RZ 3207 (#93253) 02/14/00
Computer Science/Mathematics 39 pages

Research Report

Provably Secure Certified Mail

Birgit Pfitzmanr, Matthias Schuntér Michael Waidnet

L Universitit des Saarlandes
Im Stadtwald 45
D-66123 Saarhrcken
Germany
{pfitzmann,schunter }@cs.uni-sb.de

2 |BM Zurich Research Laboratory
Sdumerstrasse 4
CH-8803 Rischlikon
Switzerland
wmi@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

esearch Division
Imaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

11|
"ll
>

Provably Secure Certified Mall

Birgit Pfitzmann, Matthias Schunter, Michael Waidher
August 2000

Abstract

With a certified-mail protocol, one fairly exchanges a message for a receipt. No satisfactory
protocols without any third party are possible, hence optimistic protocols are the best one can hope
for. Here a third party is only involved if one party tries to cheat.

Certified-mail protocols are known in the literature, but there was no rigorous definition yet,
in particular for the optimistic case and for many interleaved executions. We provide two such
definitions. One defines individual integrity and secrecy requirements. The other defines an ideal
system and uses a general simulatability definition. We show the relation between the definitions,
present an efficient protocol, and prove its security in detail.

Apart from the intrinsic benefits of provably secure certified mail, this paper serves as an ex-
ample that a serious-sized practical protocol can be rigorously proven with respect to a general
simulatability definition and an abstract specification accessible to formal methods.

1 Introduction

A certified-mail protocol enables the fair exchange of a message for a receipt [B83, R83]. This means
that either the recipient gets the message and the sender gets a receipt, i.e., the ability to convince any
verifier that the recipient obtained the message, or neither gets anything; in particular the message should
then remain entirely secret.

There are three classes of certified-mail protocols. Protocols with-ne third party are quite
straightforward [R83]. The older cryptographic literature tre@ts-party protocols, e.g., [B83, R83,

VV83, G84], i.e., only the sender and the recipient are involved. These protocols are based on gradual
exchange of secrets. However, their error probabilities only decrease linearly in the number of rounds,
and one can show that this is unavoidablelence they are not used in practic®@ptimistic protocols

use a trusted third party to ensure fairness, but it is not actively involved if both sender and recipient

follow the protocol [ASW97, ASW00, M97, BDM98, ZG97].

In this paper, we provide precise definitions of certified mail in two different methodologies. We
first define individual properties of the protocols, e.g., the correctness of receipts (an integrity property)
and secrecy of the message if no receipt is obtained (a secrecy property). Most cryptographic definitions
of individual system classes are of this type. A specific aspect of ours is that to a large extent we
use a general system model, and that we formulate at least the integrity properties abstractly using
general translations to concrete versions from [PW00]. (Somewhat general reactive system models
with interleaved executions were first introduced in [BR94], and [P93] first sketched the use of abstract
integrity definitions.) The secrecy definitions follow semantic security (see [Y82a, GM84]) and security
against adaptive chosen-message attacks [RS92]. Semantic security is slightly modified because we

*This work was partially supported by the MAFTIA project. A preliminary version is contained in [S00].

1In [BGMR90] such a lower bound was proven for two-party contract signing. Contract signing can be reduced to the
variant of certified mail defined here; the reduction needs only one additional round of communication and does not increase
the error probability significantly [S00]. (The reduction is given for optimistic protocols only, but one can easily see that it
also works for 2-party protocols.)

only want it if no receipt is obtained. The most general adaptive attacks for general secrecy properties
are not perfectly clear; even for simple encryption systems they are still being extended [BBMO0O]. This
was one reason why we also provide the second definition which, if anything, is too strict, while the first
might rather be too lax.

As the second definition, we define an ideal system for certified mail and use a general simulatability
definition. Thus the actual definition of the real systems is that they must be at least as secure as the
ideal system in a certain sense; essentially, everything an adversary can achieve in the real system
must also be achievable in the ideal system. The ideal system is specific to certified mail. We first
present a naive version and then show why the actual definition must be more complicated if practical
protocols are to fulfil it. The modifications needed can serve as a methodology to define ideal systems for
various other protocol classes. General simulatability definitions are based on work for secure function
evaluation [Y82, GL91, B91, MR92, C00]. Extensions to reactive systems have, after several sketches,
been defined in detail in [HM0O, LMMS98, PSWO0O0b]. (Here we only mentioned definitions where only
the input-output behavior of the ideal system is to be simulated, as we need it here. A shorter published
version of [PSWO00Db] is [PSW00a].) We use the latter because it is more general than the first and allows
more abstraction than the second one (for details see [PSWO00b]) and it has the only reactive composition
theorem [PWO0Q].

We show that the ideal-system definition is a refinement of the property-based definition, i.e., it has
the required properties, while the properties leave some room for different ideal systems. A general
theorem from [PWO0O] then implies that any real system as secure as the ideal system also has the
integrity properties. (The same should hold for the secrecy property, but we do not show this here.)

We then present a protocol for certified mail and prove its security. The protocol is based on that
in [ASW97], but it needed modifications to enable simulatability. To the best of our knowledge, this is
the first rigorous proof of a certified-mail protocol; certainly the first for an optimistic protocol, and the
first in a setting with many interleaved runs of the protocol. As we aim at proofs of real-life protocols,
we have taken care to rigorously prove also the non-cryptographic aspects, e.g., realistic local message
dispatching to different subprotocols.

2 Overview of a Concrete Protocol

Rigorous definitions are long. In this section, we will therefore anticipate the actual protocol that we
will prove in an informal description so that it is clear what kind of protocols we are talking about.

The protocol is sketched in Figure 1. More precisely, one run of the main subproteed!’ ‘0f
the system is shown. (There is another, simpler subprotatew” for showing receipts.) It is a
synchronous protocol involving three machinbk,, M,., andM; for a sender, a recipient, and a third
party. It is started by inputésend, r, 7, m) to Mg and (receive, s,1) to M,.. In real life, the inputs are
made by two different users (or application programs running on their behalf) and the “machines” are
software on each user’s device. In the inpséad andreceive are constants serving as command names,

r ands are the indices of recipient and sender serving as addresseshe message the sender wants
to send, and (“label”) is a subject for the mail.

The use of subjects is a design choice (alternatives are shown in [S00]). The idea in this version,
called “labeled certified mail” is that the recipient has the choice whether he wants to receive a message
with a particular label. The receipt will unambiguously contain both the label, which the recipient agreed
upon, and the message that was then sent under this label.

We use three cryptographic primitives (more formal definitions are given in Section 6.1):

¢ A signature scheme [GMR 88]. We writggn,, (m) for the pair of a message and its signature
with the secret key of a participant

e A one-way functiorowf. We use it for one-time signatures, i.ewf(r) for a randomr is a one-
time public key, and later is revealed as the signature. (This is only an efficiency improvement

2

over using normal signatures.)

e A non-interactive chameleon commitment scheme [BCC88]. A commitment is denoted by
¢ = comy(m,), wherem is the message, a suitable random value (chosen with an algorithm
gencg,) andt the party whose public commitment key is used. A commitment keegecret,
but the committer must be unable to open it in two ways, i.e., to show two (pairs) and(m’, ')
with m # m' andc = com;(m,r) = comy(m/, r'). Chameleon means that the paryenerating
the public key of the scheme can take an opened commitment on a messagkopen it to any
otherm/.

The main ideas underlying the protocol are the following: Messageandm, are promises to
send a message under labelnd to produce a receipt for it, respectively. The valig the number
of the starting round ané a security parameter. If both parties are hon&kt,reveals the message
m in mg, and M, sends the one-time signaturg as a receipt inny. The entire receipt isn; =
(m1,mo, ms3, my); it can easily be verified by a verifiéd,,. If a dishonest recipient doe®t sendrm.4,
the sender uses the recipient’s promise in ms to convince the third party that the recipient wanted
to receive a message under this label. Thus the third party can safely issue an affigadihenM;
usesmg as a receipt, which can again be easily verifiedvhy If a dishonest sender does not send the
message imn3, the recipient waits until Roundt-6. If mg arrives, the recipient extractss and thusn
from it. Otherwise it knows that the message will never arrive and can safely decide that the transaction
failed. For the latter, the third party must honag only if it arrives in Roundi + 5.

M, M; M,
(send,r,l,m) (receive, s,1)

s ¢ gencg
my < sign,((s,r,1),l,coms(m,rg))

~

TR & {07 1}k
my < sign,.(my,owf(rg))
mz = (m,rs)
ms = (TR)
ms = (m1,ma, m3)
_——— —
me <
sign (ms)
mg me
-— _—— —
If ma: If ms ormg:
(sent, (s,r,1)) (rec., (s,,i),m)
else: else:
(failed, (s,r,1)) (failed, (s,r,1))

Figure 1: Subprotocol run of labeled certified mail. Dashed flows are only neeggdsfmissing, i.e.,
the protocol is optimistic. Some message-type identifiers are omitted.

The construction is based on [ASW97]. Themg contained a committing encryption of, which
would not be simulatable. Therefore we used a chameleon commitment instead. Unlike [ASW97], we
did not use separate transaction identifigrsbecause the triplés, r,7) already plays this role if we
allow each sender to start one protocol run with each recipient in each round. Everything immediately
generalizes to any other constant number per round. (Omitting the round niimitead is not possible

3

in this protocol becauskl; uses: as included inn; to decide whether a complainis does not come
too late.) A translation into more application-orientéd’s can easily be built on top.

In Section 6 we will rigorously define the machinds, M,., M;, andM,,, including how they handle
the simultaneous runs of many subprotocols.

3 Summary of the System Model

In this section, we repeat the basic definitions from [PSWO0O0b] in slightly abbreviated form. They
are for a synchronous network model, and the simulatability also includes the timing. Hence security
vulnerabilities via timing channels are exposed. To avoid that timing differences within a round leak,
implementations of synchronous machines have to ensure that input reading and outputting are both
clocked?

The machine model is probabilistic state-transition machines, similar to probabilistic I/O automata
as sketched in [L96]. For clarity, one particular notation and semantics is fixed.

Definition 3.1 (Machines and Ports) A hameis a string over a fixed alphabgt

A port p is a pair(name,, dir,) of a name and a Boolean value called direction; we writeue,?
and name,! for in- and output ports, respectively. We writé for the complemenbf a portp, i.e.,
name,!® = name,? and vice versa. For a sét of ports, letin(P) = {p € P|dir, = 7} denote the
input ports and similarDut(P) the output ports.

A machineM for a synchronous system is a tuple

M = (Portsm, om, Inim, Fum)

of a finite set of ports, a probabilistic state-transition function, and sets of initial and final states. The
states are stringsfrom £*. The inputs are tuples = (1) cin(ports,,) Of ONE inputl,, € X* per input
port, and the outputs analogous tuplesdy, maps each such pdis,) to a finite distribution over pairs
(s',0). For a set of machines, leports(M) = Uy Portsm.

“Machine M; has machinéM, as a (blackboxsubmachinémeans that it has the state-transition
function as a blackbox. Hendé; can “clock” Ms, i.e., decide when to cause state transitions. <

For computational aspects, each machine is regarded as implemented by a probabilistic interactive
Turing machine [GMR89], and each port by a communication tape. The complexity of a machine is
measured in terms of the length of the initial state, represented as initial worktape content (often a
security parameter).

Below, we distinguish correct machines, adversaries and users in particular in how they are clocked,
because one cannot assume adversaries to adhere to synchronization rules. As some proofs need dif-
ferent clocking schemes, general collections of machines and their runs with a clocking scheme are
defined.

Definition 3.2 (Machine Collections, Runs and Views)A collection C'is a finite set of machines with
pairwise disjoint sets of ports. Each set of complementary pots{p,p°} C ports(C) is called a
connectiorand the set of these connections tleanection graplG(C). By free(C) we denote théree
ports, i.e.p € ports(C') butp® & ports(C'). A collection isclosedif free(C') = 0.

A clocking schemés a mappingx (also written as a tuple) from a sét,...,n} to the pow-
erset of C, i.e., it assigns each number a subset of the machines. Givemd x and a tuple
ini € Ini = x Iniy of initial states,runs (or “executions” or “traces”) are defined: Each global

MeC

round: hasn subrounds. In Subrounfd.j], all machinesM € «(j) switch simultaneously, i.e., each

20f course we do not suggest that one should not consider asynchronous systems, only that one needs a simulatability
definition for each model.
We mostly use a straight font for machines, functions and constants, and italics for sets and other variables.

4

state-transition functiony, is applied toM’s current inputs and state and yields a new state and output
(probabilistically). The output at a popt is available as input gi? until the machine with porp?

is clocked next. If several inputs arrive until that time, they are concatenated. This gives a family of
random variables

runc = (runc ini)inicIni-

More precisely, each run is a function mapping each tiiMei, j) € C xNx{1,...,n} toaquadruple
(s,1,s',0) of the old state, inputs, new state, and outputs of mackine subround[i.;j], or instead
to e if M not clocked in this subround. For a numbee N of rounds,/-round prefixesrun ¢ i
of runs are defined in the obvious way. For a function Ini — N, this gives a familyrunc; =
(Tun ¢ ini (ini)) inic Ini-

The view of a subsel/ of a closed collectionC' in a runr is the restriction ofr to M x N x
{1,...,n}.% This gives a family of random variables

view (M) = (view ¢,ini(M))inicmi>

and similarly for/-round prefixes.
For a runr and a sefP of ports, letr[p denote its restriction to these ports. This notation is carried
over to the random variables. O

Now we define specific machine collections as we need them in the security definitions, first the
system part and then the environment, i.e., users and adversaries. Typically, a cryptographic system
is described by atntended structureand the actual structures are derived usinguat model the
adversary replaces some machines and taps or completely controls some channels. A concrete derivation
is defined in [PSWO00b]. However, as a wide range of trust models is possible, it is useful to keep the
remaining definitions independent of them by a general system definition.

Definition 3.3 (Structures and Systems)A structureis a pairstruc = (M, S) whereM is a collection
of machines calledorrect machinesandS C free(M) is calledspecified portsLet S = free(M) \ S
andforb(M, S) = ports(M) U S°.

A systemSys is a set of structures. O

The separation of the free ports into specified ports and others is an important feature of this particu-
lar reactive simulatability definition. The specified ports are those where a certain service is guaranteed.
Typical examples of inputs at specified ports are “send messager” for a message transmission
system or “pay amouni to id” for a payment system. The ports fhare additionally available for the
adversary. The ports iforb(M, S) will therefore be forbidden or at least unusual for an honest user
to have. In the simulatability definition below, only the events at specified ports have to be simulated
one by one. This allowabstractspecification of systems wittolerable imperfectionsFor instance,
if the traffic pattern is not hidden (as in almost all cryptographic protocols for efficiency reasons), one
can abstractly specify this by giving the adversary one busy-bit per message in transit in the ideal sys-
tem. Even better, he should only get one busy-bit per subprotocol run (e.g., a payment) and the internal
message pattern of the subprotocol should not tell him more. More motivation and an example with
just this busy-bit (secure channels) is given in [PSWO0O0b]; we use a similar abstraction in this paper, see
Section 5.2.

The following definition contains another important aspect: Both honest users and an adversary are
modeled as stateful machindsandA apart from the system. First, honest users should not be modeled
as part of the machines i because they are arbitrary, while the machines have prescribed programs.
Secondly, they should not be replaced by a quantifier over input sequences, because they may have
arbitrary strategies which message to input next to the system after obtaining certain outputs. They may

*For the view of a polynomial-time Turing machine in interaction with unrestricted machines, inputs are only considered
as far as the machine read them.

even be influenced in these choices by the adversary, e.g., in chosen-message attacks on a signature
scheme; thu$l andA may communicate. At least in the computational case, arbitrary strategies (i.e.,
adaptive attacks) are not known to be replaceable by arbitrary input sequences. Thirdly, honest users
are not a natural part of the adversary because they are supposed to be protected from the adversary. In
particular, they may have secrets and we want to define that the adversary learns nothing about those
except what he learns “legitimately” from the system (this depends on the specification) or what the user
tells him directly.

Definition 3.4 (Configuration) A configurationconf of a systemSys is a tuple(M, S,H, A) where
(M, S) € Sys is a structure antl andA are machines such th&t = M U {H, A} a closed collection.

The set of configurations is writte@onf (Sys), and those with polynomial-time user and adversary
Confyoly (Sys). “poly”is omitted if it is clear from the context. The set of guessing-output configurations
Confg(Sys) is defined likeConf(Sys) except that all adversaries have a free output gags!.

Runs and views of a configuration are given by Definition 3.2 with the clocking sctiéme
{H},{A},{H},{A}), except that we end a run H and A have reached finite states. Typically, the
initial states of all machines are only a security paramie(@m unary representation). Then we consider
the families of runs and views restricted to the subegét = {(1*)ycc|k € N} of Ini, and write
UM conf ANAView cong (M) fOr run ¢ andview ¢ (M) restricted tolni’, and similar forl-round prefixes.
Furthermore /i’ is identified withN; hence we can writeun cons 1, €tc. O

Clocking the adversary between the correct machines is the well-known model of rushing adver-
saries [BD84]. The given clocking of users is as powerful as clocking them in an arbitrary unsynchro-
nized way [PSWO0O0Db].

4 Requirements-Based Definition of Labeled Certified Malil

In this section, we give a definition of labeled certified mail by individual integrity and secrecy require-
ments. As there are several integrity requirements, it is worthwhile repeating a general definition from
[PWO0O0] that translates abstract (perfect) requirements into different types of cryptographic definitions.

4.1 Integrity Requirements in General

Integrity requirements on reactive systems outside cryptography are typically written in a temporal logic

or a predicate logic including round numbers. We generalize this by giving a cryptographic semantics

to all requirements that can be expressed as sets of allowed traces (sequences of events) at the specified
ports of the system. We first need general notation about small functions.

Definition 4.1 (Small Functions) By “a classSMA LL of small functions” we mean thefMALL is a
set of functions fronN to R~ which is closed under addition and, with a functigralso contain any
functiong’ < g. -

One typical class iF#FXPSMALL of all functionsg for which a polynomial@ exists withVEk :
g(k) < Q(k) -27F.

Another is the (larger) clas8§FEGL of all functionsg where for all positive polynomial®, 3koVk >
ko : g(k) < 1/Q(k). Equivalently, one writeg(k) < 1/poly(k). <&

Definition 4.2 (Integrity Requirements) An integrity requiremenikeq for a systemSys is a function

that maps each sétwith (M, S) € Sys to a set of traces at the ports.$h More precisely, such a trace
contains one value, € X* for each porpp € S and Round;, corresponding to the in- or output of a
correct machine in Subrourjd1]. For the computational and statistical case, the traces must be finite.
We say thatSys fulfills Req

a) perfectly (writtenSys |=perf Req) if for any configurationconf = (M, S, H, A) € Conf(Sys), the
restrictionsr[g of all runs of this configuration to the specified ports lieflpg(S). In formulas,
[(runcont,ik [5)] € Req(S) for all k, where[-] denotes the carrier set of a probability distribution.

b) statistically for a clas§ M A LL of small functions §ys E=syarr Req) if for any configuration
conf = (M,S,H,A) € Conf(Sys), the probability thatReq(S) is not fulfilled is small, i.e., for
all polynomialsi (and as a function of),

P(runcons kik)[s & Req(S)) € SMALL.

c) computationally §ys [=pol, Req) if for any configurationconf = (M, S, H,A) € Confyoly (Sys),
the probability thatReq(S) is not fulfilled is negligible, i.e.,

P(runconf,k [5 ¢ Req(S)) € NEGL.

Note that a) is normal fulfillment. We writd=" if we want to treat all three cases together. &

4.2 System Class of Certified Malil

In order to express integrity requirements according to Definition 4.2, we need to define the possible
setsS with (M, S) € Sys for any certified-mail system.

Definition 4.3 (Parameters and Notation for Labeled Certified Mail) The parameters of a labeled
certified-mail scheme are a message spgeg C X*, a label spacd. C ¥*, numbersng,ng € N
of intended senders and recipients, and an intended nutlgelN of rounds of thesend protocol. Let
Parcyr be the set of possible tuples of these parameters.

If a tuple par € Parcy is clear from the context, we simply address its components by the names
introduced above. We then also use the notatiecang + ng + 1 for the number of parties, = n for
the index of the verifier, and = {1,...,n}, Mg ={1,...,ng} andMpr = {ng+1,...,ng +ng}
for the sets of (indices of) all parties, senders and recipients.

We write Slots = Mg x Mpr x N. As explained in Section 2, this set is used as the opportunities
for protocol runs and thus as transaction identifiers. Let 8lsts; = Mg x Mg x {1,...,:} for all
1 €N, O

Definition 4.4 (Access Structure and Specified Ports for Labeled Certified Mail)The access struc-
ture for certified mail with parametefgr € Parcy is the set

ACCSM = {H C M|v € H},
CM W

i.e., the verifier is always honest, while all other parties may be dishonest. FoeachCC,,,, we
define a set of specified ports as

Sy = {in,7,out,!lu € H} \ {in,?},

i.e., one port pair for each user except that the verifier does not need an input port.

If a set? is clear from the context, we abbreviate the (indices of) corrupted partiglsbyM \ #,
and correct and corrupted senders and recipients, respectivelysby Mg NH, As = Mg N A,
Hr=MprNH,andAgr = Mg N A. O

We also define the desired input format so that we can use it in both definitions. According to
Definition 3.1, the machines must be defined for all inputSinbut incorrect inputs will be ignored.

Definition 4.5 (Input Domains for Labeled Certified Mail) Let parametergar € Parcy be given.
The desired input selns for a sender consists of the vectqi®,.),c r(,uq0) Where each entryn,
forr € Mpiseor (send,r,l,m) with [€ L andm € Msg, andin,, is € or (show, (s,r,7)) with
(s,7,7) € Slots.>

The representation as vectors is for our convenience; in reality, any deterministic shorter encoding can be used.

The desired input seln for recipients consists of the vectofs:,)c 11, Where each entryn
must bee or (receive, s,1) with [€ L. &

4.3 Requirements on Labeled Certified Mail

We now present actual requirements on certified mail. Readers unused to formulations in terms of
interfaces may already imagine that each port paif?, out,!) are the in- and outputs of a machine
M,. Requirement a) is not always considered below because, in contrast to the other requirements, it
presupposes authentic connections between sender and recipient in real systems.

For finite sequences, “after at mastrounds” is defined to be automatically fulfilled if less than
further rounds exist.

Definition 4.6 (Integrity Requirements on Labeled Certified Mail) Let parametergar € Parcuy
be given. Then the integrity requirements on certified mail are the following functitens with.
z = a,...,h (corresponding to the item labels below) mapping eachSgetvith H € ACCI%‘{J toa
predicateReq, (Sy).
We make the general precondition that only correct inputs are made at the specified ports (intuitively,
by honest users), i.e., all predicatReq, (S3,) are fulfilled in all runs where an input ¢ Ing is made
at a porting? with s € Hg in any round, od ¢ Inp at a portin,? with » € 7.8 By “an input occurs”
we mean that it is an entry of an input vector; similarly, the outputs will actually be members of sets.

Forall s € Hg,r € Hp (i.€., if sender and recipient are correct):

a) Correct Execution.If (send,r,l,m) is input atin,? and (receive, s,1’) atin,? in Rounds, then
after at mostA rounds: Ifl = [’, outputs(sent, (s, r,i)) and(received, (s, r,4),m) occur atout,!
andout,!, respectively, otherwisgfailed, (s,r,4)) at both these ports.

b) Unforgeable Messagesf an output(received, (s,r,4),m) occurs abut,! in a round; after an
input (receive, s,1) atin,7 in a roundi < 7, then an inpuf(send, r,, m) occurred ain,? in a
rounds’ < j.

Forall r € Hp,s € Mg (i.e., for every correct recipient):

c) Termination for Recipient. An input (receive, s,l) at in,? in Roundi leads to an output
(received, (s, r,1), m) with m € Msg or (failed, (s,r,4)) atout,! after at mostA rounds, and
no second output of these types with thisr, i) occurs abut,!.

d) Unforgeable ReceiptsIf an output(received, (s,r,%),l,m) occurs atout,! in a roundj, then
m € Msg andi < j, and an inputreceive, s,) occurred atn,? in Round.

e) No Surprises for the Recipientlf an output (failed, (s, r,%)) occurs atout,! after an input
(receive, s,1) atin,? in Roundi, then no outpufreceived, (s, r,1%),l,m) with anym € ¥* oc-
curs atout,! in any round.

f) Fixed Receiptslf an output(received, (s,r,i),m) occurs abut,! after an inpuf(receive, s, 1) at
in,? in Roundi, then no outputreceived, (s, r,i),l,m') for any differentm’ occurs abut,! in
any round.

Forall s € Hg,r € Mg (i.e., for all correct senders):

g) Termination for Sender. An input (send, r,I, m) at ins? in Roundi leads to an output
(sent, (s,7,%)) or (failed, (s,7,4)) atout,! after at mostA rounds, and no second such output
occurs abut,!.

®More specific preconditions would strengthen the requirements. As we will have a strict definition via an ideal system
later, we use a weak (and thus very general) variant here.

h) Verifiability of Valid Receipts.If an output(sent, (s,,4)) occurs atout,! after an input(send,
r,l, m) at ing? in Rounds, then a later input(show, (s,7,7)) at ins? leads to the output
(received, (s, r,1),l,m) atout,! within at mostA rounds.

<

By [PWO0O0] (Theorem 3.2), any logical derivations from these requirements are valid also for sta-
tistical and computational fulfillment. Hence one can draw conclusions on this abstract level, or join
requirements d) to f) into one, etc.

For a relation to formal methods, where avoiding arithmetic is helpful, note that although the cur-
rent formulation is standard predicate logic using round numbers, most of the requirements could be
expressed in temporal logic. Only requirements that mention “after at fnostinds” (availability) in-
trinsically need the round numbers, and this could be extracted into the termination requirements alone.

Finally, we define the secrecy requirement. Here there is no general framework like Definition 4.2,
hence we write in a standard cryptographic style.

Definition 4.7 (Secrecy Requirement on Labeled Certified Mail)Let parametergar € Parcy and
a systemSysga“ﬂ with the correct user interfaces be given, i.e., for(@ll, S) € Sysga'\ﬁ there exists
H € ACCSM with S = Sy,

Roughly, we say thajs‘ysga“ﬂ offersmessage secredfjthe messagen is kept entirely secret when-
ever the outputfailed, (s, r,7)) occurs abut,! on input(send, r, [, m) atins? in Rounds.

More precisely, consider the following user machhhefor any s € Mg: It only has portsn,! and
a_in? for making inputs taM; and for being influenced by the adversary. Its transition function is as

follows:’

1. Initially, in each round — 1, H, forwards an input vectofa_in;),c a1 ,ufy) Made ab_in? toiny!
ifitliesin Ing.

2. If in one round, an element_in, with »r € Mp, is (choice, 7,1, mg, m1) with mg, m; € Msg
and/ € L, thenH, chooses a random Hite {0, 1} and usegsend, r,[, m;) instead of this entry
when outputting the vector at,!.

3. From then onH; acts as before except for not consideringhaice input again.

We consider all configurationsnf = (M, S,H,, A) € Confg(Sys) with s € H 5. Recall that the index
g means thafA has a free output poguess!; in our case we call the output theli& it should be a bit
meant as a guessfat

Let no_receipt denote the event that the outgtiiled, (s, r,7)) occurs abuts! wherer is the index
of the choice input and — 1 the round wherdl; handled it, anchdv_win the event thaho_receipt is
true but the guess is correct, i.8%,= b. (Both are well-defined in the probability space of the runs of
conf for any initial inputk.) The requirement is tht

1
poly(k)’

1
P(advwin(run conf 1)) < §P(no_receipt(runconfyk))+

<

We have not added an analog of abuse-freeness to the requirements, as sometimes required for contract
signing [GIM99], because in our synchronous setting and with moderately short rounds we do not
consider such abuse a threat in practice.

"Itis similar to adaptive chosen-ciphertext attacks on encryption systems except that we only require secrecy if the exchange
fails; hence we can allow the adversary to connect to all output ports of the correct machines.

8A definition that the conditional probability afdv_win given no_receipt is at mostl/2 + 1/poly(k) would not work
because of cases where the adversary always gives a receipt except if he can break an underlying assumption.

5 ldeal-System-Based Definition of Labeled Certified Mall

Now we present a specific ideal system as a second definition of labeled certified mail. We first summa-
rize the definition of simulatability from [PSWO0Ob]. We then discuss a naive ideal system and motivate
why the actual ideal system is a bit more complicated. Then we show that the ideal system fulfils the
requirements, i.e., the second definition is stricter, and we discuss what this means for real systems
fulfilling the second definition.

5.1 Simulatability in General

In the simulatability definition, one only wants to compare each structure of a sy&sten(typically

real) with certain corresponding structures in a system, (typically ideal). An almost arbitrary map-

ping f is allowed as specification of “corresponding”, only certain conventions on the naming of ports
are necessary. An instantiation is usually derived from the trust model, and usually only structures with
the same set of specified ports are corresponding.

Definition 5.1 (Valid Mapping, Suitable Configuration) A function f from a systemSys; to the
powerset of a systerfiys, is called avalid mappingif for all structures with(Ms, S») € f(My, S1)

p¢ € free(My) = p & forb(Ms, S2) A p° € Sy = p & forb(My, Sy).

Given Sys, and f, the setConf/ (Sys,) C Conf(Sys,) of suitableconfigurations contains all those
configurationg M, S, H, A1) whereH has no ports fronforb(Ms, So) for any (Ms, So) € f(My, Sy).
&

The restriction to suitable configuratiofsnf/ (Sys,) serves two purposes in simulatability: First it ex-
cludes users that are incompatible wit,, S;) simply because of name clashes. Secondly, it excludes
thatH connects to unspecified free ports(df,, S2). This is necessary for the abstract specification of
tolerable imperfections. Recall the example of an ideal system that gives the adversary one busy-bit per
subprotocol run. Clearly there is no such bit in the real system; we only need it to capture that whatever
the adversary learns in the real system is not more than this bit. As we will require indistinguishability
of the views ofH, these unspecified ports must only be used by the adversary.

As the definition of computational indistinguishability (originally from [Y82al]) is essential for the
simulatability definition, we also present it here.

Definition 5.2 (Indistinguishability) Two families (var)xen and (var},)zen of random variables (or
probability distributions) are called

a) perfectly indistinguishable (“=") if for each, the two distributions are identical;

b) statistically indistinguishable £sny41,1,") for a classSMALL of small functions if the distribu-
tions are discrete and their statistical distances

1
A(varg,var},) = 3 Z |P(vary = d) — P(var), = d)] € SMALL
d€ Dy,

(as a function of).

c) computationally indistinguishable £},,") if for any algorithm Dist (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P(Dist(1%,vary) = 1) — P(Dist(1%,var}) = 1)| € NEGL.

(Intuitively, Dist, given the security parameter and an element chosen according toveither
var},, tries to guess which distribution the element came from.)

10

We write = if we want to treat all cases together. &

The following definition captures that whatever an adversary can achieve in the real system against
certain honest users, another adversary can achieve against the same honest users in the ideal system.
Adding an adversary output in the comparison does not make the definition stricter, nor do auxiliary
inputs [PSWO0O0b].

Definition 5.3 (Simulatability) Let systemsSys; andSys, with a valid mappingf be given.

a) We saySys; >1perf Sys, (perfectly at least as secure & f) if for any suitable configuration
conf, = (M, S1,H,A;) € Conf/(Sys,), there exists a configuratiamnf, = (My, Sy, H, Ay) €
Conf(Sys,) with (Mz, S3) € f(My, S1) (and the samél) such that

Uiewconfl (H) = Uiewconfz(H)'

b) We saySys, >LIMALL Sys, (statistically at least as secure)d®r a classSMA LL of small func-
tions if the same as in a) holds with statistical indistinguishability of all famiies ., ,1(H)
andwiew cons,,1(H) of I-round prefixes of the views for polynomials

c) We saySys; 2£é20|y Sys, (computationally at least as secure)afsthe same as in a) holds with
configurations frorrConfgoly(Sysl) and Confpq, (Sys,) and computational indistinguishability
of the families of views.

In all cases, we caltonf, an indistinguishable configuration foonf,. Where the difference between
the types of security is irrelevant, we simply writd.., and we omit the indiceg andsec if they are
clear from the context. <O

Definition 5.4 (Blackbox and Universal Simulatability) Universal simulatability means that, in
Definition 5.3 does not depend ¢t (only on My, S;, andA;). Blackbox simulatability means that
additionally, A, (given M, S1, and the seP of adversary ports) is a fixed simulatbim with A; as a
blackbox submachine.)

5.2 Naive Specification and Discussion

The simplest trusted ho$H ;. for certified mail can be sketched as follows (omitting verification):

Naive trusted host: Whenever TH,,ive Obtains two matching inputgsend,r,l,m) at ins? and
(receive, s,1) atin,? in a round, it outputs(received, (s,,%), m) atout,! and (sent, (s, r,1))
at outg! in the next round. For any non-matched input, it outpifitéled, (s,r,4)) to the party
concerned.

Unfortunately, one cannot expect a real protocol to satisfy such a specification (the first two issues were
also discussed in [PSWO0O0b]):

e THp.ive hides all interactions between honest parties from the adversary. But in real life, the
adversary can eavesdrop on the channels and learn quite a lot in protocols like that in Figure 1.
In particular the information “who communicates with whom at what time” would be extremely
expensive to hide. As the secure-channel example in [PSWO00b] shows how to treat just this
minimal information, we decided here to model unencrypted protocols like that in Figure 1. Thus
for each slot(s,r,i) the adversary will obtain an outpibusy,...) containing all non-secret
information, and msg, m) when a message is sent in clear.

11

e THnave Quarantees availability, i.e., the adversary cannot prevent honest parties from sending
certified mails to each other. But in real systems the adversary can typically do this, e.g., by
disrupting a channel. Therefore our trusted host will accept inqusress from the adversary
that describe which protocol runs should be killed. (We will need authentic channels to trusted
third parties, however.)

e THnave produces outputs within one round, while any real optimistic protocol requires at least
four rounds [S00]. Even protocols with more than four rounds should not be considered insecure
just because of that. (Recall that our synchronous model requires that the behavior of a real system
at the specified ports is indistinguishable from that of the ideal system even in its timing, so that
a real system cannot have more timing channels than its specification.) Therefore we will use a
numberA of rounds as a free parameter in the specification. We decided to use only one such
parameter here for brevity of the specification, ife.= 6 for Figure 1, although alternativel,
could output(sent, .. .) after four rounds andl, could output(received, .. .) after three rounds
in the all-correct case. Verification will work in one round.

e THy.ive delivers protocol outputs after the same tif\eeven to the adversary. However, an
adversary can get these outputs faster. For almost all protocols, this holds by at least one round
because the adversary can take a message from the line to him and do all computations still in
the same round, while correct machines will only do them in the next round. In addition, in
Figure 1, an adversarial recipient can immediately use the message after obtainindile a
correct recipient only gets the outpireceived, (s,7,4), m) in Round 6. One way to model this
would be to look at a real protocol and to model in the ideal system exactly until what round an
adversary can disrupt the protocol, from when on he can obtain a message, etc. However, this
would give a fairly large number of parameters in additiod\olnstead, our ideal system allows
the adversary slightly more than a real adversary can achieve: Roughly, we allow him to disrupt at
any time, or else to decide that he will not disrupt and then to use the results. This is represented
in the treatment of adversary inpuigppress andreceive.”

5.3 An Ideal System for Certified Mall

We now describe an ideal system that formally specifies a particular version of labeled certified mail
with the properties introduced in Section 5.2.

Scheme 5.1 (Trusted Host for Labeled Certified Mail) For any parametergar € Parcy (Defini-
tion 4.3), an ideal system for labeled certified mail is defined as

Syspar™® = {({THx}, Sx)|H € ACCT),
where ACCEM and Sy, are as in Definition 4.4 andiHy, is defined as follows.

par

Ports: Let Portstn,, = Sy U S’idﬂ, where the unspecified ports are simply

Sid, 2 = {out_al,in_a?}.

Overall structure ofTHy: Each slof(s, r, i) € Slots is handled by a submachink; , ;. For simplicity,

we assume that in any roungsubmachinesh; ,. ; for all (s, r, j) € Slots; exist, although most of them
will remain in their starting state forev&t. There are three types of submachines (where “type” means
equality except for port renaming), one each ferr) € Hs x Ag, As x Hp or Hg x Hp. Each

®This could also be done for the receipts. However, as our protocol has global round numbers, verifiers can simply refuse
to accept receipts too early. Otherwise, the specification of the sending protocol and verification become more intertwined.
10As this is only an ideal system, there is no need to implement its internal state efficiently.

12

submachineh;, , ; has one input and output port for each party concerned with thisimug;, ;7 and
out_ss,;!if s € Hg,in_rg,;? andout_r, ;! if r € Hp, and in any caseut_v, ;;!, in_a;,;?, out_as !,
and finallyin_th, ,. ;7 for inputs fromTHy, itself.

In Rounds 0 and 1, the trusted host does nothing. (This is time reserved for initialization in the real
system.) We now define the state transition for any roiundl.

Global inputs and dispatching in Rourid At the portin_a?, the trusted hosTHy, expects a matrix
(in-a; (5.r4)) (s,r.j)€slots; OF Sets of at most four elements.THy inputs each element to pantag . ;?
of ths,,.; and clocks this submachine once fotit.

At each porting,? with s € Hg, THy expects an input vectc(n'ni,s,r)reMRU{v} € Ing. It forwards
each entryin; ; » withr € Mg to portin_s, ;. ;7 (Of thy . ;), andin; s , = (show, (s, r, 7)) with (s,,j) €
Slot; to portin_s; , ;? (of ths,, ;).1® At each portin,? with r € Hg, it expects a vectofin; . s)scms €
Ing and forwards each entiy; . ; to portin_rg . ;7 of th, ;. ;.

In addition, THy, inputsstop to all machinesh, , ;A at portin_th, , ;_A?. ThenTHy clocks all
submachines.

Submachines:The state-transition functions of the machirg, ; are shown in Figures 2 to 4 in
standard notation for extended finite-state machines: a circle is a state and an arrowilapbel¢ds

a transition resulting from an inpudt. and causing an outputut. Inputs that are not explicitly shown
in a state are ignored. Notatiomy means thay is input or output at pork, but the subscripts and the
appendices “I” and “?” of ports are omitted because they are clear from the context.

The diagrams are complete given the following conventions: Each submathingobtains its
parametergs, r,) in its initial state. Any input parameter is assigned to a variable of the same name if
the name first occurs in a run; otherwise, the input is only accepted if the value of the parameter and the
variable are equal.

The main ideas behind the state-transition functions are the following: Each malehjnés started
by inputs(send, .. .) and/or(receive, . ..) from the corresponding correct user(s); if bethr € #, the
statessry, srp, andsrs occur if there are not two matching inputs. The adversary is immediately told the
parameters of the run at the porit_a, , ;!. Then the adversary (the partner in Figures 2 and 3 and an
outsider in Figure 4) has the opportunity to either disrupt the runsuithress or to decide that it should
end successfully witleceive or (send, m), respectively. In the latter case, he immediately obtains the
message if he is not the sender. The outputs for the honest users only occur upon themtam
THy itself), and only then can receipts be shown. Showing by an adversary works within the same
round, by an honest user it has one round delay.

Output dispatching in Round Machine THy, puts all outputs from submachine postst_s; . ;! into
a setout; 5, those abut_r, , ;! into out; ,, those abut_v,, ;! into out; ,, and those abut_a, , ;! into
out_ai,(s,r,j).l“ Each set is encoded in a deterministic way. It outputs ,, atout,! for eachu € H
and the matri{out_a; (s, j)) (s,r.j)eSlots; Atout-al. O

1By “expects” we mean that it replaces any other input by a vector ef almilarly for other structures in the following.
By “for each entry, it does..” and similar formulations we mean that the entries are treated in lexicographic order of their
index tuples in the structure.

2Clocking the submachines once for each adversary input and once for honest-user inputs per round helps not to have too
many input combinations in the state diagrams. Allowing input sets per slot is not mandatory here (in the state diagrams, never
more than one adversary input is considered between two honest-user inputs), but simplifies the simulation, where each of four
simulated machines may signal to the trusted host.

13The parametefs, r, j) of (show, (s, r, j)) could be omitted in forwarding; similar for many outputs below because it
could be added systematically as the second parameter of all in- and outputs in dispatching. However, for readability we
currently let all in- and outputs look the same globally and in submachines.

4In statesro, two outputs can occur at pasit_as,» ;!; hence more precisely or in more complicated cases, the dispatching
should be seen as set unions.

13

in_th.stop / out_s.(failed,
in_s.(show, (s, r,)) /

in_a-SUPPFeSSCD (8.1, 0) > out_a.(busy, v),

in_s.(send, r, |, m)/ /‘/ out_v.(received, (s, r, i), |, m)
out_a.(busy, s, /) -

in_th.stop /
N out_s.(failed, (s, r, 1)) -/ vo.(received,

i e I re (5,10, |, m)
in_a.receive / \C) ; ' -
out_a.(msg, m) in_a.stop/ \ceived

in_s.(show, (s, r, 1))
out_s.(sent, (s, r,) / out_a.(busy, V)

Figure 2:th, ,.; for s € Hg andr € Ag, i.e., correct sender only. Dashed arrows arise from adversary
inputs.

in_th.stop / out_r.(failed,

® (s,)

in_th.stop /
out_r.(failed, (s, r, i)

AN o in_a.show /
in_a.(send, m) . out_v.(received, (s, r, i),
/- in_th.stop / TN Lm)
\ /

out_r.(received, ~—.
(s, 1, 1), m)

in_a.suppress
| —

in_r.(receive, s,) /

out_a.(busy, r, l)

Figure 3:th,,; for r € Hx ands € Ag, i.e., correct recipient only.

in_s.(send, r, I, m)

/ out_a.(busy, s, IL/Shin_th.stop / out_s.(failed, (s, r, 1))
| in_r.(receive, s,)
/ out_a.(busy, r,

- in_th.stop / out_r.(failed, (s, |, 1))

in_th.stop /

i Y
out_s.(failed, (s, r, 1), f

out_r.(failed, (s, r, 1))

in_s(send, r, I, m),
in_r.(receive, s, I
/ out_a.(busy, s, /),
out_a.(busy, r, I

y

_____ @ - failed

.>
lin_a.suppress in_th.stop / =in_s.(show, (s, r,) /

ly- out_s.(sent, (s, 1, i), out_v.(received, (s, 1, i),
@ out_r.(received, (s, r, i), m)EI re- 1, m)
iﬁ__a.r_ecziv_e> ST in_th.stop/ geiveq in_s.(in_s.(show, (s, r,) /
/out_a.(msg, m) out_s.(sent, (s, , i), show, (s, r, 1))/ out_a.(busy, v),
out_r.(received, (s, r,), m) out_a.(busy, V) out_v.(received,
(s, i), 1, m

Figure 4:th, ,.; for s,r € H, i.e., correct sender and recipient.

14

5.4 Relation to Requirements-Based Definition

In this section, we show that the ideal system essentially fulfils the integrity requirements from Defini-
tion 4.6, and then mention what this means for real systems.

Lemma 5.1 (Integrity of Ideal System) The ideal system from Scheme 5.1 fulfills Definition 4.6b) to
h). It also fulfills Requirement a) if submachings . ; for s, r € H ignore inputssuppress. (Intuitively,
this means to assume authentic connections betwaedr.) a

Proof. Recall that we can assume that only correct inputs are made at the specified ports because of the
general preconditions in the requirements. This implies that an igpud, 7, [, m) in Roundi ating?

can only occur asn; , , etc. Furthermore, one can easily see from the input dispatching that no input to
amachineth, ;. ; is made before Round

Case: Sender and recipient correct, i.e., Figure 4 only:

a) Correct Execution, given thatuppress is ignored: Let in; , = (send,r,l,m) andin;,, =
(receive, s,1"). THy, dispatches both teh, ;. If [= I’, the submachine enters statg. As suppress
is ignored, the input oftop, which THy, makes afterA rounds, leads to outputsent, (s,r,7)) and
(received, (s, r,1),m), which are dispatched to the pounst,! andout,!.

If I # I, the submachine enters statg and, on inpuistop, makes two outputéfailed, (s, r,1)),
which are dispatched tsut,! andout,!.

b) Unforgeable MessagesAn output (received, (s,r,i),m) € out; can only come fronthy, ;. In
Figure 4 one easily sees that this requires a local ifgeut, , [, m), which, by dispatching, must have
been an entryn; ;..

Case: Only recipient correct, i.e., Figure 3 or 4:

c) Termination for Recipienttf in;, ; = (receive, s,), THy startsth, , ;, i.e., it leaves state, or sro,
and then inputstop to it in Round:i + A. This leads to exactly one of the required outputs in all states
of Figure 3, and in all states reachable without pstap in Figure 4.

d) Unforgeable ReceiptsAn output (received, (s,r,%),l,m) can only come fronth, ,;. One easily
sees in Figures 3 and 4 tha, . ; does not make this output without a prior infitdceive, s, 1), which
must have come frorim,.7.

e) No Surprises for the RecipierBoth an outputfailed, (s, r,7)) atout,! and(received, (s, r,1),l,m)
atout,! can only come fromh, , ;. However, one easily sees in Figures 3 and 4 that there is no path on
which both these outputs occur.

f) Fixed ReceiptsBoth an outpuf(received, (s, r,i),m) atout,! and(received, (s,7,7),l,m’) atout,!
can only come fronth; , ;. One easily sees in Figures 3 and 4 that this impligs= m.

Case: Only sender correct, i.e., Figure 2 or 4:

g) Termination for Sendertf in; ,, = (send, r,{, m), THy startsth,,;, i.e., it leaves state, or sr,
and then inputstop to it in Round: + A. This leads leads to exactly one of the required outputs in all
states reachable without prigtop in Figures 2 and 4.

h) Verifiability of Valid Receipts/An output (sent, (s,r,7)) atout,! can only come fronth,, ;. One
easily sees in Figures 2 and 4 thaj , ; is from then on always in stateceived or showing and will
output(received, (s,r,14),l, m) on input(show, (s, r,)) within one round. [

These results together with the integrity-preservation theorem from [PWO0O0] (Theorem 3.1) imply
that any real system that is computationally at least as secure as this ideal system also fulfils these
requirements computationally.

15

For secrecy requirements, there is no corresponding general theorem yet, and we do not bother to
prove a specific one here. But we sketch a proof that the ideal system fulfils Definition 4.7: An input
in;s, = (send,r,l,m) is dispatched tah; , ;, and an outputfailed, (s,r,%)) atouts! can only come
from the sameh, , ;. One easily sees in Figures 2 and 4 that the sdmg; does not make any output
with the parametem. No other parameter ah; ,; depends omz, THy, does not usen except in its
input toth, . ;, andHs never reuses. Hencem is perfectly hidden. For relations to formal methods,
note that this is a sketch of a typical information-flow proof, see, e.g., [D82].

6 Rigorous Description of the Real System

Now we rigorously define a real system for labeled certified mail. Recall that we already sketched and
explained the system in Section 2.

6.1 More Details about the Primitives Used

A signature scheme is a triple of algorithr{igens, sign, test). We assume w.l.0.g. that the message
space iss* [D88] and{0,1} C 3. We use slightly abbreviated notation: We writégn,,, test,) +
gens(1¥) for the generation of a signing key and a test key based on a security paramBiesig <—
sign,,(m), we denote a signature on the messagéncludingm itself. More precisely, we assume that
sig is a pair(m, s). The scheme may have arbitrary memory. The verificatésty, (sig) returnsm if

the signature is valid with respect to the included message fatse Security of a signature scheme
means that existential forgery is infeasible even in adaptive chosen-message attacks [GMR 88].

Definition 6.1 (Security of Signature Schemes)An arbitrary (probabilistic) polynomial-time machine
As;g interacts with a signer machirség (also called signing oracle) defined as follows:

1. Sig generates a key paifsign, test) « gens(1¥), and sendsest to Agg.
2. In each roundSig signs an arbitrary message; it receives fromAg;;.
3. Finally, Az should output a valueig.

Asig has won iftest(sig) gives a message with m # m; for all j, i.e., sig is a valid signature on a
message thdig did not sign. The probability of this event must be negligiblé.ir{ln our terminology,

we have a closed collection of 2 machines clocked alternately, and the event is a predicate on the runs;
hence the probability is well-defined.) O

The one-way functiowf is simply a function.

Definition 6.2 (Security of One-way Function) A functionowf : {0,1}* — {0, 1}* is called one-way
if for all probabilistic polynomial-time algorithm8,

P(r* =7z & {0,110 0" Agw(1F, owf(r)) € NEGL

(as a function ofk). The notation means the probability of the eveht= r in the space defined by the
two probabilistic assignments after™ O

A non-interactive chameleon commitment scheme is a tuple of algorithms
(genc,gencr,com,trans). Let its message space bdsgc. (In our case, it must comprise the
setMsg of the certified mail scheme.)

o We write(skcu, pkc) genc (1¥) for the generation of a key pair based on a security parameter
k.

16

e In slightly abbreviated notation, we write < gencg , for the generation of a suitable random
valuer givenpkc ,,.

e Similarly, we writec = com,,(m,r) for a commitment on a message € Msg. using a public
key pkc,, and a random value.

By (¢, 7) + comr,(m), we abbreviate the compositierk— gencg ,; ¢ = com, (m,).

e A commitmentc is opened by sendingn,). The recipient comparesm,, (m, r) with c. If they
are equal, one says that he accepts

e By r* « trans,(c,m,r,m*) we denote the transformation that allows the owner of a secret
key skc,, to take a commitment, valuesm,r that open it, and another messagé € Msgc
and to derive a value* such thatc can be opened to*. For all correctly generated keys and
¢ = comy(m,), this must givec = com,, (m™*, *).

Definition 6.3 (Security of Commitment Scheme)A non-interactive chameleon commitment scheme
is called secure if it has the following three properties.

a) Computationally bindingFor any probabilistic polynomial-time algorithAx

P(comy(m,r) = comy,(m*,r*) Am #m*
(Skc,uapkc,u) A genC(lk); (m,r, m*,r*) A A(lkapkc,u))
€ NEGL.

b) Perfectly hiding:For all (skc ., pkc,,) € [genc(1¥)], all probability distributiondist on Msgc,
all m € Msgc and all possible commitments

Ppist=(m|c) = Ppist(m)
whereDist* is the distribution defined by < Dist; (¢,) < comr,(m).*®

c) Chameleonfor all (skc,,, pkc,,) € [genc(1¥)] andm, m* € Msgc: The probability distribution
of the pair(c,r*) in (¢,7) < comry(m); r* < trans,(c, m, r, m*) equals that inc,r*) +
comr, (m*).

<

For example, we can use the commitment scheme from [BCP88, CHP92, P92] with a chameleon
extension combined with a family of collision-resistant hash functions [D88]. In the basic scheme, key
generation means to randomly choosg-kit prime ¢ and ak’(k)-bit prime p with ¢|(p — 1) (for a
function £’ determining a suitable second security parameter), a gengrafdhe unique subgroug,
of orderq in Z;, andx & Zy, and to set = g*. The public key iSp, ¢, g, h) and the secret key. A
random value is then chosensas 7Z, and a commitment on a messages 7, asc = com,(m,r) =
g™h" mod p. The transformatiomn* = trans, (¢, m,r,m*) isr* = (m —m*)/x + r. The scheme is
computationally binding under the discrete-logarithm assumption for this family of groups.

We now use a family of collision-resistant hash functions to allow commitments to arbitrarily long
inputs. A particular hash functiohash, is also (at least in theory) selected by a public key, which
becomes part of the public key of the extended commitment scheme. hbkbhwy(m) is committed
to in the place ofn. One can immediately see that this combination retains all the properties of the
commitment scheme.

For proving simulatability of the certified-mail scheme, we need that an adversary cannot open a
commitment made by someone else even if he has chosen the content. This is Part b) of the following
lemma, and Part a) is a well-known fact used.

5The termPpisi - (m|c) is the usual abbreviation @ (m’ = m|c’ = ¢ :: m’ « Dist; (¢, r) < comr, (m')).

17

Lemma 6.1 (Properties of the Commitments) a) For all(skc,u, pkc,,) € [genc(1¥)], allm,m’ €
Msgc, and all possible commitments

P(d =c:(d,r) + comry(m)) = P(=c:: (d,r) + comr,(m')).

b) For any probabilistic polynomial-time algorithms, A,:

P(c = comy(m*,r*)
(SkC,uaka,u) A genC(lk); (mv GUZE) «— Al(lkapkc,u);
(c,r) = comry(m); (m*,r*) « Ag(lk,pkgu,m, auz,c))
€ NEGL.

Here auz denotes arbitrary information that hands toA,.
O

Proof. If Part a) were not true, then fdfp;sc (m) = Ppist(m') = 1/2, we would obtain a contradiction
to the hiding property:

Ppjst* (m|c) = PDist(m)P(Cl =c (Clv T) A Comru(m))/PDist* (C)
= 1/2P(c = c = (d,r) ¢ comry(m))/ Poist- (c)
1/2P(d =

c:: (c',r) < comry(m'))/ Ppis-(c)
!)‘

= Ppist=(m |C

For Part b), assume that, A, contradict the lemma. Then either the probability with an additional
conditionm™ # m or with m* = m is still not negligible. The first case can immediately be seen to
contradict the binding property.

In the second case, consider an adverg@ythat carries ou{m, auz) < Al(lk,pkc,u), then
chooses a message’ # m in Msgc (e.g., the first possible one out of two fixed ones), sets
(e,7) + comr,(m') and finally (m*, r*) + Ag(lk,pkc’u,m, auzc). By Part a) this does not change
the distribution ofc compared with the assumption abdut andA,. Hence the success probability of
A, is unchanged, and as in the first case we immediately get a contradiction to the binding praperty.

6.2 The Real System

We now describe the real system in detail. A comma in messages denotes tuple composition, not con-
catenation, i.e., it must be implemented such that decomposition is unambiguous. We augment the
message formats slightly compared with Figure 1, in particular by adding message type identifiers like
m1l in signed messages (as often tacitly assumed when actually implementing a protocol) and repeating
the slot identifier in places to simplify dispatchitf).

Scheme 6.1 (Labeled Certified Mail) For any parametersar € Parcy With A = 6, we define a real
systemSysga“ﬁ’rea' for labeled certified mail. It is (almost) a standard cryptographic system according to
Definitions 3.1 and 3.2 in [PSWO0O0Db], i.e., it can be derived in a standard way from an intended structure
(M*,8*) and a trust model (consisting of an access structure and a channel fogyvever, for
independence and for readability of the proof, we also describe the resulting actual structures.

18I this protocol we could also do without because each type of machine signs only one type of message.

The difference is that a few user ports are not needed,e.g.,A larger difference to the rest of that section in [PSWO00b]
is that the mappings between real and ideal system are not canonical because we need the trusted third party for the optimistic
protocols.

18

Let M’ = MU {t,b} witht =n+1,b = n+ 2. ThenM* is a set{M,, | v € M'}, i.e., one
machine for each user known from the ideal system, a madHinfor a third party, and a broadcast
machineM,. The access structure is

CM
ACChyr = {H = H U {t,b}|H € ACC5M},

i.e., the third-party machine and the broadcast machine are (like the verifier’s) always correct. The actual
system is
SysSar® = {(May, Sy)[H € ACCopn

par

whereSy, is as in Definition 4.4, whileVf, = {M,, |u € H U {t,b}} and the machine,, 5, are now
defined. They only slightly differ from the intended machimég in the ports because of the channel
model. The machinels!,, are of five types depending on whethee Mg, Mg, oru = v, t or b.

Ports and channel modelhe ports of a machin#,, with v € M U {t} are{in,?, out,!, broad, !} U
{broady, 7, nety, !, nety, ,,?|w € M U{t}}, except thaM, does not have (need) the por? andM;
neitherin,? norout;!. The first two of the six port types are for the user, the second two for broadcast
(of public keys) and the last two for communication to and frigy.

The broadcast machiné, has the port§broad,,?|u € MU {t}} U {broad, ,,! | u,w € MU {t}}.

The channel model is that all channels involvidg or M, are authentic (but not private), the broad-
cast channel is authentic (and consistent, i.e., even the adversary cannot send different messages to
different correct recipients—this is why we nekly), and the other channels are insecure. This means
that each portet,, ,,! with v € {v,t} orw € {v,t} gets a duplicateet;, ,? in M, 3, where the machine
makes the same outputs. (The adversary will connect to this port.) Simifgrly gets an additional
port broady,! for eachu where it makes the same outputs as at its peisad, ,,,.! Each portnet,, ,?
with u,w ¢ {v,t} is replaced byetf, , 7 (This allows the adversary to connect to both this port and
net,, ,!, and thus to control the connection.)

We tacitly omit the duplicated ports in the following, while we keep the notatiexy, ,? for the
replaced ports to keep in mind that the inputs there are not necessarily the outputs of another correct
machine abet,, ,!.

Overall structure of each machineéAll machinesM,, »; with u # b are defined by submachines per
slot. (An overview is given in Figure 12 in the proof.) This is just a convenient way to write the state-
transition function ofM,, 4; they are not independent machines as in the system model, in particular
they can use the keys, parametgas, and current round number as storedvip ;.18

Mgy for s € Hg. Let Slotsg = Mpg x Noy and Slotsg; = Mp x {2,...,i} foralli € N. In
M; 5, each slof(r,7) € Slotsg is handled by a submachiren_s, , ;. For simplicity, we assume
that in any round, submachinesm_s, . ; for all (r,j) € Slotsg; exist, although most of them
will remain in their starting state forever. Eactn_s;,; has portan_s; ;. ;?, out_s, ;;!, r2sg . ;7
s2r il 255,47, s2ts 5!, ands2v, , ;! for in- and outputs to its user and messages from and to
the recipient, the third party and the verifier.

M, 4 for r € Hp. In exactly the same way, i, 5, each slof(s, i) € Slotsp = Mg x N5 is handled
by a submachinem_r ,. ; with portsin_ry ,;7, out_r, ;. ;!, s2r% .7, r2ss . ;!, andt2r, ;. ;7.

ERRAR]
My, and M, 5. In M, 4, each slof(s, r,i) € Slots is handled by a submachimen_v, ,; with ports
s2vs ;7 andout_v, ,-;!, and inM; 3;, by a submachinem_t, , ; with portss2t, ,.;?, t2s, ,.;!, and
t2rs7m~!.

18A real implementation should not reserve resources for submachines as long as they remain in their starting state. Then
the submachines dfl, 3, andM;, 3 and all those of unused slots disappear. We uniformly used the submachine notation to
unify dispatching and thus to simplify the proof.

19

Initialization (Rounds 0, 1, and part of 2)n Round 0, each machind,, 3, with v # v, b generates
signature keygsign,,, test,) «+ gens(1¥). Additionally, M, 7, generates a key paiskc i, phcy) <
genc(1¥) of the commitment scheme. Eabh, 3, with v € Mg U Mp outputstest,, at broad,,!, and
M 3, the pair(pkc ;, test;) atbroad,!.

In Round 1, all machines do nothing, except that the broadcast madhineforwards the input at
portbroad,? to the portsbroad,, ,,! for all u, w. In all other roundsMj 3, does nothing.

In Round 2, each machinkl, 3, with u # b considers its broadcast inputs. The first input at
broad;,? is stored as a commitment k¥ ,, the second one asst;, and the input abroad,, ,,? for
eachw € Mg U My astest,,. As the broadcast machine guarantees consistency, we do not distinguish
the key versions held by different machines.

Now we consider the state-transition functions of machMeg, with « # b for Roundsi > 2. Inputs
at the broadcast ports are never considered again after initialization, hence we no longer mention them.

Global inputs and dispatching in Rourd

M, 4 for s € Hg. Atits porting?, it expects an input vectan; ; € Ing. It forwards each entryn; ; .
with € Mg to portin_s, ,. ;7 (of cm_s, ,.;), and each entryn; ; , = (show, (s,,j)) toin_s,, ;?
(of cm_s, ;.).

At each network input portety ;7 with » € Mg, it expects a tuple of at most entries
((s,r,7), msg) with j < 4 and at portnet; ;? a tuple of at mostp, - i entries of this form®
It forwards each entry to port@s? . .7 or t2s, . ;?, respectively, otm_s . ;.

s’r’] .

M, 4 for r € Hp. Atits portin,?, it expects an input vectarn; ,, € Ing and forwards each entoy; , ;
to portin_r, ;. ;7 of cm_rg ;. ;.

At each network input portetg .7 with s € M, it expects a tuple of at mosentries of the form
((s,r,7), msg) with j <1, and at porhet; ,? a tuple of a most - 7 entries of the same form. It
forwards each entry tom_r, ,. ; at ports2r% .7 or t2r, . ;?, respectively.

877.7.7' .

M, 3. At each portnet,,? with s € Mg, it expects at most one messa(e, r, j), msg), which it
forwards to pors2v; .. ;7 of cm_v, ;. ;.

M¢ 7. At each portnet,;? with s € Mg, it expects at most one messade, r, j), msg), which it
forwards to pors2t, , ;7 of cm_t; ;. ;.

SubmachinesRecall that a run of the subprotoaaind was shown in Figure 1. The detailed behavior

of the submachines is illustrated in Figures 5 to 7 in the same notation as for the ideal system, except
that these figures are only complete with respect to the states and accepted input classes, while the local
variables and computations are defined in detail in the following. State transitions without input in the
figure occur at the clock signal, i.e., the submachine counts the number of rounds it waits for some
message. Each submachire_x, ,; obtains the valuess, r,) in its initial state, and the fixed index

s,r, 4 of its ports is omitted in the descriptions.

cm_s,,; for s € Hg. Oninput(send,r,[,m) at portin_s?, it computes(c,rs) < comr,(m) and out-
putsmy <« sign,((s,r,7),ml,l,c) ats2rl.

Then it waits for an inputny at portr2s®? in Roundi + 2. It tests whethetest,(ms) =
((s,r,1),m2,my,pr) for some valuerg. (The other occurring variables are already locally de-
fined incm_s, ;. ;, and a test o, i.e., no input, automatically fails.) If not, it waits until Round
i + 6, outputs(failed, (s, r,4)) atout_s!, and enters the final stafailed.

9In slight abuse of notation, we also consider entries correct where j) is the first entry in a nested tuple, i.e., the
left-most leaf in the tree. Instead, we could duplicate slot names in some messages below.

20

O—
—r2sd.my |
s2t.mg out_s.(sent, (s, r, i)

out_r.my s2r.ms

r2sa.my /N
-r2s8.m, | — out_s.(sent, (s, r, 1))
/| —
LeO+0O+0O>0— @

out_s.(failed, (s, r, i)

in_s.(send, r, |, m)/ r2sa.my /

Figure 5: Sender submachioe_s; , ;.

~s2ra.my O _>O _»O_>O_>O—/out_r.(failed, (s,)

| —

in_r.(receive, s, | -s2ra.my —t2r.mg / out_r.(failed,
| — | — S, I
(r)=> > O+QF0+>0>C2¢
s2ra.my t2r.mg /

/r2s.my s2r3.m3 out_r.(received, (s, r, i), m)
[r2s.my
O—+0O—+0O

—1/
out_r.(received, (s, r, i), m)

Figure 6: Recipient submachiren_r , ;.

s2v.mg/ s2v.my |
out_v.(received, (s, r, i), |, m) out_v.(received, (s, r, i), I, m)
SZt.m5 / / \

t2s.mg, ro.mg u _]

Figure 7: Third-party submachinen_t, ,. ; and verifier submachinen_v ;. ;.

21

If it received a correcins, it outputsms = ((s,r,4), m,rg) ats2r!l. Then, if it obtains a message
ma = ((s,7,4),7g) atr2s®? in Round: + 4 with a valuerp, for which owf(rg) = pg, it outputs
(sent, (s,7,%)) atout_s! in Round: + 6 and enters the stateceived. Otherwise, it outputsn; =
(mq, mo, mg) ats2t!. If it obtains any messageg att2s? in Roundi+6, it outputs(sent, (s, ,17))
atout_s! and enters the stateceived’.?°

On input(show, (s, r,)) at portin_s?, it outputsmy; = ((s,,%), m7,my, ma, m3, m4) ats2v! if
it is in statereceived, andmg if it is in Statereceived’.

cm_rg . ; for r € Hp. Oninput(receive, s,1) atin_r?, it waits for an inputn; ats2r®? in Round: + 1.
It then tests whethetest,(mq) = ((s,r,7), m1,l, ¢) for some value:. If not, it waits until Round
i + 6, outputs(failed, (s, r,7)) atout_r!, and enters the statad.

If it has received a correctm;, it selects rp <& {0,1}’c and outputsmy <«

sign,.((s,r,1),m2, mq,owf(rg)) atr2s!.

Then it waits for an inputng ats2r®? in Roundi + 3. If ms = ((s,r,i), m,rg) for some values
m € Msg andrg, it tests ifcomy(m,rg) = c. If yes, it outputsmy = ((s,r,7),rr) atr2sl. In
Round: + 6 it then outputgreceived, (s, r,4),m) atout_r! and enters the statad.

If it does not receive a correets, it waits until Roundi + 6. If it then obtains an inputng at
t2r?, it outputs(received, (s, ,4), m) atout_r!, where it findsn by retrieving the signed message
((s,r,1), mb6, ms), decomposingns into (my, ms, ms), andmg into ((s,r,i), m,rg). Otherwise
it outputs(failed, (s,r,17)), and in both cases it enters the staid.

cm_t, ;. Itfirsttests that the current round numbey is- i+5. If yes, then for each inpubmplaint ; ,,
it tests that it is a correct messagg. More precisely, it first tests if it is some trip{@, mo, m3).
If yes, it verifies (with its own values, s) thattests(m1) = ((s,r,i),ml,[,c) for some values
r € Mg, € L, andc, and thatest,(msy) = ((s,7,4), m2, m1, pr) for some value . Finally, it
tests thaing = ((s,,%), m,rg) for some valuesn € Msg andrs andcom;(m,rs) = c. If this
is true, it outputsng « sign,((s,r, 1), m6,m5) att2s! andt2r!.

cm.vs,;. Itfirst tests thay > i + 7 for the current round number For each inputeceipt ; , it first
verifies that it is of the forn{((s,r,4), m6,ms5), sig) or ((s,r, i), m7,my, mo, mg, my) for some
valuesm; and sig. In the first case, it then tests tiést;(receipt; ;) = ((s,r,4), mb,m;5) and
performs the test ofns as defined for;m_ts,,n,i?l In the second case, it performs the same tests
onms = (mi,me,m3), and then testsn, as defined foem_s, ;. If all is correct, it outputs
(received, (s, r,1),l,m) atout_v!.

Output Dispatching in Rounii

M; 4 for s € Hg. It puts all submachine outputs at postst_s, , ;! into a setout; ,, those ak2r, ;. ;!
into net; s, those ak2v, ;. ;! into net; ;,, and those ad2r; , ;! into net; , ;. It outputs these sets
at the ports with the corresponding hames in some deterministic encoding.

M,y for r € Hg. It puts outputs abut_r,, ;! into a setout; , and those at2s, , ;! into net;, ; and
outputs these sets at the pasts,! andnet, ! for all s € Mg, respectively.

M; 2 and M, 3;. M; 3, puts all outputs at2s, ;. ;! into a setuet; ;! and those atr, . ;! into a setnet, ...
M, % puts all outputs abut_v, , ;! into a setout; ,. They output these sets accordingly.

<

2Given the program oM, 3, it will always receivems andms will be correct, becaushl, 3 is always correct and the
connection tdvl; 3 is authentic. In real life, adding a verification here may be wise; similacrfar, . ; below.
21As M, 4 is assumed to be correct, this could be omitted except for extracting parameters.

22

7 Security Proof of the Real System

We now prove that the real system in Scheme 6.1 is computationally at least as secure as the ideal system
in Definition 5.1. Our simulation is blackbox (see Definition 5.4).

The main cryptographic aspect is in the simulation of a messagén Roundi, wherem,; should
be sent, the trusted host only outputs a busy-signal without revealing the actual message. Nevertheless,
the simulator has to givA a correct-looking network message, which includes a commitment that is
supposed to fix the message the honest user wants to send. If the protocol run is successful, the
simulator has to open this commitment two rounds later. If it then reveals a messagem, the
simulation is not correct, e.g., an honest recipient may not get the message an honest sender sent. Here
is why we need the chameleon property: It allows the simulator (who also only simulates the machine
M; and thus knows its key) to first make the commitment on an arbitrary messggeand later open
it to the correct message.

The main non-cryptographic aspects of the simulation are to verify that the real adversary has no
possibilities to disrupt protocol runs in certain states, to show receipts too early, etc., that are not provided
in the ideal system.

We structure the simulator as much as possible like the real system, i.e., it simulates the machines
M, and submachinesm_s; ,; andcm_r, ;. ;, see Figure 8. One main difference is that the simulator
does not interact directly with the users, but has to communicate with the trusted host for this. The
second one is timing. As the simulator is an adversary, it is clocked in Subr@ueidsnd[i.4], while
the correct machines are clocked in Subroufidg. To ease the comparison of the real system, and
the simulator together with the trusted host, in the proof below, we use a 6-round clocking scheme from
which both 4-round schemes can easily be derived.

uiO Hs uiOHp uioHs uio Hg
N N - —

iny,? soutul! e out,! Inul?\L,Foutul! cee -i;-? ?outv!
i J4 S s S o -

S TH

<
XE
i
I

>

Sim(A)

Figure 8: Structure of the real system and the simulation. The tiny squares are submachines. All indices
‘H are omitted. The ports ok for listening to authentic channels are not shown. Dashed machines are
only simulated, dashed gray submachines are not distinguished as suchSivithin

We use Corollary 5.4 of [PSWO0ODb]; it states that we only need to considerlddbed use precisely
the specified ports of the structures. Hence the set of the ports of the real adversary can be written as
P = S’feaw uP, whereS’,eahrH are the unspecified free ports of the real system and the paPtsviill
be connected tél. Furthermore, by Remark 5.4 in [PSWO0O0b], we can assumerthisinot clocked in
Subrounddi.1].

Scheme 7.1 (Simulator for Labeled Certified Mail) Let parametergar € Parcys with A = 6, a set

He ACCIC,QQ and a sef? = S’reaw U P’ of adversary ports be given. We define a simul&ieiz, p(A)
using an arbitrary adversary with the poftsas a blackbox submachine.

23

In the following, we omit all indices{ and also the indexX’ of Sim(A). As Sim(A) leaves the
communication betweeft andH unchanged, we can, in slight abuse of notation,Sayfor the part of
Sim(A) without A.

Ports: The ports ofSim are necessaril§< , U {in_a!,out_a?}.

real

Overall structure and timing: Internally, Sim simulates each submachiren_x,,; by a machine
cm_x’s’m- with the same ports, except thatx,,;? and outx,,;! are replaced byn)(’s,r,i? and
outx} ..!, and thatcm_t has an additional porut_t,, ,!. The dispatching is done b§im itself.

We define the transitions d@dim(A) as the compresééd version of a 6-subround clocking scheme
ke = (TH,Sim, A, H, A, Sim) where Subrounds 2 with 3 and 5 with 6 are joined to get the correct
clocking for the ideal system. We call the joined subrounds 2a and 2b, and 4a &h&gdentially, in
Subroundji.2a], Sim transforms the abstract messages it got fifbirhinto suitable network messages

for A, and in Subroundt.4b] it transforms the messages frakinto corresponding signals oH.

Initialization (Rounds 0, 1, and part of 2)fhe simulated key exchange is identical to that in the real
machinesM,,. The secret commitment key:c ; is considered a global variable &im, available to all
submachines. More preciselyim generates keys in Subrouf@2a], switches a simulated broadcast
machine in Subrounfl .2a], and reads in broadcast inputs in Subrolindb|.

Now we consider the state-transition functionSi for Rounds: > 2, more precisely Subrounds
[i — 1.4b] and[i.2a], not mentioning the broadcast inputs again.

Global inputs and dispatching in round In Subround[i — 1.4b], Sim dispatches the network inputs
(i.e., those at ports withet in their name) just like the correspondiiy, would. (In particular, we still
call the simulated inputs thl,, andM; in this subround-eceipt; ; and complaint, ;.)

In Subroundi.2a], Sim dispatches the entries of the input mawix_a; at portout_a? as shown in
Figure 9, whereng;,, is a fixed message froifsg. By definition of TH, only the inputs in the table are
possible.

out_a; (s, | Input to port of

(busy,s,l) | (send,r,l, mgim) insg, .7 cmsi,
(busy,r,l) | (receive,s,l) inrg ;7 emorg
(bUSy,U) (ShOW, (S,’f’,j)) !n—S%,r,j? Cm—s:s,r,j
(msg, m) (msg, m) insg, ;7 cms{,

Figure 9: Dispatching of inputs fromH by Sim. No other inputs can occur.

Sender submachinen_s . .: It acts likecm_s; ;. ; except for the following changes. Compared with
Figure 5, we only consider the states where more than the clock signal is consitiéiectreat them
essentially in the order of the rounds where they occur. A subprotocol run with all the simulated ma-

chines is shown in Figures 10 and 11.

22This is defined in Lemma 4.1 in [PS80b]. Essentially, one can first combine arbitrary machines into one $herand
A). Then, if only this machine is clocked in several successive subrounds, one can join the subrounds into one and let the
machine internally execute the state transitions in the right order.

ZThe other states would be split in two, $isn is clocked twice per round.

24

Round Changes
[i] In Subroundi.2a], cm_s’s’m- computesn gy, like m; with the input message;y,
and(c, rsim) < comr;(mgn,). It also sets aside a random string,,s of sufficient
length for a later call ofrans for ¢ with any other message. (Choosing it so early
is helpful in the proof below.)

[i+2] In Subround[+ 1.4b], on input of a correcin, (relative tom) ats2r®?, it
outputsreceive at out_s'!, otherwisesuppress. (This signals to the trusted host to
reveal the message or that the run fails.)

If it has output receive, then in Subround[i + 2.2a] it expects an input
(msg,m) at ins'?. If this comes, it transforms the commitment witly <+
trans;(c, Mgim , Tsim, M), USING Tyqans if random bits are needed in this process,
and outputsng = ((s,r,i),m,rg) ats2r!. If it does not comepm_s’sm stops
prematurely.

[i +4] The transition is made in Subrouifidt 4.2a] without changes. (It could also be in
[i + 3.4b].)

[i +6] The state transition to a final state is made in Subrdiirds.4b] without changes,
but no output is made.

[7] (With 7 > i + 6.) Reactions oshow are made unchanged in Subroyp@a.
Recipient submachinen_r’, , .: It acts likecm_r, . ; except for the following changes:

§,ryt”
[i +1] In Subround[:.4b], if no correctm, is input, it additionally outputsuppress at
out_r'l.
[i +3] InSubroundi + 2.4b], if a correctms is input, it additionally output$send, m) at
out_r'l.
[i + 6] It does not make an output.

Third-party submachinem_t., . .: It acts likecm_t, ,.; with the following change:

§,ry"
[7] InSubround;—1.4b], it verifies thatj = i+5. For each correct inpubmplaint ; ,,
it additionally outputs(send,m) atout_t'! for the valuem it obtained during the

verification.

Verifier submachinem_v/, , ;: It acts likecm_v, . ; with the following change:

§,Ty"

[7] In Subroundj — 1.4b], it verifies thatj > i + 7. Then, ifcm_v,, ; would output
(received, (s,r,1),l,m), it outputsshow instead.

Output dispatching in Rounfl Sim takes the outputs of all submachine pmts_s’syryj!, out_r;ﬂ",j!,
out-tg .. ;!, andout.vy . !, and puts them into the sét_a; , , ;) of the global output matrixn_a;.
All other outputs of submachines (the network messages) are dispatch®&idh hyst as by the

machined\,,. O

Theorem 7.1 Let parametergar € Parcys be given withA = 6. Let f : Sys5pre — SysSMid pe
the function withf (My, Sx) = ({THy}, Sy) for all H € ACCS. Then

CM,real ,pol CM,id
Syspar dec Y Syspar)

and this holds even in the blackbox sense. O

Proof. Let a setH{ and thus a structur@My,, Sy) and a port seP = Srgaw U P’ be given. In the fol-
lowing, we writeSim(A) for the simulatoiSimy, p(A) from Scheme 7.1, and also omit all other indices
#. Now let a configurationconf, = (M, S,H,A) € Conf/ (SysSM-ea) with Portsa = P be given.
Recall that we can assume this not clocked in Subrounds.1]. We claim thatconf, = ({TH}, S,

H,Sim(A)) is an indistinguishable configuration fesnf |, i.e., view cong, (H) ~ view cons, (H).

25

TH Adversary Sim(A) TH

Round | thy,; cms, .. A cmrl . ths i
Z.’n,i,sm = ini,r,s =

(send,...) (receive, ...)
[i.1] @) (busy, s,1) (bUSy,T:l)_ O
[i-2] QIim, O
[i.3] (H)
[i.4] B m§ O suppress Of €
[i(+1.1] | O O
[i+1.2] O ZM™ 0
[i(+1.3] (H)

receive
[(+1.4] Or suppress O mg O
(msg,m)
[i+2.1] [O__°%°¢ O
[i+2.2] o_M O
[i(+2.3] (H)
" (send, m)
[i(+2.4] _m—3) O L}
[i(+3.1] | O O
[i+3.2] O JM™M 0
[i(+3.3] (H)
[(+3.4] mg
Round |TH |ems, ., A cm_tl ., TH
[i+4.1] | O O
[i+4.2] o_"_, O
[i+4.3] ____(ﬁ)___—>
(send, m)
[i+4.4] O O L}
[i(+5.1] | O O
[i+5.2] O T O
H _________

[i(+5.3] (H)
Round |TH ecms. . A emr! TH
[i(+5.4] O
[i(+6.1] | O O

0uti+6,s’r = Outi+6,r,s =

(sent,...) (received, ...)

or (failed, ...) or (failed, ...)

Figure 10: Simulation of a subprotocol run. Mainly the case with € # and an unsuppressed run
is shown, but also all possible reactions on errors as signal&i ta'he symbol") denotes switching

and “(H)” that of H. Messages with superscriptare those arriving at portsety, 7.

26

Adversary Sim(A) TH

Round | A cmovl thy s
[i.l] O
U_.Z] O
[j-3] (H)
[j.4] O mg OF my show

. s —
[[+1.1] O

(received,...) ore

Figure 11: Simulation of the verification.

A. Overview. We show the stronger statemeritw ..z, (H,A) ~ view ony,(H,A). Intuitively this
means that we compand and the combination ofFH andSim. For this, we first show that the clocking
makes no difference.

The cryptographic proof ideas should then be fairly clear from the description of the simulator, but
we have to translate them into reduction proofs. Whether the suppression possibilities and timing are
the same may actually seem less clear; the timing is illustrated in Figures 10 and 11.

More rigorously, we define a partial functi@hfrom A-round prefixes of runs ofonf, for all A to
prefixes of runs otonf, (for the samé: and\) and show the following properties:

a) On the entire rung} is defined for all but a negligible subset @
b) It respects prefixes, i.e., #fis a prefix ofp*, theng(p) is a prefix ofp(p*).
c) If ¢(p) is defined, the joint view ol andA in p equals that inp(p).

d) As far as¢ is defined, it retains probabilities: For all and all prefix lengths\, the distri-
bution ¢(run conys, k) €quals the conditional distribution of the image¢in the distribution

TUN conf | k-

By Properties a), c) and d), the views are even statistically indistinguishable for theVal&s5. This
implies the desired result (recall Definitions 5.2 and 3%3).

Showing Part c) rigorously for composed automata with a state space this size is not trivial, even
without the exceptions arising from cryptographic aspects. First note that a ranréond prefix)p
is uniquely determined b¥ and the random valuesnd chosen by all machines of the configuration
(during the X rounds). Hence we only have to define a partial functidron those. We then have
deterministic configurations and have to prove equality of the views in the resultingsuns,,; and
P1k,¢' (rand) (While the internal states are different). For this, we define a partial fungtigpy between
reachable global states of the two configurations and show that the same input in corresponding states
leads to the same output and corresponding next states as Igrig dsfined.

We structure this proof by identifying a substructuteucs ,; of the real structure angfrucy, ;
of the simulation for each sldt, r, 7). We show that different substructures do not interact except via
H andA and by using global keys (once they have obtained their different initial states.) One can then
define¢’ and,,,4 and prove their properties more or less separately for each substructure, i.e., they are
composed of function$’s’r’i and,4na,(s,ri) Of random values used by, and states of, the substructures
(and identity functions on global parts).

As the transition diagrams for the submachines are moderately straight-line, we carry out the reach-
ability analysis of global states of the substructures, the definitioﬂsp}‘i and ¥rand,(s,r,i)» and the

%Nevertheless, we only obtai%;?°V” because the properties only hold for polynomial-tilh@ndA.
Z“More or less separately” means that, while the compositions are as said, the definitigs ;06nd v,.4,.4, (s, i) fOr
different slots are not completely independent.

27

correctness proof together by a parallel walkthrough througtx; ;. ; and struc's’r’i with a small num-
ber of cases. In most places, we map a new random valused in the simulation to the same vatye
in the real system, i.eq’ is defined componentwise oand and is the identity on most components.
After the first time, we will only mention the definition @f where it is not the identity for a component,
and, in slight abuse of notation, we also call the component funcfibnslso, except for the first time,
we do not mention),,,q4 (s, at all; it simply maps the states that we consider at the same time on each
other.

In these walkthroughs, we collect the valuesd for which we do not defing’ (and thugp,,,,4) in

the following error sets(we omit an index: at each set for brevity):
o Forge, with u € H U {t} (for the forgery of a signatureig, of participantu),

o OwfBreaks, ; (for breaking the one-way function) witfs, r,i) € Slots; . (x), Wher€ip,, de-
notes a polynomial bounding the number of rounds with AhedH,

e BindBreak (for breaking the binding property of the commitment scheme), and

o ComOuwfBreaks ,; With (s,r,i) € Slots;

imae (k) (fOr breaking the one-way property of the com-
mitment scheme, Lemma 6.1).

At the end, we show that these error sets are negligible (and thus that Property a) holds) by global
reduction proofs with the security of the cryptographic primitives. (Slot-wise reductions are not possible
because the keys are common to all substructures.) For use in those reductions, the walkthroughs also
show the following properties:

e) The conditions defining the error sets are functions of the viewsaofdA up to a round where
is still defined?® Together with Property c) this implies that the conditions can be verified in one

ruN p2 k. rand OF P1,k.¢' (rand) @IONE.

f) Membership in the error sets is efficiently verifiable, i.e., without significant overhead one can
simulate a rurps k. rana OF P1 k¢ (rand) @nd stop at the first occurrence of a condition that puts
rand in one (any or a specific one) of the error sets.

g) Foreach runin an error set, we identify a forged signatigein the first case and similar values
for the other cases.

B. Clocking. We definedsim(A) in conf, as a combination based on a collection wtgneandA are
separate (we now call itonfS) and a 6-subround clocking schemg Henceview .,ny, (H,A) equals
m’ewconfg(H,A) except for subround renaming. tanf$, only Sim and TH are clocked in Subrounds
4b, 1, and 2a. LeTH + Sim denote the combination dfH andSim where these subrounds are joined
(again according to Lemma 4.1 of [PSWO00b]). Themf:; = (TH + Sim, S, H, A) is a configuration
with the standard clocking scheme which we can compare witlf,, and view .3 (H,A) equals
m‘ewwnfg (H, A) except for the subround renaming. In both renamingsaf$, H ends up in Subround
3 andAin 2 and 4. Hence

view conps (H, A) = view conys, (H, A)

and in the following, we actually compareny; andconf .

2|n each case, the condition first becomes true by an outpéttofTH + Sim or M, respectively, and the views would
only become unequal whéiiH + Sim and M switch in Subround 1 of the next round.

28

C. Defining Substructures. We now define substructures containing all submachines that handle a
slot (s,r,4). This is illustrated in Figure 12.

By strucg r i, we denotem_s; . ;, cm_ry ;. ;, cm_t, . ;, andem_v, , ;. By struc’, i We denoteh , ;,
CM.Sg . ;, CMory . emity o, cmovg ., @ machineclks ,,; that only outputsstop in Roundi + 6, and
a machlned|ss i that dlspatches mternally between the other machines. Its ports are as shown in
the figure, i.e.struci , ; has the same free ports a8ucs,;. The dashed lines represent authentic
channelg’ If s & Hg, cm_s, i andcm ss r; are missing andis, , ; and the connections are modified
accordingly; and similarly for ¢ Hg.

Global dispatching
out_s!/Mout_r! ut vl
in_s?\y in_r7 outv: h
in_tl
Y

in_a?A
S mmmmmsssssssssE==—- out_al
Global dispatching | disg |
QUt_S! out_r! / out_s'"N out_rip A A
in_s? in_r? out_v! |n e |n _r7y outv! outt!
CM_Sg | | cm, r5”||cm Vsr/| |Cm tsr/ cm_s's cm rsr, cm VS,, Cm _t's i

r253‘7l tzg’)I 1LsZr itZr;T st?T 2 imi rzsa’) 1257 ,sZr or 7T t2r!
s2rlyy s2t t s2r! sZt‘ " s t2‘

Global d/spatch/ng Global d/spatch/ng
| A | | A |

Figure 12: Substructuresrucs; andstrucy ,.; for s,r € H. The indexs,r,i of all ports has been
omitted. The dashed lines are authentic, but not private channels.

D. Initialization. The initialization is equal irbim and the machine®l,, by construction, and hence

in the overall systems becau3él and the specified ports are not involved. (The clocking becomes
identical by the combination ofH + Sim in conf3.) Hence on the random valuesnd,,; used here
(the only ones outside substructures) we can indeed dgfittebe the identity function, and similarly
rang ON the global part of the state. We can now restrict ourselves to raundswithout considering
broadcasts again.

E. Correct Dispatching. We first show that all inputs at the poits,? or at the network lead to identi-
cal inputs to eachitruc, , ; andstruc,, i Similarly, we show that outputs from free portssefuc; ;. ; or
strucs »; lead to identical global outputs Finally, we defitie, , ; and show that it dispatches correctly

as in the global simulation, and that the global dispatching in fact corresponds to the authentic channels.

Inputs at the specified port#An input in; ; , with s € Hg,r € Mg is dispatched to poiit_s , ;? of
cm_s,; by M, and ofth, . ; by TH. Aninputin;,, = (show, (s,r,7)) is forwarded toin_s,, ;? of
cm_s, ;. j andthy . ;, respectively. Aninputn; , s with r € Hp is input toin_r , ;7 of cm_r . ; orth, ;. ;.
Note that this implies that inpufSend, . ..) atin_s, , ;7 and any inputs ah_r, , ;7 are only possible in
Rounds, and that their syntactic correctness has already been verified.

All other inputs atS are ignored. Furthermore, the only spontaneous actidrHok to make inputs
stop; this has been built intolk, ,.;. The machine$/,, andSim make no spontaneous actions.

?"Recall that channels are no explicit components in our system model; the ports are named correspondingly. Of course
we have to show below that these connections have the same effects as the global dispatching when the ports are internal to
different machines. Recall also that for brevity we have omitted the replicated ports that our model would use for the authentic
channels.

29

Network in- and outputsBy construction Sim dispatches network inputs, i.e., those at ports with
in their names, just like the machin@s,. Similarly, it collects outputs to network ports from the
submachines just like the machinds .

Outputs at the specified portsStH dispatches outputs fromut_s, ;. ;! of th,,; to out!, those from
out_r ;! to out,!, and those fromut_v, , ;! to out,!. The machined/,, M,., andM,, do the same for

the corresponding ports ktruc, ;. No other outputs at the specified ports are made in the real system
and byTH.

Definition and correctness dfs; .. ;: In the “upward” direction, in Roung Sim takes the outputs of the
submachine portsut.s; .. .1, outr .1 outt{ . I, andout.v{ . ;!, and puts them into the sét_a; (. ;.
ThenTH dispatches precisely this setitoa;, ;? of th,, ;. Hence heredis,,; can simply join the
output setg®

In the “downward” direction,TH puts the outputs afut a;, ;! into out_a; ;). ThenSim dis-
patches them according to Figure 9; they all remaim'm’s’r’i. No other inputs are made at these ports
by Sim. Hence heredis, ;. ; simply implements Figure 9.

Finally, we show that the authentic connections shown by dashed lines in Figure 12 are correct: All
outputs at a porti2w; ,. ;! are dispatched toet, ,,! and transported toet,, ,,?. Then they are dispatched

to u2w;, ;7 because they all havs, r, 7) as their first component (or leftmost leaf).

From now on, we consider the substructusésucs,; and strucy ., for one particular slogs,r,).
Hence we omit the index, r,: of the submachines and their ports for brevity. By “a machimex
receives a correct message;” we always mean that the message passes the verifications af

defined for its type. We have to distinguish three cases.
F. Comparison of Substructures

Case S: Correct Sender; Incorrect Recipient. We first comparetrucs ,.; andstruc ,.; for s € Hs
andr € Ag. In this case, we have Figure 12 withaui_r andcm_r'.

1. States reached without inpsiind: By the global dispatching, the only round where_s andth
(with the index(s, r,i)) can obtain an inpufsend, r, [, m) at portin_s? is Round:. If they do not, both
remain in their starting state forever and do not make any outputs; hensedoes not get an input
(send,...) via dis either and also remains in its starting state. As the only inputste, cm_t’, cm_v,
andcm_v' are on authentic connections framm_s andcm_s', respectively, they also never get inputs
and make outputs.

2. States reached on inpsénd: If (send,r,l,m) is input atin_s? of th in Roundi, it changes to State

s1 and outputs(busy, s,/) at out_a!, which dis dispatches agsend, r, [, mg;,,) to cm_s’. Thuscm_s
andcm_s’ sendm; andm, g, respectively. These messages only differ in the commitmeatsd

csim- We therefore defing’ (rgim, Tirans) = s < transy(Csim, Msim, Tsim, M), Wherer.,,s is used if
random bits are needed in this procés®8By the chameleon property, the resultiagqualscs;,,, and
thusm; = m sm in the corresponding states. Furthermore, the chameleon property implies that the
distribution of (¢, rs) in ¢(run cony, k) €QuUals that inun ...z, 1, as required for Property d) f30

2As in the ideal systenth,,,.; must be clocked once for each such input. Hence it must be considered a submachine of
diSS,T,i.

2%Recall that we letm_s’ choose a value;,... already in this round. Also note that may depend on other slots via,
which was chosen b andA.

30 et us once mention how this first walkthrough step implies a definitionh,9f, (s ».:): If we call the first state after
pso in Figure 5psi, then we have shown that only states.(s1,[, m),cm_s".(ps1, , Msim, Tsim, Ttrans)) @re reachable from
the initial state instrucy , ;, and defined theit,anq, (s~)-image to becm_s.(ps1, I, m) (with the same, m). There may be
one more type of state component: the internal memory of the signature system for each secret key; these states are mapped
identically. This is possible because identical messages are signed.

30

No m.. If the adversary does not respond with a correst(the test is equal fotrm_s andcm_s’ in the
given states), theem_s outputs(failed, (s, r, 7)) atout_s! in Roundi+ 6, while cm_s’ immediately
sendssuppress Via dis to th, which changes from Statg to s,. Thus, wherclk inputsstop in
Roundi + 6, th outputs(failed, (s,r,4)) atout_s! as well. No network outputs are made in this
process, and all three machines end up in Staked.

Correct mo. If cm_s andcm_s’ receive a correctns, cm_s sendsmg, while cm_s’ inputsreceive to th,
which changes from State to s3 and outputgmsg, m). Thuscm_s’ never stops at this point, and
it sendsm still in Roundi + 2 using the value s < transy(c, Mgim s T'sim, ™M), USINGT4rans iN the
process. By definition ap’, thisrg is also used bym_s.

No further actions otm_s' refer tor,;,, andm;,,. Hence after sendingu3, the behavior otm_s
andcm_s’ with respect to the network is identical. If they send a messagéit arrives atcm_t
andcm_t’ because these connections are authentic, and it passes the test by definitiornsa that
andcm_s’ will obtain a correctng. Thus in Round + 6, cm_s andcm_s’ either both enter the
statereceived or bothreceived’, andth entersreceived and remains in this state andshowing.

In this round, botlem_s andth also outpuf(sent, (s,r,)) atout_s!.

This covers all states reachable and inputs accepteehby; cm_s’, andth as long as the only input
atin_s? is (send,...). As the only inputs t@am_t, cm_t’, cm_v, andem_v’ are on authentic connections
from cm_s andcm_s’, respectively, the same holds for those machines.

3. Reactions on inputhow: Now we consider an inpushow, (s,r,7)) in Roundj atin_s?. Machine

cm_s considers this input if it is in Stateceived or received’, while th considers it in Statesceived or

showing. Above we showed that the machines enter these states under the same conditions in Round
i + 6, and thatcm_s’ is then in the same state as_s. Now th goes into Statehowing and outputs

(busy, v), whichdis dispatches a&how, (s,r,4)) tocm_s’. Hencecm_s' sends the same messagg or

my to cm_v' ascm_s to cm_v on authentic connections. By construction, these messages are accepted.
Thus cm_v outputs (received, (s, ,%),l,m) in Roundj + 1, just like th does because it is in State
showing.3!

Case R: Correct Recipient; Incorrect Sender. We now comparetrucs,,; andstruc ., forr € Hg
ands € Ag. In this case, we have Figure 12 withaut_s andcm_s'.
In Parts 1 and 2 we consider all states reachable and inputs accepted exaapi bpdcm_v'.

1. States reached without inputiceive: By the global dispatching, the only round where_r andth
can obtain an inputreceive, s,1) at portin_r? is Round:. If they do not, both remain in their starting
state forever and do not make any outputs; hemnee’ does not get an inpyteceive, .. .) via dis either
and also remains in its starting state and does not make outputs.

If the adversary nevertheless inputs a corregt at s2t? of cm_t and cm_t’ in Roundi + 5
(the only round where these machines accept inputs), this must contain a correct message
test,(m2) = ((s,7,7),m2,...). Then we letrand be in the setForge, andsigr = mo. Note that no
other submachine signs a message start{rg-, i), m2,...) with sign,, and recall that tuple decom-
position is unambiguous. Heneen_t andcm_t’ also do not make any outputs. (And recall that the
verifier submachines are considered separately below.)

2. States reached on inpudceive: If (receive, s,l) is input atin_r?, thenth changes to Statg and
outputs(busy, r, 1), which dis dispatches agreceive, s,1) to cm_r’. Thuscm_r andcm_r’ wait for an
inputm; in Rounds + 1.

3ln addition,cm_v’ outputsshow, which is dispatched tth, butth ignores it, being in Statshowing. This corresponds to
the fact that the trusted host specifies that showing receipts by a correct sendaiwaystvork.

31

Nom;. If the adversary does not send a correct, thencm_r outputs(failed, (s, r,7)) atout_r! in
Round: + 6, while cm_r" immediately outputsuppress to th, which changes from Staig to
r>. Thus, wherclk inputsstop in Roundsi + 6, th outputs(failed, (s, r,4)) atout_r! as well and
changes into Statfailed. No network outputs are made in this process, and-, cm_r’ andth
never accept any other inputs.

Again, if the adversary nevertheless inputs a cormecto cm_t andem_t’ in Round: + 5, we let
rand be in Forge, andsigy = mo for the messagei, contained inmns.

my andms. If cm_r andcm_r’ receive a correctn;, both sendn,. If they receive a correctn; =
((s,r,4),m,rs) in Roundi + 3, both sendn4 andcm_r" outputs(send, m) atout_r'l. This is
dispatched toh, which changes into Statg. Thus bothlem_r andth output(received, (s, r,4),m)
atout_r! in Round: + 6, and all three make no further network outputs or accept other inputs.

If the adversary additionally inputs a correct to cm_t andem_t’ in Round: +5, they both output
me att2r!. Additionally, cm_t’ outputs(send,...) atout_t'!, butth ignores it, being already in
Staters.

mq, NOms, but ms. If cm_r andem_r’ do not receive a correets (after sendingns), both wait until
Round: + 6.

If cm_t andcm_t’ obtain a correctns in Roundi + 5, they both sendng, and cm_t’ out-
puts (send, m) at out_t'! for the m contained inmms. Thusth changes to State and outputs
(received, (s, r,7),m) atout_r! in Round: + 6. As the channel fromem_t to cm_r is authentic,
cm_r obtainsmg as sent bym_t and also outputéreceived, (s, r,7), m) atout_r!.

m1, N0ms, NOms. In this case, itm_r andcm_r’ obtain a correctng in Round: + 6, we letrand be
in Forge, andsigr = me. Note that the message signedrig starts((s,,7), m6,...) and no
other submachine signs such a message sigth.

Otherwisecm_r outputs(failed, (s, r,)) in Round: + 6, and so doesh (changing to Statéiled)
because we saw that it is still in State

3. Inputs tocm_v andcm_v’: The remaining accepted inputs are at the psitt§ of cm_v andcm_v/;
they must be made in a rougd> ¢ + 7 and must be correct receipts. (Thus primarily, this part of the
proof proves that receipts are unforgeable and fixed.) We now denote receipts and their pgttariy
messages handled by the other submachines;by

If a correct message; or m/, arrives,cm_v outputs(received, (s, r,),1’,m’) atout_v!, whilecm_v/
outputsshow atout_v'!, which is dispatched tm_a?. Thenth also outputgreceived, (s, r,),l’,m') at
out_v! if it is in Statereceived with the parameters= I’ andm = m’. We show that this is true except
in certain (rare) cases.

I' =1. Both a correctng andm/, must contain correct message$ andm/,. If cm_r andcm_r’ did
not send a message, with the same conteri{(s, r,7), m2, my,pr), let rand be in Forge, and
sigr = m4. Note that no other submachine signs a message stéftingi), m2, . ..) with sign,..

From now on, we consider that they sem and thusm| = my. The verifications ircm_r and
cm_r’ imply that the valud’ in m; equalsl as it was input tacm_r andcm_r’, and thus tcth.
Furthermorecm_r’ makes no outpuuppress and thusth never changes to Statg

State received.

i. If a correctm, is shown, it contains a correset);, in particular a value, with owf(r,) =
pr. If cm_r andem_r' did not sendny, let rand be in the seOwfBreak; , ;. Note that the
original rg is internal tocm_r andcm_r" and only used in the assignment < owf (rg).

32

If cm_r’ sentmy, it must have received a correets, i.e., ((s,r,7), m,rg) with m € Msg
and com;(m,rg) = c for the fourth component;, of m;. Then it output(send,m) at
out_r'!, which causedh to change to State, and thus in Round-+ 6 to received, with this
parametem.

ii. If a correctmy, is shown, buttm_t andcm_t’ did not sendng, let rand be in Forge, and
sigr = mg. Note that no other submachine signs a message sté(ting), m6, . ..) with
sign;.

If cm_t and cm_t’ sentmg, they must have received a correct trighe/, m5, m5). |If

the content ofn} is unequal to that ofny sent bycm_r, we letrand be in Forge, with

sigr = m4y. Otherwise, we haven| = m; andmy = ((s,r,i),m,rs) with m € Msg

andcom;(m,rgs) = c for the fourth component;, of m;. Thencm_t’ output (send, m).

This causedh to change to State, and thus in Round + 6 to received, with this param-
eterm, except if it is already in Statgy with a parametern” # m. This would imply
that cm_r’ output (send, m”), which it does only after receiving a correet; containing
m/", ¢ with com(m”,rl) = ¢ = comy(m,rg). We then letrand be in BindBreak and
bindbreak = (m,rg,m",r%).

m' = m. Both mg andm! must also contain a correats, i.e., ((s,r,4),m',ry) wherem' € Msg
andcom;(m/,) = c for the fourth component;, of m;. Thism’ is indeed the one thaim_v
outputs.

If m’ # m, letrand be in the seBindBreak andbindbreak = (m,rs,m’,r) with m,rg from
mg or mj as derived under “Stateceived”.

Case SR: Correct Sender and Recipient. Finally, we comparetruc;,,; andstrucy ., for s € Hs

andr € Hpg. In this case, we have Figure 12 with all machines. As in the first case, inputs_to
cm_v andem_t/, cm_v' can only come fronem_s andcm_s’, respectively.

1. States reached without inps#ind: As in the first two casegm_s, cm_r andth can only obtain inputs
(send,r,l,m) and(receive, s,I") at portsin_s? andin_r? in Round;. If neither of these inputs occurs,
they remain in their starting state forever without making any outputs, and @ dbandcm_r'.

2a. Inputsend alone: If (send,r,l,m) is input, but(receive, s,!’) is not, thenth changes to State
sr; and outputs(busy, s,1), which dis dispatches as$send, r, [, my;,,) to cm_s’, while cm_r’ obtains

no input. cm_s andcm_s’ then sendn; andm sn,, respectively. Precisely as in Case S, we define
¢’ such thatm; = my ,. cm_r andcm_r’ never leave their starting state and send nothing. If the
adversary now inputs a correet, to cm_s andem_s’, let rand be in Forge, andsigr = mo. (As before,
note that no other submachine signs a mesgage, i), m2,...) with sign,..) Otherwisecm_s outputs
(failed, (s,7,4)) atout_s! in Roundi + 6, and so doegh, being in Stater;. No further outputs are made,
or inputs accepted, in this process, ands, cm_s’, andth are in Statdailed.

2b. Inputreceive alone: If (receive, s, 1) is input, but(send,...) is not, th changes to State, and
outputs(busy, , 1), which dis dispatches a&eceive, s,1) to cm_r'. Thencm_r andcm_r’ wait for m,

while cm_s andcm_s’ remain in their starting states without making any outputs. If the adversary inputs
a correctmn, to cm_r andem_r’, let rand be in Forge, andsigr = m,. Note that no other submachine
signs a messag@s,r,i), ml,...) with sign,. Otherwise,cm_r outputs(failed, (s,r,%)) at out_r! in
Round: + 6 and so doesh, being in Stater,. No further outputs are made, or inputs accepted, in this
process.

2c. Different labels:If inputs (send, r,1,m) and (receive, s,1") with [# [’ are madeth changes to
Statesr3 and makes outputusy, s,1) and(busy, r, 1), which are dispatched dsend, r, [, my;,,) and
(receive, s,1"). Hencecm_s andcm_s' sendm; andm, 4,,. Precisely as in Case S, we defiflesuch
thatmi = my s If the adversary now inputs an’ to cm_r andcm_r’ that passes their test with

33

(while m; containgl), let the run be inForge, andsig; = m’. Otherwisecm_r andcm_r’ do not send
any messages. If the adversary can then input a cofrgtd cm_s andcm_s', let rand be in Forge, and
sigr = mg. Otherwisecm_s andcm_s’ do not send further messages either, ands andcm_r output
(failed, (s,7,4)) in Roundi + 6. So doegh, being in Statars. cm_s, cm_s’, andth are in Statdailed.

2d. Two matching inputd=inally, let inputs(send, r, [, m) and(receive, s,[) be made. Thesh goes to
Statesr,4 and (after outputbusy and dispatchinglem_s andcm_s’ sendm; = m_sn,, respectively.

No correctm{. If the adversary does not forward a correet to cm_r andcm_r’, thencm_r outputs
(failed, (s, r,4)) in Round: + 6, while cm_r’ outputssuppress, which causesh to change to State
sr3 and thus to outpuffailed, (s,r,4)) at bothout_s! andout_r! in Roundi + 6. If the adversary
inputs a correciny to cm_s andcm_s’ in Roundi + 2, let rand be in Forge, and sigr = mo.
Otherwisecm_s also outputgfailed, (s, r,7)) in Round: + 6, and no machine makes any further
output or considers inputsm_s, cm_s’, andth are in Stateailed.

Correct m{, no correctm§. If the adversary forwards a correet{ to cm_r andem_r’, both sendn.
If the valuec® in m{ differs fromc in my, let rand be in Forge, andsig; = m$. Thus from now
on, we can assum¢ = c.

If no correctm$ is forwarded by the adversargm_s outputs(failed, (s, r,)) in Roundi + 6,
while cm_s’ inputssuppress to th, which changes to State; and thus tcfailed in Round: + 6,
outputting (failed, (s,r,7)) atout_s! andout_r!. They do not make further outputs or consider
inputs.

If the adversary nevertheless inputs a correet to cm_r and cm_r’, let rand be in
ComOwfBreaks , ;. Note thatm§ must contain value$m®,r¢) with ¢ = com;(m®,r%), and
that the valuery;,, from the assignmen(c, ry;,,) « comry(mg;y,) in cm_s’, and similarlyrg in
cm_s, has not yet been used anywhere else.

Otherwise,cm_r andcm_r" wait for mg, but this does not come: It could only come over an
authentic connection froram_t andcm_t’, and those only react on a message over an authentic
connection fromem_s andcm_s’, respectively. Hencem_r andcm_r’ also do not send further
messages, andn_r outputs(failed, (s, r,4)) atout_r! as well.

Correct m{ and m§. If the adversary forwards a correet, cm_s sendsms, while cm_s’ first only
outputsreceive at out_s’!, which is dispatched teh. Thusth changes from State, to srs and
outputs(msg, m), which is dispatched tom_s'. Thencm_s' sendsns = ((s,r,1),m,rg) as well
(still in the same round). Hng contains a valug$, # pr, let rand be in Forge, andsigr = mS$.
Otherwise, we can now speak of one fixgg

Now th will output (sent, (s,7,4)) at out_s! and (received, (s,,%), m) atout_r! in Roundi +

6 and from then on always be in Stateeived or showing. Furthermore, the behavior of all
corresponding machines with respect to the network is clearly identical from now ompand
andcm_s' enter the same final state. Hence only the final states and outpsfts.of , ; remain
to be derived.

i. Ifthe adversary does not forward a correct, thencm_r andcm_r’ do not sendn, and wait
for mg. If the adversary nevertheless inputs a corregtto cm_s andcm_s’, it must contain
anrf, with owf(r%) = p% = pr. Then letrand be in OwfBreak, . ; and note that the
originalrg is internal tocm_r andcm_r" and only used in the one assignmgpt+ owf (rg).
Otherwisecm_s sendsns. It arrives atcm_t because the connection is authentic and passes
the test by construction. Heneen_t sendsmg to cm_s and cm_r, again over authentic
connections. Hence they make outp(dsnt, (s, r,7)) atout_s! and(received, (s,7,1),m)
atout_r! in Roundi + 6 as desired, andm_s is in Statereceived’.

34

ii. Now let the adversary input a correct messagé = ((s,r,i),m® r¢) to cm_r. |If
m® # m, then comy(m®,rg) = comy(m,rg) = ¢* = c¢. Then letrand be in
BindBreak and bindbreak = (m,rg,m®,rg). Otherwise,cm_r now storesm and out-
puts (received, (s,7,7), m) in Roundi + 6. Thencm_s either obtains a correet§, or it
sendsn; and getsng as in Case i. In both cases, it outp#snt, (s,r,)) in Roundi + 6
and changes to Stateceived or received’.

3. Reactions on inputhow. The argument for an inpushow, (s,, 7)) is identical to Case S, except
that Statesrs plays the role of Stats.

G. Final Reductions. We have now carried out the program described in Part A, except that it remains
to be shown that the sequence of unions of the error sets (for which the mappings are not defined) has
negligible probability (ink). Written with the indexk, which was so far omitted for brevity, these
sets areforge,, ;, With u € H U {t}, OwfBreak;, = U(s,r,i)eSlotsimam(k) OuwfBreaks r i 1, BindBreaky,
and ComOuwfBreaky, = U, ,.;)e Slotss,. .. i) ComOuwfBreak, , ; ;. This is a constant number of sets
(independent of; this is why we took the two unions). Hence if each sequence has a negligible
probability, then so has the sequence of unions.

Hence we now assume for contradiction that one sequence has a larger probability.

1. (Forge,) ren for a certainu € H U {t}. We construct an adversafy; against the signer machine
Sig from Definition 6.1. It simulates the configuratiannf; using the public keyest obtained from
Sig astest,. l.e., it runs this configuration witk as the initial state of each machine and a random
value rand chosen during the run as usual, except that it sends every messagebe signed with
sign,, to Sig instead and uses the result as the signatute.addition, it keeps track of the conditions for
putting rand in Forge, ;. (By Properties e) and f) from Part A they can be verified efficiently@y 5
alone.) If one of them is fulfilledAs;; outputs the designated valsg, as its forged signature. In each
case, it was already shown in the walkthrough #igt is indeed a valid signature foest, and that the
contained message ; was not signed by the given submachine or any other simulated machine, i.e.,
As;g did not askSig to signm;.

Hence the success probability &f,; for eachk is at least the probability of the s€brge,, ,, which
is the desired contradiction.

2. (OwfBreak)ren. We construct an adversady,s as in Definition 6.2. On inputl®,p), it first
chooses a slds, 7, i) € Slots;, . (x) randomly. Then it simulatesonf; using the giverp aspr in the
submachinem.r{ . ;, instead of settingr = owf(rz) for randomr. It then checks if the condition
for putting rand into OwfBreak , ; 1, is fulfilled. (There is one such condition each in Itemi. of Case R
and Case SR, ar(d, r, ¢) fixes which of them applies, if any.) If yes, a valtfg (calledr¢, in the second
case) withowf(r};) = pr = p is obtained, and.s outputs it. It was already shown in the walkthroughs
that the (now unknown) valuer was not used outside the replaced assignmgnt owf(rz) up to
this point; hence the simulation is possible.

Hence for anyrand € OwfBreak ,. ;. for a slot(s',r',i") € Slots;, .), the probability that
Aowf is successful in the sense of Definition 6.2 for this valued is at least{Slots; . |~"'. (Because
A.ws is certainly successful {fs, r,i) = (s',7',4').) The overall success probability Af,.s is therefore
at least(nsn rimaq: (k)" times the probability of the s&bwfBreaky,. AS ipq. (k) is polynomial, this is
still not negligible.

3. (BindBreaky)ren. We construct an adversaBy,i g as in Definition 6.3a. It obtains a public com-
mitment keypk ,,, which it uses agkc , in a simulation. However, without the secret key, it cannot
executetrans;. Hence we lef;,q Simulate the real configuratiofonf; directly, choosing the random

*2There is no clocking problem although we defined Sigtsigns only one message per round beca\gecan clock its
submachines itself, i.e., the rounds of the signature attack and of the simulated certified mail system are different.

35

valuesrand’ when needed. By Property d) from Part A, this gives the same probability distribution as
simulatingp; 1 ¢'(rand) @s far as it is definedA,ing keeps track whether the conditions #®ind Break,
are fulfilled; this can be done efficiently on a run ¢ (ranq) Py Properties e) and f). Recall that there
were two conditions at the end of Case R and one at the end of Case SR. Eadh,timeutputs the
designated tupléindbreak, for which we have already shown that it fulfils the condition from Defini-
tion 6.3a.

Hence the success probability Af;.q for all k£ is at least the probability of the sé&indBreak,,
which is the desired contradiction.

4. (ComOuwfBreak,)ren. We construct adversary algorithms, A, as in Lemma 6.1b. On input

(lk,pkcyu), A first chooses a sldts, r,i) € Slots;,,,,) randomly. Then it starts simulatingnf ;,

using the given commitment keykc ,, as pkc,. If the (simulated)H inputs (send,r,1,m) atin,?

in Roundq, thenA; outputs thism as its ownm and its entire state asuz. ThusA, can continue

the simulation, using its additional inputas the commitment in m; for this slot (s, r,1), instead

of choosing it agc,rs) < comr;(m). If the condition for ComOwfBreaks , ; (in Case SR under

“Correctmf, no correctn$”) is fulfilled, A, outputs(m®,r¢). We have already shown that this fulfils

the condition from Lemma 6.1b and that (now unknown) is not used so that the simulation is possible.
Hence, similar to Case 2, the overall success probabiliy,aind A, is at least(ngn gimaz (k)) '

times the probability olC'om OwfBreak;, and thus still not negligible.

Hence we have shown that if any sequence of error sets had more than negligible probability, we could
break one of the underlying cryptographic primitives. This finishes the proof.]

8 Conclusion

We have proven the security of an efficient certified-mail system in the framework of a general simulata-
bility definition. Apart from the value for certified mail, we believe that this is convincing evidence that
general simulatability definitions, in particular that from [PSWO0O0b], are a useful basis for specifying
and proving the security of practical reactive systems.

We have also shown how further properties of the protocol can then be derived from the ideal system
used as a specification by applying a theorem on the preservation of integrity properties from [PWO0O].
This is one step in a program to link cryptographic systems and abstract models accessible to formal
methods. However, actual formal methods remain to be applied. The first step is to express the ideal
system in a standard specification language.

Orthogonally to the primary goals of the paper, we have tried to make the proofs really rigorous.
The typical cryptographic proof sketches are often not convincing to the formal-methods community
(and some not at all), so that one even sometimes meets the misconception that cryptography cannot
provide any strict protocol proofs. This rigorosity implies that large parts concern “boring” details
like dispatching and walkthroughs through many cases. The dispatching could easily be defined and
proven once for a large class of systethglowever, the walkthroughs are system-specific, and they are
typical proof parts that machines should do better than humans. Hence we hope that the abstraction (i.e.,
definition of corresponding ideal systems) can in the future already be applied at a lower level, so that
the walkthroughs can be made with the abstractiérifhe composition theorem from [PW00] would
then imply that the real protocol is secure whenever the version with the abstract primitives is secure.

%3These would be systems with subprotocols with a finite number of participants per subprotocol, subprotocol runs identified
by some transaction IDs (here the slot numbers), and transaction IDs in all network messages. The subprotocol runs are similar
to the “oracles” in [BR94].

34An approach of this type is [AR00], although not in the context of simulatability definitions.

36

Acknowledgments

We thankVictor ShoupandMichael Steineffor interesting discussions.

References

[AROO]

[ASW97]

[ASWO0]

[B83]

[B91]

[BBMOO]

[BCC88]

[BCP8S]

[BD84]

[BDMOS]

[BGMR90]

[BRY4]

[CO0]

[CHP92]

[D82]

Martin Abadi, Phillip Rogaway: Reconciling Two Views of Cryptography (The Compu-
tational Soundness of Formal Encryption); to appear at IFIP International Conferences on
Theoretical Computer Science (IFIP TCS2000), Sendai, Japan, August 2000.

N. Asokan, Matthias Schunter, Michael Waidner: Optimistic Protocols for Fair Exchange;
4th Conference on Computer and Communications Security, ACM, New York 1997, 6—
17.

N. Asokan, Victor Shoup, Michael Waidner: Optimistic Fair Exchange of Digital Signa-
tures; IEEE Journal on Selected Areas in Communications 18/4 (2000) 593-610.

Manuel Blum: How to Exchange (Secret) Keys; ACM Transactions on Computer Systems
1/2 (1983) 175-193.

Donald Beaver: Secure Multiparty Protocols and Zero Knowledge Proof Systems Toler-
ating a Faulty Minority; Journal of Cryptology 4/2 (1991) 75-122.

Mihir Bellare, Alexandra Boldyreva, Silvio Micali: Public-Key Encryption in a Multi-
user Setting: Security Proofs and Improvements; Eurocrypt 2000, LNCS 1807, Springer-
Verlag, Berlin 2000, 259-274.

Gilles Brassard, David Chaum, Claudee@gau: Minimum Disclosure Proofs of Knowl-
edge; Journal of Computer and System Sciences 37 (1988) 156-189.

Jurjen Bos, David Chaum, George Purdy: A Voting Scheme; unpublished manuscript,
presented at the rump session of Crypto '88.

Andrei Z. Broder, Danny Dolev: Flipping coins in many pockets (Byzantine agreement
on uniformly random values); 25th Symposium on Foundations of Computer Science
(FOCS), IEEE, 1984, 157-170.

Feng Bao, Robert Deng, Wenbo Mao: Efficient and Practical Fair Exchange Protocols
with Off-Line TTP; Symposium on Research in Security and Privacy, IEEE, 1998, 77—
85.

Michael Ben-Or, Oded Goldreich, Silvio Micali, Ronald L. Rivest: A Fair Protocol for
Signing Contracts; IEEE Transactions on Information Theory 36/1 (1990) 40—46.

Mihir Bellare, Phillip Rogaway: Entity Authentication and Key Distribution; Crypto '93,
LNCS 773, Springer-Verlag, Berlin 1994, 232-249.

Ran Canetti: Security and Composition of Multiparty Cryptographic Protocols; Journal
of Cryptology 13/1 (2000) 143-202.

David Chaum, Euwie van Heijst, Birgit Pfitzmann: Cryptographically Strong Undeni-
able Signatures, Unconditionally Secure for the Signer; Crypto '91, LNCS 576, Springer-
Verlag, Berlin 1992, 470-484.

Dorothy Denning: Cryptography and Data Security; Addison-Wesley, Reading 1982;
reprinted with corrections, January 1983.

37

[D88]

[G84]

[GIM99]

[GL91]

[GM84]

[GMR 88]

[GMR89]

[HMOO]

[L96]

[LMMS98]

[M97]

[MR92]

[P92]

[P93]

[PSWO00a]

[PSWOO0b]

[PWOO]

Ivan Bjerre Damgfd: Collision free hash functions and public key signature schemes;
Eurocrypt '87, LNCS 304, Springer-Verlag, Berlin 1988, 203-216.

Oded Goldreich: Sending Certified Mail using Oblivious Transfer and a Threshold
Scheme; Technion - Israel Institute of Technology, Computer Science Department, Tech-
nical Report, 1984.

Juan A. Garay, Markus Jakobsson, Philip MacKenzie: Abuse-Free Optimistic Contract
Signing; Crypto '99, LNCS 1666, Springer-Verlag, Berlin 1999, 449-466.

Shafi Goldwasser, Leonid Levin: Fair Computation of General Functions in Presence of
Immoral Majority; Crypto '90, LNCS 537, Springer-Verlag, Berlin 1991, 77-93.

Shafi Goldwasser, Silvio Micali: Probabilistic Encryption; Journal of Computer and Sys-
tem Sciences 28 (1984) 270-299.

Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks; SIAM Journal on Computing 17/2 (1988)
281-308.

Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of Inter-
active Proof Systems; SIAM Journal on Computing 18/1 (1989) 186—-207.

Martin Hirt, Ueli Maurer: Player Simulation and General Adversary Structures in Perfect
Multiparty Computation; Journal of Cryptology 13/1 (2000) 31-60.

Nancy Lynch: Distributed Algorithms, Morgan Kaufmann, San Francisco 1996.

P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov: A Probabilistic Poly-Time Framework
for Protocol Analysis; 5th Conference on Computer and Communications Security, ACM,
New York 1998, 112-121.

Silvio Micali: Certified E-Mail with Invisible Post Offices—or—A Low-Cost, Low-
Congestion, and Low-Liability Certified E-Mail System; presented at RSA 97.

Silvio Micali, Phillip Rogaway: Secure Computation; Crypto '91, LNCS 576, Springer-
Verlag, Berlin 1992, 392—-404.

Torben Pryds Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing; Crypto '91, LNCS 576, Springer-Verlag, Berlin 1992, 129-140.

Birgit Pfitzmann: Sorting Out Signature Schemes; 1st Conference on Computer and Com-
munications Security, ACM, New York 1993, 74-85.

Birgit Pfitzmann, Matthias Schunter, Michael Waidner: Cryptographic Security of Reac-
tive Systems; Workshop on Secure Architectures and Information Flow, Electronic Notes
in Theoretical Computer Science (ENTCS), March 2000)p://www.elsevier.
nl/locate/entcs/volume32.html

Birgit Pfitzmann, Matthias Schunter, Michael Waidner: Secure Reactive Systems; IBM
Research Report RZ 3206 (#93252) 02/14/2000, IBM Research Division, Zurich, May
2000.

Birgit Pfitzmann, Michael Waidner. Composition and Integrity Preservation of Secure
Reactive Systems; accepted for 7th ACM Conference on Computer and Communication
Security, Athens, November 2000. Preliminary version as IBM Research Report RZ 3234
(#93280) 06/12/00, IBM Research Division, Zurich, June 2000.

38

[R83]

[RS92]

[S00]

[VV83]

[Y82]

[Y82a]

[2G97]

Michael O. Rabin: Transaction Protection by Beacons; Journal of Computer and System
Sciences 27/ (1983) 256-267.

Charles Rackoff, Daniel R. Simon: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack; Crypto '91, LNCS 576, Springer-Verlag, Berlin 1992,
433-444.

Matthias Schunter: Optimistic Fair Exchange; PhD thesis (submitted); Unatedsis’
Saarlandes, SaatmKen, February 2000.

Umesh V. Vazirani, Vijay V. Vazirani: Trapdoor Pseudo-random Number Generators, with
Applications to Protocol Design; 24th Symposium on Foundations of Computer Science
(FOCS), IEEE, 1983, 23-30.

Andrew C. Yao: Protocols for Secure Computations; 23rd Symposium on Foundations of
Computer Science (FOCS), IEEE, 1982, 160-164.

Andrew C. Yao: Theory and Applications of Trapdoor Functions; 23rd Symposium on
Foundations of Computer Science (FOCS), IEEE, 1982, 80-91.

JianYing Zhou, Dieter Gollmann: An Efficient Non-repudiation Protocol; 10th Computer
Security Foundations Workshop, IEEE, Los Alamitos 1997, 126—-132.

39

