.2 (Real System for Secure Message Transmission) Let a message set Msg,
a setM = f1; : : : ; ng of participant indices, and a round number R be given as in Scheme 6.1.
The system is a standard cryptographic system according to De�nitions 3.1 and 3.2. Hence we
only have to de�ne the intended structure (M �;S �) and the trust model, but for readability of

40We repeat the security de�nitions in more detail in Section 6.5. If the original scheme has a too small message
space, a combination with a collision-free hash functions retains security [Damg 88].

41We even assume that it is a pair of the message and the actual signature which can be uniquely decomposed.
Then sig uniquely determines m independently of the key. Otherwise more complicated message formats would
be needed below, which is a waste of bandwidth in the standard case.

42We do not require all input messages to be of the same length. However, security for this message space
implies that also the message length is hidden by the encryption.
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the proof, we also describe the resulting actual structures. M � is a set fMuju 2 Mg and the
access structure is the powerset of M. Hence the system is of the form

Syssecmsg;real
Msg;n;R = f(M (H);S (H))jH �Mg

with M (H) = fMu;Hju 2 Hg.

Ports: The ports of machine Mu are finu?; outu!g [ fnetu;v!; netv;u?jv 2 Mg [ fautu;v!;
autv;u?jv 2 Mg. The �rst ones are for the user, the second ones for normal messages to
and from each Mv, and the last ones for key exchange, only used in Round 0.

The speci�ed ports are S � := finu?; outu!ju 2Mg.

Channel model �: Connections fnetu;v!; netu;v?g are insecure and connections fautu;v!;
autu;v?g authentic. The resulting ports in a real structure are illustrated in Figure 11.

netu,w!

inu? outu!

Mv,H

inv? outv!

autu,v!d netu,v! netu,v?a

Mu,H

S(H)

autu,v?autu,v!

netu,v?
netu,v!a

autu,v?d

A

S1(H)c
_

autu,w!

autu,w?

autw,u?

netu,w?
netw,u?a

netw,u!a

autw,u! Mw

S1(H)
_

Figure 11: Classes of ports in the real system for secure message transmission. Two correct
machines are shown and what became of the intended connections from Mu;H to Mv;H (port
names in the machines) and betweenMu;H and a machineMw with w 62 H (port names outside).
Authentic connections are bold, others normal, and the original of a modi�able connection is
dashed.

The state-transition function of a machine Mu;H is de�ned as follows:

Round 0 (Initialization) It generates two key pairs, (signu; testu)  genS(1
k) and

(Eu;Du) genE(1
k�(k)), and outputs (testu;Eu) at autu;v! and autdu;v! for all v 2M.

Now we consider Mu;H in an arbitrary round i > 0.

Inputs: It expects an input vector (ini;u;r)r2M 2MsgM at inu?. If i = 1, it also expects a pair
(testv;Ev) (of public keys) at each port autv;u?. If i > 1, it reads a value netai�1;s;u from
each port netas;u?.

Computation: It composes a network message for each recipient r 2M as

net i;u;r  

�
Er(u; signu(ini;u;r; i; r)) if ini;u;r 6= �,
� else.

(5)

We abbreviate this function by net i;u;r  comp(i; u; r; in i;u;r):
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If i > 1, it decomposes each received message netai�1;s;u as

(si�1;s;u; sig i�1;s;u) Du(net
a
i�1;s;u):

If the decryption or decomposition fails, let both components be �. Then

out i;s;u :=

�
m if si�1;s;u = s ^ tests(sig i�1;s;u) = (m; i� 1; u)

� else.
(6)

We abbreviate this function by out i;s;u  decomp(i; s; u;netai�1;s;u):

Outputs: It outputs the vector (out i;s;u)s2M at outu!, and each value net i;u;r at netu;r!.

3

6.4 Remarks on the Message Format

The format of the network message may look complicated. However, simpler formats are not
always secure. In particular, omitting the identity u in the encryption, i.e.,

net i;u;r  Er(signu(ini;u;r; i; r))

is insecure although one may feel that the signature inside determines the identity: An adversary
can choose one of his own keys testa equal to one of a correct machine, say tests, because Ms

switches in Round [0:1] and A in Round [0:2]. Later it can take a network message net i;s;r sent
between two honest participants and use it as its own network message netai;a;r (again because
A switches after Ms in Round i). This message passes the test, and thus ini;s;r is output to H

as out i+1;a;r. An adversary in the ideal system cannot achieve this e�ect. It is even dangerous
in practice, because H, believing that it obtained this message from Ma, might freely send parts
of it back to Ma in a reply.

This attack on the simpli�ed network messages could be avoided by verifying that all public
keys are di�erent. However, this would not imply provable security given the normal de�nition
of a signature system (see De�nition 6.1): It is not excluded that an adversary can choose a key
related to the key of a correct machine such that signatures made with signs are also acceptable
with respect to testa.

First encrypting and then signing does not automatically work either, e.g.,

net i;u;r  signu(i; r;Er(ini;u;r))

has the same problem even more obviously: The adversary can take the ciphertext c = Er(ini;u;r)
from such a message and also send it in a message of his own as netaj;a;r  signa(j; r; c):

The inclusion of the round number i is necessary for freshness. An alternative would be
nonces, but this requires a multi-round protocol for each message.

6.5 Security Proof

We now show that the real system is as secure as the ideal system. Our simulation is blackbox,
see De�nition 5.2. We use Corollary 5.4, i.e., we only consider users that use precisely the
speci�ed ports. Hence the set P of ports of the real adversary always comprises �S1(H)

c.

Scheme 6.3 (Simulator) Let a set H � M of (indices of) correct participants be given and
A :=MnH. Let P = �S1(H)

c [ P 0 be a set of adversary ports.
The de�nition of the simulator SimH;P (A) is illustrated in Figure 12. If H and P are clear

from the context, we write Sim(A). Its ports must be as in Figure 10, here PortsSim(A) =
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Sim(A)

• • •

Sim

net

neta

aut

• • •

TH(H)
busy

adv_out

adv_in

suppress

H

A

in out

Mu,H' Mv,H'

S2(H)
_

S1(H)
_

P'

Figure 12: Set-up of the simulation. The names on the arrows are names of message classes
(slightly summarizing the port names).

�S2(H)
c [ P 0. It leaves the communication between A and H unchanged. In slight abuse of

notation we therefore say Sim for the part of Sim(A) without A; then PortsSim = �S1(H)[�S2(H)
c

corresponding to Figure 11.
Internally, Sim more or less simulates the real machines; we illustrate this by M0

u;H for
u 2 H. The timing of the main message sequence and its simulation is illustrated in Figures 13
and 14. We de�ne the transitions of Sim(A) as the compressed version of a 6-subround clocking
scheme �6 = (fTH(H);Hg;Sim;A;H;A;Sim) where Subrounds 2 with 3 and 5 with 6 are joined
to get the correct clocking for the real system (see Lemma 4.1d). We call the joined subrounds
2a and 2b, and 4a and 4b.

Essentially, in Subround [i:2a], Sim transforms the abstract messages it got from TH(H)
into suitable network messages for A, and in Subround [i:4b] it transforms the messages from
A into corresponding signals to TH(H).

Round [0:2a] Sim simulates the key generation of the machines Mu;H for u 2 H without
changes.

Round [0:4b] Sim stores received keys as in Round [1:1] of the real system.

Round [i:2a] for i > 0: Sim obtains matrices adv out i and busy i from TH(H).

Each element adv out i;s;r represents a message from a correct sender s 2 H for a corrupted
recipient r 2 A. Here Sim computes the corresponding network message as net i;s;r  
comp(i; s; r; adv out i;s;r).

Each element busy i;s;r = 1 signals a message between correct machines s; r 2 H. Here
Sim computes net i;s;r  comp(i; s; r;msim ) with a �xed message msim 2 Msg n f�g. (It
cannot obtain the actual input made at the port ins? because TH(H) keeps it secret.)

Round [i:4b] for i > 0: Now Sim converts the messages netai;s;r received from A (in Rounds
[i:2b] and [i:4a]) into inputs to TH(H):

For s 2 A and r 2 H, it sets adv ini+1;s;r := decomp(i+ 1; s; r;netai;s;r).

For s; r 2 H and if busy i;s;r = 1, the trusted host expects to receive suppress i+1;s;r indi-
cating whether the message is destroyed in transit. Therefore Sim sets m := decomp(i +
1; s; r;netai;s;r). If m = �, it sets suppress i+1;s;r := 1, otherwise suppress i+1;s;r := 0. If

m 6= msim ^m 6= �, or m 6= � ^ busy i;s;r = 0, the simulator stops.43

43In the real system, m would be output at outr!, but the simulator has no way of making TH(H) do this;
this is where message integrity is expressed in TH(H). Hence the simulation would become distinguishable and
can as well be stopped. The proof will show that this case only occurs if A has forged a signature, and thus it is
negligible.
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3

Round Ms(s 2 H) A Mr(r 2 H)

[0:1]  ��
Es; tests
��������! 

 ��
Er; testr
��������

[0:2] 

[0:3]
[0:4] 

[i:1] �
in i

���!  �
net i
����!

[i:2] 

[i:3]

[i:4] �
neta

i

����!

[i + 1:1]  �
out i+1
������!

Figure 13: Timing of Scheme 6.2 for key exchange and a message between two correct machines.
 denotes relevant switching of the machine in this column; H switches in [i:1] and [i:3].

TH Simulator Sim(A) TH

Round M0

s
A M0

r

[0:1]  �����
Es; tests
�����������! 

 �����
Er; testr
�����������

[0:2] 

[0:3]
[0:4] 

[i:1] �
in i

���!�
busy

i

�����! 

[i:2]  �
net i
����! 

[i:3]

[i:4] ����
neta

i

�������! �
suppress i+1
����������!

[i + 1:1]  �
out i+1
������!

Figure 14: Timing of Scheme 6.3 for the same situation as in Figure 13.

For the following security proof, we need the underlying de�nitions of secure encryption and
signature schemes. Security of a signature scheme means that existential forgery is infeasible
even in adaptive chosen-message attacks [GoMR 88].

De�nition 6.1 (Security of Signature Schemes) An arbitrary (probabilistic) polynomial-
time machine Asig interacts with a signer machine Sig (also called signing oracle) de�ned as
follows:

1. Sig generates a key pair, (sign; test) genS(1
k), and sends test to Asig.

2. In each round, Sig signs an arbitrary message mj it receives from Asig (automatically only
a polynomial number if Asig is polynomial).

3. Finally, Asig should output a value sig.

Asig has won if test(sig) gives a message m with m 6= mj for all j, i.e., sig is a valid signature
on a message that Sig did not sign. The probability of this event must be negligible in k. (In
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our terminology, we have a closed collection of 2 machines clocked alternately, and the event is
a predicate on the runs; hence the probability is well-de�ned.) 3

Security of an encryption scheme means that any two messages must be indistinguishable
even in adaptive chosen-ciphertext attacks. This was introduced in [RaSi 92], used for an
eÆcient construction in [CrSh1 98] and formalized as \IND-CCA2" in [BDPR 98].

De�nition 6.2 (Security of Encryption Schemes) An arbitrary (probabilistic) polyno-
mial-time machine Aenc interacts with a decryptor machine Dec (also called decryption oracle)
de�ned as follows:

1. Dec generates a key pair, (E;D) genE(1
k), and sends E to Aenc.

2. In each round, Dec decrypts an arbitrary ciphertext cj received from Aenc.

3. At some point, Aenc sends a pair (m0;m1) of messages to Dec. Then Dec randomly chooses
a bit b and returns an encryption c E(mb).

4. Aenc may again ask Dec to decrypt ciphertexts cj, but now Dec refuses to decrypt if cj
equals its own ciphertext c.

5. Finally, Aenc should output a bit b�.

This bit is meant as a guess at b, i.e., which of the two messages is contained in c. The
probability of the event b� = b must be bounded by 1=2 + 1=poly(k). (Again this is a 2-machine
collection and thus the probability is well-de�ned.) 3

Theorem 6.1 (Security of the Message Transmission System) For any message set
Msg, index set M = f1; : : : ; ng and round number R as in Scheme 6.1,

Syssecmsg;real
Msg;n;R �f;polysec Syssecmsg;id

Msg;n;R

for the canonical mapping f from Section 3.1 if the signature and encryption schemes used in
Scheme 6.2 are secure. 2

Recall that the canonical mapping f maps each real structure (M (H);S (H)) to the ideal struc-
ture (fTH(H)g;S (H)) for the same set H.

Proof. Let a set H and thus a structure (M (H);S (H)) and a port set P = �S1(H)
c [ P 0

be given. In the following, we omit the parameter H of all machines and write Sim(A) for

SimP (A). Now let a con�guration conf 1 = (M ;S ;H;A) 2 Conff (Syssecmsg;real
Msg;n;R ) with PortsA =

P be given. By Remark 5.4, we can assume that H is not clocked in Subrounds [i:1]. We claim
that conf 2 = (fTHg;S ;H;Sim(A)) 2 Indistf (conf 1), i.e., view conf 1

(H) � viewconf 2
(H).

We show the stronger statement view conf 1
(H;A) � view conf 2

(H;A). Intuitively this means
that we compare M and the combination of TH and Sim. For this, we �rst have to show that
the clocking makes no di�erence. Then, there are intuitively two aspects in the simulation that
make it only computationally indistinguishable: a message msim is often encrypted instead of
a real message, and a simulation may stop prematurely due to what should be a successful
signature forgery by A. We therefore show by two reduction proofs that we could break one of
the underlying schemes if the views were distinguishable.

Clocking: We de�ned Sim(A) in conf 2 as a combination based on a collection where Sim and A

are separate (we now call it conf 62) and a 6-subround clocking scheme �6. Hence view conf 2
(H;A)

equals viewconf 62
(H;A) except for subround renaming. In conf 62, only Sim and TH are clocked in

Subrounds 4b, 1, and 2a. Let TH+Sim denote the hiding combination of TH and Sim according
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to Lemma 4.1 and where these subrounds are joined. Then conf �2 = (TH + Sim;S ;H;A) is a
con�guration with the standard clocking scheme, and view conf �2

(H;A) equals view conf 62
(H;A)

except for the subround renaming. In both renamings of conf 62, H ends up in Subround 3 and
A in 2 and 4. Hence

view conf �2
(H;A) = view conf 2

(H;A):

Signatures: We �rst show that the probability that the simulation stops prematurely is negli-
gible. Assume the contrary. We then construct an adversary Asig against the signature scheme
using H and A as blackboxes (recall De�nition 6.1) as shown in Figure 15. Asig randomly
chooses s� 2 H and starts simulating TH + Sim interacting with H and A. It does everything
as TH+ Sim would except that it uses the public key test from Sig as tests� . Thus whenever it
has to execute sigj  signs�(mj) for some message mj, it sends mj to Sig instead and uses the
answer as sigj .

44 If the simulation stops prematurely in a subround [i + 1:1], this corresponds
to Subround [i:4b] in the original clocking of Sim, and A has sent a network message netai;s;r
for some s; r 2 H that is correct according to Equation (6) but contains a message m0 6= msim ,
or any m0 6= � although busy i;s;r = 0. Then if s = s�, the machine Asig outputs the second
component sig of Dr(net

a
i;s;r).

Asig

Sig

sig

test

mj
{

Repeat:
sign

H

A

 ≈ TH+Sim

tests* := test
s* ← HR

signs*(mj)

gen

IF stop: …

net

neta

aut

sigj

• • •

• • •

Figure 15: Reduction to an adversary on the signature scheme

We �rst show that if Asig makes any output, it is a successful forgery. By Equation (6),
tests�(sig) = (m0; i; r) =: m�. We have to show that m� 6= mj for all messages mj that Asig

asked Sig to sign. Assume the contrary. By construction, messages mj only arise when Sim

applies Equation (5) to construct a message net i0;s�;r0 in an original subround [i0:2a], now [i0:1],
and then mj = (in 0; i0; r0) for some in 0. By the required unambiguous decomposition of the
representation of message triples, m� = mj implies in

0 = m0 ^ i0 = i ^ r0 = r. As r 2 H, the
construction of Sim implies m0 = msim, and actually mj is only signed if busy i;s�;r = 1. This
contradicts the preconditions on m0 (as a message leading to premature stopping).

Secondly, we show that the probability that Asig makes an output is not negligible. Asig

combined with Sig behaves exactly like TH+Sim until the stopping time. Hence the probability
of stopping in the simulation equals that in conf �2. If stopping occurs, the stopping conditions
are ful�lled for one s 2 H. As Asig chose s

� randomly and no information about s� is visible to
H and A, the probability that s� = s is jHj�1.45 Hence the success probability of Asig is a �xed
fraction jHj�1 of the probability that Sim stops prematurely, and therefore also not negligible.
This is the desired contradiction with the security of the signature scheme.

44There is no clocking problem although we de�ned that Sig signs only one message per round because Asig

can clock its submachines itself, i.e., the rounds indexed j and those indexed i are di�erent.
45More formally, one transforms the given probability space, where s� is chosen at the start, such that s� is

chosen independently at the end, exploiting that the rest of the runs is compatible with any s�.
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As a consequence, we can modify the behaviour of TH+Sim in the case that Sim stops pre-
maturely: We de�ne a machine TH0+Sim0 that, instead of stopping under the given conditions,
outputs the forged message m0 as out i+1;s;r (as the real machine Mr would do in conf 1). Let
conf 02 = (TH0 + Sim0;S ;H;A). As a di�erence only occur with negligible probability, we have
shown that46

view conf 02
(A;H) � viewconf �2

(A;H):

As a technicality for the following proof, we need a similar statement for the correct ma-
chines. Let M0 be a machine that acts like the hiding combination of M with one exception:
If decomp(i; s; r;netai�1;s;r) yields m = msim 6= ini�1;s;r, then M0 sets out i;s;r = ini�1;s;r instead
of m. The proof is a reduction just as above: We have a forged signature on (msim ; i � 1; r)
because only (ini�1;s;r; i�1; r) was signed with the components i�1 and r. Let conf

0
1 = (M0;S ;

H;A). Hence we have
viewconf 01

(A;H) � view conf 1
(A;H):

Encryption, hybrid argument: The encryption part is proven with a reactive version of
the typical \hybrid arguments", e.g., known from [GoMi 84]. Intuitively, we show that to
distinguish the overall views, one has to distinguish at least one particular encryption. (Hence
this part of the proof also shows that all other aspects of the simulation are correct.) For this,
we de�ne a hybrid machine Hybt for each triple t = (i; s; r) 2 f1; : : : ;Rg�H2. Roughly, it treats
the inputs ini0;s0;r0 for s

0; r0 2 H as in the real system up to the triple (i; s; r) and afterwards
as in the simulation.47 We write \�" for the lexicographic order on these triples, tmax for their
maximum, and pred(t) for the predecessor of t in this order. Furthermore, let 0 < t for all these
triples.

We de�ne Hyb0 := TH0 + Sim0. For t = (i; s; r), the key exchange of Hybt is as in both M0

and TH0 + Sim0. We now have to show how Hybt computes all values net i0;s0;r0 and out i0;s0;r0 .

1. For (i0; s0; r0) � t, it computes net i0;s0;r0  comp(i0; s0; r0; ini0;s0;r0) like M and thus M0.

2. For (i0; s0; r0) > t, it computes net i0;s0;r0 like TH
0 + Sim0:

a) For r0 2 H, this means net i0;s0;r0 = � if ini0;s0;r0 = � and thus busy i0;s0;r0 = �; otherwise
net i0;s0;r0  comp(i0; s0; r0;msim ).

b) For r0 2 A, it means that adv out i0;s0;r0 = ini0;s0;r0 and thus net i0;s0;r0  
comp(i0; s0; r0; ini0;s0;r0) (as in M0).

3. For (i0 � 1; s0; r0) � t, it computes out i0;s0;r0 like M0, i.e., as decomp(i0; s0; r0;netai0�1;s0;r0)
except that ini0�1;s0;r0 is output instead if the result is msim .

4. For (i0 � 1; s0; r0) > t, it computes out i0;s0;r0 like TH0 + Sim0: It �rst sets m =
decomp(i0; s0; r0;netai0�1;s0;r0).

a) If s0 2 H:

{ If m 6= � and m 6= msim _ busy i0�1;s0;r0 = 0, then out i0;s0;r0 = m (here TH0 + Sim0

di�ers from TH+ Sim).

{ If m = msim ^ busy i0�1;s0;r0 = 1, then suppress i0;s0;r0 = 0 and thus out i0;s0;r0 =
ini0�1;s0;r0 .

46In more detail, we have shown that the change only concerns a negligible fraction of the runs. Hence the
runs of the two con�gurations are statistically indistinguishable for the class NEGL. (Note that they are only of
polynomial length.) This implies statistical and thus also computational indistinguishability of all functions of
the runs, in particular the views, by Lemma 4.2.

47It is not trivial to de�ne hybrid reactive systems generally: If the con�gurations are probabilistic and have
memory, it may not be clear how to initialize the memory of con�guration 2 such that it is consistent with the
execution of con�guration 1 so far. Hence we make the particular construction explicit.
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{ If m = �, then suppress i0;s0;r0 = 1 and therefore out i0;s0;r0 = �.

b) If s0 2 A, then m becomes adv ini0;s0;r0 and thus out i0;s0;r0 (as in M0).

Clearly, Hybtmax = M0. As Cases 2b and 4b are as in M0, each Hybt only di�ers from Hybpred(t)
in the computation of net i;s;r and out i+1;s;r. Let conf hyb;t = (Hybt;S ;H;A) for all t.

Assume that a distinguisherDist can distinguish viewconf hyb;0
(A;H) and view conf hyb;tmax

(A;H)
in contradiction to De�nition 2.7, i.e., the function of absolute probability di�erences is not
negligible; we call this function �(k). For all t, let pt(k) := P (Dist(1k; view conf hyb;t;k

(A;H) = 1).
Then �����

tmaxX
t=1

(pt(k)� ppred(t)(k))

����� = jptmax (k)� p0(k)j = �(k):

Hence for at least one t, the sequence (jpt(k)�ppred(t)(k)j)k2N is not negligible.48 Let t = (i; s; r)
be such a triple. We assume w.l.o.g. that

pt(k)� ppred(t)(k) > Q(k)�1

for a polynomial Q and in�nitely many k, i.e., intuitively that Dist outputs 1 to identify the
real system and 0 for the simulation.49

Encryption, reduction: We now construct an adversary Aenc against the encryption scheme
(recall De�nition 6.2). It uses H, A and Dist as blackboxes. The basic idea is that it simulates
either Hybt or Hybpred(t) depending on the bit b of the decryption oracle, i.e., without knowing
which. It then uses the distinguisher to distinguish the cases, thus obtaining a guess at b. An
overview is given in Figure 16.

1. First Aenc obtains a public key E from Dec. It uses this key in the place of Er, and
generates the other keys of correct participants itself.

2. It simulatesM0 in interaction with the blackboxes H and A until directly before construct-
ing net i;s;r. (So far, M0 equals both Hybpred(t) and Hybt.) Where decryptions with the
unknown key Dr are needed, it asks the decryption oracle Dec.

3. Now, if ini;s;r 6= �, it sends the two messages m0 := (s; signs(msim ; i; r)) and m1 := (s;
signs(ini;s;r; i; r)) to Dec. (Otherwise it sends nothing and sets net i;s;r = �.) The former

is the message encrypted in Hybpred(t), the latter in Hybt. Hence Dec chooses b R f0; 1g
and sends a ciphertext c Er(mb). Then Aenc uses c as net i;s;r.

4. When the corresponding network message netai;s;r (this is how A modi�ed net i;s;r = c in
transit) is handled in Round [i+ 1:1], Hybpred(t) and Hybt also di�er.

� If netai;s;r = c (unchanged), Dec will not decrypt it, but Aenc simply sets out i+1;s;r =
ini;s;r. We claim that for b = 0 and 1, this is what Hybpred(t) and Hybt, respectively,
would do.

{ b = 0: Hybpred(t) acts like TH0 + Sim0: Sim0 decrypts c to m0, which passes all
tests. Thus it obtains m = msim . As ini;s;r 6= �, we had busy i;s;r = 1 and
therefore the output is ini;s;r.

{ b = 1: Hybt acts like M
0. It decrypts c to m1 and, as this passes all tests, output

its content ini;s;r. (Even if ini;s;r = msim , the e�ect is the same.)

� If netai;s;r 6= c, Aenc sets m = decomp(i; s; r;netai;s;r), using Dec for the decryption.

48The standard argument is: There is a polynomial Q with �(k) > Q(k)�1 for in�nitely many k. For each of
them, an index tk with jptk(k)� ppred(tk)(k)j > t�1

maxQ(k) exists. One t must occur in�nitely often as tk.
49Otherwise, consider the distinguisher Dist0 that outputs 1 i� Dist does not.
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{ If m = �, it sets out i+1;s;r = �. This is correct for both cases.

{ If m = msim , it sets out i+1;s;r = ini;s;r. This is correct for M
0 and thus Hybt by

de�nition (here M0 di�ers from M ), and for Hybpred(t) because busy i;s;r = 0:

{ Otherwise, it sets out i+1;s;r = m. This is correct for M0 and thus Hybt by
de�nition of M , and for Hybpred(t) by construction.

5. For all other messages, Hybpred(t) and Hybt are the same; for concreteness let Aenc simulate
Hybt. Again, if it needs to decrypt a ciphertext cj with Dr, it asks Dec, except if cj = c.
(Intuitively, this is a replay attack.) Then Aenc must act on its own. The only ciphertexts
Hybt decrypts with Dr are network messages netai0�1;s0;r, and it only uses the result to
compute out i0;s0;r. In these cases, Aenc simply sets out i0;s0;r := �. (Correctness is shown
below.)

6. At the end, Aenc inputs the view of the simulated H and A to Dist. It uses the output bit
b� of Dist as its own output.

AencDec

view

b*

E

c ← Er(mb)

neti',s',r

neti',s',r

m0, m1

}

}

{

{

Repeat:
decrypt

Repeat:
decrypt

if ≠ c

b ← {0,1}

view

R

Dist

Hybpred (t)
or Hyb t

H

Er := E

A
neti,s,r:= c

• • • (M)

• • • (TH'+
 Sim')

gen

a

a

Figure 16: Reduction to an adversary on the encryption scheme

To prove that Aenc, depending on b, simulates either Hybpred(t) or Hybt correctly, only the
correctness of out i0;s0;r = � for netai0�1;s0;r = c and (i0 � 1; s0) 6= (i; s) remains to be shown.

� b = 0: Then Hybpred(t) would decrypt c to m0 = (s; sig) with sig = signs(msim ; i; r). It
�rst tests that s = s0. If yes, it veri�es that tests(sig) = (m0; i0 � 1; r) for some m0 2 Msg
and the given (i0; r). As we assumed that the message in clear is part of sig , this implies
i0� 1 = i. As (i0� 1; s0) 6= (i; s), the veri�cations fail. Hence Hybpred(t) obtains m = � and
sets out i0;s0;r = �.

� b = 1: Then Hybt would decrypt c to m1 = (s; sig) with sig = signs(ini;s;r; i; r). It �rst
tests that s = s0. If yes, it veri�es that tests(sig) = (m0; i0 � 1; r) for any m0 2 Msg and
the given (i0; r). As above, this implies i0 � 1 = i; hence the veri�cations fail and out i0;s0;r
= �.

Hence the success probability of Dist within Aenc is the same as in its normal setting. Since
Aenc outputs the same value b

� as Dist, we can compute the success probability penc(k) of Aenc
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as follows:

penc(k) =
1

2
P (b� = 1jb = 1) +

1

2
P (b� = 0jb = 0)

=
1

2
pt(k) +

1

2
(1� ppred(t)(k))

=
1

2
+
1

2
(pt(k)� ppred(t)(k))

>
1

2
+

1

2Q(k)

for in�nitely many k. This contradicts the security of the encryption scheme, and thus
the assumption that a distinguisher Dist exists as described. Hence view conf hyb;0

(A;H) �

view conf hyb;tmax
(A;H). As Hyb0 = TH0 + Sim0 and Hybtmax = M0, this means

viewconf 02
(A;H) � view conf 01

(A;H):

All parts of the proof together and transitivity therefore imply the desired result

viewconf 1
(A;H) � view conf 2

(A;H):
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