
RZ 3207 (#93253) 02/14/00
Computer Science/Mathematics 39 pages

Research Report

Provably Secure Certified Mail

Birgit Pfitzmann1, Matthias Schunter1, Michael Waidner2

1 Universität des Saarlandes
Im Stadtwald 45
D-66123 Saarbr¨ucken
Germany
fpfitzmann,schunter g@cs.uni-sb.de

2 IBM Zurich Research Laboratory
Säumerstrasse 4
CH-8803 Rüschlikon
Switzerland
wmi@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM
Research Division
Almaden � Austin � Beijing � Delhi � Haifa � T.J. Watson � Tokyo � Zurich

Provably Secure Certified Mail

Birgit Pfitzmann, Matthias Schunter, Michael Waidner�

August 2000

Abstract

With a certified-mail protocol, one fairly exchanges a message for a receipt. No satisfactory
protocols without any third party are possible, hence optimistic protocols are the best one can hope
for. Here a third party is only involved if one party tries to cheat.

Certified-mail protocols are known in the literature, but there was no rigorous definition yet,
in particular for the optimistic case and for many interleaved executions. We provide two such
definitions. One defines individual integrity and secrecy requirements. The other defines an ideal
system and uses a general simulatability definition. We show the relation between the definitions,
present an efficient protocol, and prove its security in detail.

Apart from the intrinsic benefits of provably secure certified mail, this paper serves as an ex-
ample that a serious-sized practical protocol can be rigorously proven with respect to a general
simulatability definition and an abstract specification accessible to formal methods.

1 Introduction

A certified-mail protocol enables the fair exchange of a message for a receipt [B83, R83]. This means
that either the recipient gets the message and the sender gets a receipt, i.e., the ability to convince any
verifier that the recipient obtained the message, or neither gets anything; in particular the message should
then remain entirely secret.

There are three classes of certified-mail protocols. Protocols with anin-line third party are quite
straightforward [R83]. The older cryptographic literature treatstwo-partyprotocols, e.g., [B83, R83,
VV83, G84], i.e., only the sender and the recipient are involved. These protocols are based on gradual
exchange of secrets. However, their error probabilities only decrease linearly in the number of rounds,
and one can show that this is unavoidable.1 Hence they are not used in practice.Optimisticprotocols
use a trusted third party to ensure fairness, but it is not actively involved if both sender and recipient
follow the protocol [ASW97, ASW00, M97, BDM98, ZG97].

In this paper, we provide precise definitions of certified mail in two different methodologies. We
first define individual properties of the protocols, e.g., the correctness of receipts (an integrity property)
and secrecy of the message if no receipt is obtained (a secrecy property). Most cryptographic definitions
of individual system classes are of this type. A specific aspect of ours is that to a large extent we
use a general system model, and that we formulate at least the integrity properties abstractly using
general translations to concrete versions from [PW00]. (Somewhat general reactive system models
with interleaved executions were first introduced in [BR94], and [P93] first sketched the use of abstract
integrity definitions.) The secrecy definitions follow semantic security (see [Y82a, GM84]) and security
against adaptive chosen-message attacks [RS92]. Semantic security is slightly modified because we

�This work was partially supported by the MAFTIA project. A preliminary version is contained in [S00].
1In [BGMR90] such a lower bound was proven for two-party contract signing. Contract signing can be reduced to the

variant of certified mail defined here; the reduction needs only one additional round of communication and does not increase
the error probability significantly [S00]. (The reduction is given for optimistic protocols only, but one can easily see that it
also works for 2-party protocols.)

1

only want it if no receipt is obtained. The most general adaptive attacks for general secrecy properties
are not perfectly clear; even for simple encryption systems they are still being extended [BBM00]. This
was one reason why we also provide the second definition which, if anything, is too strict, while the first
might rather be too lax.

As the second definition, we define an ideal system for certified mail and use a general simulatability
definition. Thus the actual definition of the real systems is that they must be at least as secure as the
ideal system in a certain sense; essentially, everything an adversary can achieve in the real system
must also be achievable in the ideal system. The ideal system is specific to certified mail. We first
present a naive version and then show why the actual definition must be more complicated if practical
protocols are to fulfil it. The modifications needed can serve as a methodology to define ideal systems for
various other protocol classes. General simulatability definitions are based on work for secure function
evaluation [Y82, GL91, B91, MR92, C00]. Extensions to reactive systems have, after several sketches,
been defined in detail in [HM00, LMMS98, PSW00b]. (Here we only mentioned definitions where only
the input-output behavior of the ideal system is to be simulated, as we need it here. A shorter published
version of [PSW00b] is [PSW00a].) We use the latter because it is more general than the first and allows
more abstraction than the second one (for details see [PSW00b]) and it has the only reactive composition
theorem [PW00].

We show that the ideal-system definition is a refinement of the property-based definition, i.e., it has
the required properties, while the properties leave some room for different ideal systems. A general
theorem from [PW00] then implies that any real system as secure as the ideal system also has the
integrity properties. (The same should hold for the secrecy property, but we do not show this here.)

We then present a protocol for certified mail and prove its security. The protocol is based on that
in [ASW97], but it needed modifications to enable simulatability. To the best of our knowledge, this is
the first rigorous proof of a certified-mail protocol; certainly the first for an optimistic protocol, and the
first in a setting with many interleaved runs of the protocol. As we aim at proofs of real-life protocols,
we have taken care to rigorously prove also the non-cryptographic aspects, e.g., realistic local message
dispatching to different subprotocols.

2 Overview of a Concrete Protocol

Rigorous definitions are long. In this section, we will therefore anticipate the actual protocol that we
will prove in an informal description so that it is clear what kind of protocols we are talking about.

The protocol is sketched in Figure 1. More precisely, one run of the main subprotocol “send” of
the system is shown. (There is another, simpler subprotocol “show” for showing receipts.) It is a
synchronous protocol involving three machines,Ms, Mr, andMt for a sender, a recipient, and a third
party. It is started by inputs(send; r; l;m) to Ms and(receive; s; l) to Mr. In real life, the inputs are
made by two different users (or application programs running on their behalf) and the “machines” are
software on each user’s device. In the inputs,send andreceive are constants serving as command names,
r ands are the indices of recipient and sender serving as addresses,m is the message the sender wants
to send, andl (“label”) is a subject for the mail.

The use of subjects is a design choice (alternatives are shown in [S00]). The idea in this version,
called “labeled certified mail” is that the recipient has the choice whether he wants to receive a message
with a particular label. The receipt will unambiguously contain both the label, which the recipient agreed
upon, and the message that was then sent under this label.

We use three cryptographic primitives (more formal definitions are given in Section 6.1):

� A signature scheme [GMR 88]. We writesignu(m) for the pair of a messagem and its signature
with the secret key of a participantu.

� A one-way functionowf. We use it for one-time signatures, i.e.,owf(r) for a randomr is a one-
time public key, and laterr is revealed as the signature. (This is only an efficiency improvement

2

over using normal signatures.)

� A non-interactive chameleon commitment scheme [BCC88]. A commitment is denoted by
c = comt(m; r), wherem is the message,r a suitable random value (chosen with an algorithm
genCR;t) andt the party whose public commitment key is used. A commitment keepsm secret,
but the committer must be unable to open it in two ways, i.e., to show two pairs(m; r) and(m0; r0)
with m 6= m0 andc = comt(m; r) = comt(m

0; r0). Chameleon means that the partyt generating
the public key of the scheme can take an opened commitment on a messagem and open it to any
otherm0.

The main ideas underlying the protocol are the following: Messagesm1 andm2 are promises to
send a message under labell and to produce a receipt for it, respectively. The valuei is the number
of the starting round andk a security parameter. If both parties are honest,Ms reveals the message
m in m3, andMr sends the one-time signaturerR as a receipt inm4. The entire receipt ism7 =
(m1;m2;m3;m4); it can easily be verified by a verifierMv. If a dishonest recipient doesnot sendm4,
the sender uses the recipient’s promisem2 in m5 to convince the third party that the recipient wanted
to receive a message under this label. Thus the third party can safely issue an affidavit,m6. ThenMs

usesm6 as a receipt, which can again be easily verified byMv. If a dishonest sender does not send the
message inm3, the recipient waits until Roundi+6. If m6 arrives, the recipient extractsm3 and thusm
from it. Otherwise it knows that the message will never arrive and can safely decide that the transaction
failed. For the latter, the third party must honorm5 only if it arrives in Roundi+ 5.

Ms Mt Mr

(send; r; l;m) (receive; s; l)

rS genCR;t

���������
m1 signs((s; r; i); l; comt(m; rS))
������������������������������������!

rR
R f0; 1gk

 �������������
m2 signr(m1; owf(rR))
��������������������������������

������������������
m3 = (m; rS)
����������������������������!

 �������������������
m4 = (rR)
���������������������������

�
m5 = (m1;m2;m3)
�����������!

m6
signt(m5)

 ���
m6

�������� �
m6

���������!
If m2:
(sent; (s; r; i))

else:
(failed; (s; r; i))

If m3 or m6:
(rec:; (s; r; i);m)

else:
(failed; (s; r; i))

Figure 1: Subprotocol run of labeled certified mail. Dashed flows are only needed ifm4 is missing, i.e.,
the protocol is optimistic. Some message-type identifiers are omitted.

The construction is based on [ASW97]. Therem1 contained a committing encryption ofm, which
would not be simulatable. Therefore we used a chameleon commitment instead. Unlike [ASW97], we
did not use separate transaction identifierstid because the triple(s; r; i) already plays this role if we
allow each sender to start one protocol run with each recipient in each round. Everything immediately
generalizes to any other constant number per round. (Omitting the round numberi instead is not possible

3

in this protocol becauseMt usesi as included inm1 to decide whether a complaintm5 does not come
too late.) A translation into more application-orientedtid ’s can easily be built on top.

In Section 6 we will rigorously define the machinesMs,Mr,Mt, andMv, including how they handle
the simultaneous runs of many subprotocols.

3 Summary of the System Model

In this section, we repeat the basic definitions from [PSW00b] in slightly abbreviated form. They
are for a synchronous network model, and the simulatability also includes the timing. Hence security
vulnerabilities via timing channels are exposed. To avoid that timing differences within a round leak,
implementations of synchronous machines have to ensure that input reading and outputting are both
clocked.2

The machine model is probabilistic state-transition machines, similar to probabilistic I/O automata
as sketched in [L96]. For clarity, one particular notation and semantics is fixed.

Definition 3.1 (Machines and Ports) A nameis a string over a fixed alphabet�.
A port p is a pair(namep; dir p) of a name and a Boolean value called direction; we writenamep?

andnamep! for in- and output ports, respectively. We writepc for the complementof a portp, i.e.,
namep!

c = namep? and vice versa. For a setP of ports, letIn(P) = fp 2 P jdir p = ?g denote the
input ports and similarlyOut(P) the output ports.

A machineM for a synchronous system is a tuple

M = (PortsM; ÆM; IniM;FM)

of a finite set of ports, a probabilistic state-transition function, and sets of initial and final states. The
states are stringss from ��. The inputs are tuplesI = (Ip)p2In(PortsM) of one inputIp 2 �� per input
port, and the outputs analogous tuplesO. ÆM maps each such pair(s; I) to a finite distribution over pairs
(s0; O). For a setM of machines, letports(M) =

S
M2M PortsM.3

“MachineM1 has machineM2 as a (blackbox)submachine” means that it has the state-transition
function as a blackbox. HenceM1 can “clock”M2, i.e., decide when to cause state transitions. 3

For computational aspects, each machine is regarded as implemented by a probabilistic interactive
Turing machine [GMR89], and each port by a communication tape. The complexity of a machine is
measured in terms of the length of the initial state, represented as initial worktape content (often a
security parameter).

Below, we distinguish correct machines, adversaries and users in particular in how they are clocked,
because one cannot assume adversaries to adhere to synchronization rules. As some proofs need dif-
ferent clocking schemes, general collections of machines and their runs with a clocking scheme are
defined.

Definition 3.2 (Machine Collections, Runs and Views)A collectionC is a finite set of machines with
pairwise disjoint sets of ports. Each set of complementary portsc = fp; pcg � ports(C) is called a
connectionand the set of these connections theconnection graphG(C). By free(C) we denote thefree
ports, i.e.,p 2 ports(C) butpc 62 ports(C). A collection isclosedif free(C) = ;.

A clocking schemeis a mapping� (also written as a tuple) from a setf1; : : : ; ng to the pow-
erset ofC , i.e., it assigns each number a subset of the machines. GivenC and � and a tuple
ini 2 Ini = �

M2C
IniM of initial states,runs (or “executions” or “traces”) are defined: Each global

round i hasn subrounds. In Subround[i:j], all machinesM 2 �(j) switch simultaneously, i.e., each
2Of course we do not suggest that one should not consider asynchronous systems, only that one needs a simulatability

definition for each model.
3We mostly use a straight font for machines, functions and constants, and italics for sets and other variables.

4

state-transition functionÆM is applied toM’s current inputs and state and yields a new state and output
(probabilistically). The output at a portp! is available as input atp? until the machine with portp?
is clocked next. If several inputs arrive until that time, they are concatenated. This gives a family of
random variables

runC = (runC ;ini)ini2Ini :

More precisely, each run is a function mapping each triple(M; i; j) 2C�N�f1; : : : ; ng to a quadruple
(s; I; s0; O) of the old state, inputs, new state, and outputs of machineM in subround[i:j], or instead
to � if M not clocked in this subround. For a numberl 2 N of rounds,l-round prefixesrunC ;ini;l

of runs are defined in the obvious way. For a functionl : Ini ! N, this gives a familyrunC ;l =
(runC ;ini;l(ini))ini2Ini .

The view of a subsetM of a closed collectionC in a run r is the restriction ofr to M � N �
f1; : : : ; ng.4 This gives a family of random variables

viewC (M) = (viewC ;ini(M))ini2Ini ;

and similarly forl-round prefixes.
For a runr and a setP of ports, letrdP denote its restriction to these ports. This notation is carried

over to the random variables. 3

Now we define specific machine collections as we need them in the security definitions, first the
system part and then the environment, i.e., users and adversaries. Typically, a cryptographic system
is described by anintended structure, and the actual structures are derived using atrust model: the
adversary replaces some machines and taps or completely controls some channels. A concrete derivation
is defined in [PSW00b]. However, as a wide range of trust models is possible, it is useful to keep the
remaining definitions independent of them by a general system definition.

Definition 3.3 (Structures and Systems)A structureis a pairstruc = (M ;S) whereM is a collection
of machines calledcorrect machines, andS � free(M) is calledspecified ports. Let �S = free(M) n S
andforb(M ;S) = ports(M) [�S c.

A systemSys is a set of structures. 3

The separation of the free ports into specified ports and others is an important feature of this particu-
lar reactive simulatability definition. The specified ports are those where a certain service is guaranteed.
Typical examples of inputs at specified ports are “send messagem to r” for a message transmission
system or “pay amountx to id ” for a payment system. The ports in�S are additionally available for the
adversary. The ports inforb(M ;S) will therefore be forbidden or at least unusual for an honest user
to have. In the simulatability definition below, only the events at specified ports have to be simulated
one by one. This allowsabstractspecification of systems withtolerable imperfections. For instance,
if the traffic pattern is not hidden (as in almost all cryptographic protocols for efficiency reasons), one
can abstractly specify this by giving the adversary one busy-bit per message in transit in the ideal sys-
tem. Even better, he should only get one busy-bit per subprotocol run (e.g., a payment) and the internal
message pattern of the subprotocol should not tell him more. More motivation and an example with
just this busy-bit (secure channels) is given in [PSW00b]; we use a similar abstraction in this paper, see
Section 5.2.

The following definition contains another important aspect: Both honest users and an adversary are
modeled as stateful machinesH andA apart from the system. First, honest users should not be modeled
as part of the machines inM because they are arbitrary, while the machines have prescribed programs.
Secondly, they should not be replaced by a quantifier over input sequences, because they may have
arbitrary strategies which message to input next to the system after obtaining certain outputs. They may

4For the view of a polynomial-time Turing machine in interaction with unrestricted machines, inputs are only considered
as far as the machine read them.

5

even be influenced in these choices by the adversary, e.g., in chosen-message attacks on a signature
scheme; thusH andA may communicate. At least in the computational case, arbitrary strategies (i.e.,
adaptive attacks) are not known to be replaceable by arbitrary input sequences. Thirdly, honest users
are not a natural part of the adversary because they are supposed to be protected from the adversary. In
particular, they may have secrets and we want to define that the adversary learns nothing about those
except what he learns “legitimately” from the system (this depends on the specification) or what the user
tells him directly.

Definition 3.4 (Configuration) A configurationconf of a systemSys is a tuple(M ;S ;H;A) where
(M ;S) 2 Sys is a structure andH andA are machines such thatC = M [fH;Ag a closed collection.

The set of configurations is writtenConf(Sys), and those with polynomial-time user and adversary
Confpoly(Sys). “poly” is omitted if it is clear from the context. The set of guessing-output configurations
Confg(Sys) is defined likeConf(Sys) except that all adversaries have a free output portguess!.

Runs and views of a configuration are given by Definition 3.2 with the clocking scheme(M [
fHg; fAg; fHg; fAg), except that we end a run ifH andA have reached finite states. Typically, the
initial states of all machines are only a security parameterk (in unary representation). Then we consider
the families of runs and views restricted to the subsetIni 0 = f(1k)M2C jk 2 Ng of Ini , and write
runconf andview conf (M) for runC andviewC (M) restricted toIni 0, and similar forl-round prefixes.
Furthermore,Ini 0 is identified withN; hence we can writerunconf ;k etc. 3

Clocking the adversary between the correct machines is the well-known model of rushing adver-
saries [BD84]. The given clocking of users is as powerful as clocking them in an arbitrary unsynchro-
nized way [PSW00b].

4 Requirements-Based Definition of Labeled Certified Mail

In this section, we give a definition of labeled certified mail by individual integrity and secrecy require-
ments. As there are several integrity requirements, it is worthwhile repeating a general definition from
[PW00] that translates abstract (perfect) requirements into different types of cryptographic definitions.

4.1 Integrity Requirements in General

Integrity requirements on reactive systems outside cryptography are typically written in a temporal logic
or a predicate logic including round numbers. We generalize this by giving a cryptographic semantics
to all requirements that can be expressed as sets of allowed traces (sequences of events) at the specified
ports of the system. We first need general notation about small functions.

Definition 4.1 (Small Functions) By “a classSMALL of small functions” we mean thatSMALL is a
set of functions fromN to R�0 which is closed under addition and, with a functiong, also contain any
functiong0 � g.

One typical class isEXPSMALL of all functionsg for which a polynomialQ exists with8k :
g(k) � Q(k) � 2�k.

Another is the (larger) classNEGL of all functionsg where for all positive polynomialsQ, 9k08k �
k0 : g(k) � 1=Q(k). Equivalently, one writesg(k) � 1=poly(k). 3

Definition 4.2 (Integrity Requirements) An integrity requirementReq for a systemSys is a function
that maps each setS with (M ;S) 2 Sys to a set of traces at the ports inS . More precisely, such a trace
contains one valuevp 2 �� for each portp 2 S and Roundi, corresponding to the in- or output of a
correct machine in Subround[i:1]. For the computational and statistical case, the traces must be finite.
We say thatSys fulfills Req

6

a) perfectly (writtenSys j=perf Req) if for any configurationconf = (M ;S ;H;A) 2 Conf(Sys), the
restrictionsrdS of all runs of this configuration to the specified ports lie inReq(S). In formulas,
[(runconf ;kdS)] � Req(S) for all k, where[�] denotes the carrier set of a probability distribution.

b) statistically for a classSMALL of small functions (Sys j=SMALL Req) if for any configuration
conf = (M ;S ;H;A) 2 Conf(Sys), the probability thatReq(S) is not fulfilled is small, i.e., for
all polynomialsl (and as a function ofk),

P (runconf ;k ;l(k)dS 62 Req(S)) 2 SMALL:

c) computationally (Sys j=poly Req) if for any configurationconf = (M ;S ;H;A) 2 Confpoly(Sys),
the probability thatReq(S) is not fulfilled is negligible, i.e.,

P (runconf ;kdS 62 Req(S)) 2 NEGL:

Note that a) is normal fulfillment. We write “j=” if we want to treat all three cases together. 3

4.2 System Class of Certified Mail

In order to express integrity requirements according to Definition 4.2, we need to define the possible
setsS with (M ;S) 2 Sys for any certified-mail system.

Definition 4.3 (Parameters and Notation for Labeled Certified Mail) The parameters of a labeled
certified-mail scheme are a message spaceMsg � ��, a label spaceL � ��, numbersnS; nR 2 N

of intended senders and recipients, and an intended number� 2 N of rounds of thesend protocol. Let
ParCM be the set of possible tuples of these parameters.

If a tuplepar 2 ParCM is clear from the context, we simply address its components by the names
introduced above. We then also use the notationn = nS + nR + 1 for the number of parties,v = n for
the index of the verifier, andM = f1; : : : ; ng,MS = f1; : : : ; nSg andMR = fnS +1; : : : ; nS +nRg
for the sets of (indices of) all parties, senders and recipients.

We writeSlots =MS �MR � N. As explained in Section 2, this set is used as the opportunities
for protocol runs and thus as transaction identifiers. Let alsoSlotsi =MS �MR � f1; : : : ; ig for all
i 2 N. 3

Definition 4.4 (Access Structure and Specified Ports for Labeled Certified Mail)The access struc-
ture for certified mail with parameterspar 2 ParCM is the set

ACCCMpar = fH �Mjv 2 Hg;

i.e., the verifier is always honest, while all other parties may be dishonest. For eachH 2 ACCCMpar , we
define a set of specified ports as

SH = finu?; outu!ju 2 Hg n finv?g;

i.e., one port pair for each user except that the verifier does not need an input port.
If a setH is clear from the context, we abbreviate the (indices of) corrupted parties byA =MnH,

and correct and corrupted senders and recipients, respectively, byHS = MS \ H, AS = MS \ A,
HR =MR \H, andAR =MR \A. 3

We also define the desired input format so that we can use it in both definitions. According to
Definition 3.1, the machines must be defined for all inputs in��, but incorrect inputs will be ignored.

Definition 4.5 (Input Domains for Labeled Certified Mail) Let parameterspar 2 ParCM be given.
The desired input setInS for a sender consists of the vectors(inr)r2MR[fvg where each entryinr

for r 2 MR is � or (send; r; l;m) with l 2 L andm 2 Msg , and inv is � or (show; (s; r; j)) with
(s; r; j) 2 Slots .5

5The representation as vectors is for our convenience; in reality, any deterministic shorter encoding can be used.

7

The desired input setInR for recipients consists of the vectors(ins)s2MS
where each entryins

must be� or (receive; s; l) with l 2 L. 3

4.3 Requirements on Labeled Certified Mail

We now present actual requirements on certified mail. Readers unused to formulations in terms of
interfaces may already imagine that each port pair(inu?; outu!) are the in- and outputs of a machine
Mu. Requirement a) is not always considered below because, in contrast to the other requirements, it
presupposes authentic connections between sender and recipient in real systems.

For finite sequences, “after at most� rounds” is defined to be automatically fulfilled if less than�
further rounds exist.

Definition 4.6 (Integrity Requirements on Labeled Certified Mail) Let parameterspar 2 ParCM
be given. Then the integrity requirements on certified mail are the following functionsReqx with.
x = a; : : : ; h (corresponding to the item labels below) mapping each setSH with H 2 ACCCMpar to a
predicateReqx (SH).

We make the general precondition that only correct inputs are made at the specified ports (intuitively,
by honest users), i.e., all predicatesReqx (SH) are fulfilled in all runs where an inputI 62 InS is made
at a portins? with s 2 HS in any round, orI 62 InR at a portinr? with r 2 HR.6 By “an input occurs”
we mean that it is an entry of an input vector; similarly, the outputs will actually be members of sets.

For all s 2 HS ; r 2 HR (i.e., if sender and recipient are correct):

a) Correct Execution.If (send; r; l;m) is input atins? and(receive; s; l0) at inr? in Roundi, then
after at most� rounds: Ifl = l0, outputs(sent; (s; r; i)) and(received; (s; r; i);m) occur atouts!
andoutr!, respectively, otherwise(failed; (s; r; i)) at both these ports.

b) Unforgeable Messages.If an output(received; (s; r; i);m) occurs atoutr! in a roundj after an
input (receive; s; l) at inr? in a roundi � j, then an input(send; r; l; m) occurred atins? in a
roundi0 � j.

For all r 2 HR; s 2MS (i.e., for every correct recipient):

c) Termination for Recipient. An input (receive; s; l) at inr? in Round i leads to an output
(received; (s; r; i);m) with m 2 Msg or (failed; (s; r; i)) at outr! after at most� rounds, and
no second output of these types with this(s; r; i) occurs atoutr!.

d) Unforgeable Receipts.If an output(received; (s; r; i); l;m) occurs atoutv! in a roundj, then
m 2 Msg andi � j, and an input(receive; s; l) occurred atinr? in Roundi.

e) No Surprises for the Recipient.If an output (failed; (s; r; i)) occurs atoutr! after an input
(receive; s; l) at inr? in Roundi, then no output(received; (s; r; i); l;m) with anym 2 �� oc-
curs atoutv! in any round.

f) Fixed Receipts.If an output(received; (s; r; i);m) occurs atoutr! after an input(receive; s; l) at
inr? in Roundi, then no output(received; (s; r; i); l;m0) for any differentm0 occurs atoutv! in
any round.

For all s 2 HS , r 2MR (i.e., for all correct senders):

g) Termination for Sender. An input (send; r; l; m) at ins? in Round i leads to an output
(sent; (s; r; i)) or (failed; (s; r; i)) at outs! after at most� rounds, and no second such output
occurs atouts!.

6More specific preconditions would strengthen the requirements. As we will have a strict definition via an ideal system
later, we use a weak (and thus very general) variant here.

8

h) Verifiability of Valid Receipts.If an output(sent; (s; r; i)) occurs atouts! after an input(send;
r; l; m) at ins? in Round i, then a later input(show; (s; r; i)) at ins? leads to the output
(received; (s; r; i); l;m) atoutv! within at most� rounds.

3

By [PW00] (Theorem 3.2), any logical derivations from these requirements are valid also for sta-
tistical and computational fulfillment. Hence one can draw conclusions on this abstract level, or join
requirements d) to f) into one, etc.

For a relation to formal methods, where avoiding arithmetic is helpful, note that although the cur-
rent formulation is standard predicate logic using round numbers, most of the requirements could be
expressed in temporal logic. Only requirements that mention “after at most� rounds” (availability) in-
trinsically need the round numbers, and this could be extracted into the termination requirements alone.

Finally, we define the secrecy requirement. Here there is no general framework like Definition 4.2,
hence we write in a standard cryptographic style.

Definition 4.7 (Secrecy Requirement on Labeled Certified Mail)Let parameterspar 2 ParCM and
a systemSysCMpar with the correct user interfaces be given, i.e., for all(M ;S) 2 SysCMpar there exists
H 2 ACCCMpar with S = SH.

Roughly, we say thatSysCMpar offersmessage secrecyif the messagem is kept entirely secret when-
ever the output(failed; (s; r; i)) occurs atouts! on input(send; r; l;m) at ins? in Roundi.

More precisely, consider the following user machineHs for anys 2 MS : It only has portsins! and
a in? for making inputs toMs and for being influenced by the adversary. Its transition function is as
follows:7

1. Initially, in each roundi� 1, Hs forwards an input vector(a inr)r2MR[fvg made ata in? to ins!
if it lies in Ins.

2. If in one round, an elementa inr with r 2 MR is (choice; r; l; m0;m1) with m0;m1 2 Msg

andl 2 L, thenHs chooses a random bitb 2 f0; 1g and uses(send; r; l;mb) instead of this entry
when outputting the vector atins!.

3. From then on,Hs acts as before except for not considering achoice input again.

We consider all configurationsconf = (M ;S ;Hs;A) 2 Confg(Sys) with s 2 HS. Recall that the index
g means thatA has a free output portguess!; in our case we call the output thereb�; it should be a bit
meant as a guess atb.

Let no receipt denote the event that the output(failed; (s; r; i)) occurs atouts! wherer is the index
of the choice input andi � 1 the round whereHs handled it, andadv win the event thatno receipt is
true but the guess is correct, i.e.,b� = b. (Both are well-defined in the probability space of the runs of
conf for any initial inputk.) The requirement is that8

P (adv win(runconf ;k)) �
1

2
P (no receipt(runconf ;k)) +

1

poly(k)
:

3

We have not added an analog of abuse-freeness to the requirements, as sometimes required for contract
signing [GJM99], because in our synchronous setting and with moderately short rounds we do not
consider such abuse a threat in practice.

7It is similar to adaptive chosen-ciphertext attacks on encryption systems except that we only require secrecy if the exchange
fails; hence we can allow the adversary to connect to all output ports of the correct machines.

8A definition that the conditional probability ofadv win given no receipt is at most1=2 + 1=poly(k) would not work
because of cases where the adversary always gives a receipt except if he can break an underlying assumption.

9

5 Ideal-System-Based Definition of Labeled Certified Mail

Now we present a specific ideal system as a second definition of labeled certified mail. We first summa-
rize the definition of simulatability from [PSW00b]. We then discuss a naive ideal system and motivate
why the actual ideal system is a bit more complicated. Then we show that the ideal system fulfils the
requirements, i.e., the second definition is stricter, and we discuss what this means for real systems
fulfilling the second definition.

5.1 Simulatability in General

In the simulatability definition, one only wants to compare each structure of a systemSys1 (typically
real) with certain corresponding structures in a systemSys2 (typically ideal). An almost arbitrary map-
ping f is allowed as specification of “corresponding”, only certain conventions on the naming of ports
are necessary. An instantiation is usually derived from the trust model, and usually only structures with
the same set of specified ports are corresponding.

Definition 5.1 (Valid Mapping, Suitable Configuration) A function f from a systemSys1 to the
powerset of a systemSys2 is called avalid mappingif for all structures with(M2;S2) 2 f(M1;S1)

pc 2 free(M1)) p 62 forb(M2;S2) ^ pc 2 S2) p 62 forb(M1;S1):

GivenSys2 andf , the setConff (Sys1) � Conf(Sys1) of suitableconfigurations contains all those
configurations(M1;S1;H;A1) whereH has no ports fromforb(M2;S2) for any(M2;S2) 2 f(M1;S1).
3

The restriction to suitable configurationsConff (Sys1) serves two purposes in simulatability: First it ex-
cludes users that are incompatible with(M2;S2) simply because of name clashes. Secondly, it excludes
thatH connects to unspecified free ports of(M2;S2). This is necessary for the abstract specification of
tolerable imperfections. Recall the example of an ideal system that gives the adversary one busy-bit per
subprotocol run. Clearly there is no such bit in the real system; we only need it to capture that whatever
the adversary learns in the real system is not more than this bit. As we will require indistinguishability
of the views ofH, these unspecified ports must only be used by the adversary.

As the definition of computational indistinguishability (originally from [Y82a]) is essential for the
simulatability definition, we also present it here.

Definition 5.2 (Indistinguishability) Two families (vark)k2N and (var0k)k2N of random variables (or
probability distributions) are called

a) perfectly indistinguishable (“=”) if for eachk, the two distributions are identical;

b) statistically indistinguishable (“�SMALL”) for a classSMALL of small functions if the distribu-
tions are discrete and their statistical distances

�(vark; var
0
k) =

1

2

X

d2Dk

jP (vark = d)� P (var0k = d)j 2 SMALL

(as a function ofk).

c) computationally indistinguishable (“�poly”) if for any algorithmDist (the distinguisher) that is
probabilistic polynomial-time in its first input,

jP (Dist(1k; vark) = 1)� P (Dist(1k; var0k) = 1)j 2 NEGL:

(Intuitively, Dist, given the security parameter and an element chosen according to eithervark or
var0k, tries to guess which distribution the element came from.)

10

We write� if we want to treat all cases together. 3

The following definition captures that whatever an adversary can achieve in the real system against
certain honest users, another adversary can achieve against the same honest users in the ideal system.
Adding an adversary output in the comparison does not make the definition stricter, nor do auxiliary
inputs [PSW00b].

Definition 5.3 (Simulatability) Let systemsSys1 andSys2 with a valid mappingf be given.

a) We saySys1 �
f;perf
sec Sys2 (perfectly at least as secure asfor f) if for any suitable configuration

conf 1 = (M1;S1;H;A1) 2 Conff (Sys1), there exists a configurationconf 2 = (M2;S2;H;A2) 2
Conf(Sys2) with (M2;S2) 2 f(M1;S1) (and the sameH) such that

view conf 1
(H) = view conf 2

(H):

b) We saySys1 �
f;SMALL
sec Sys2 (statistically at least as secure as) for a classSMALL of small func-

tions if the same as in a) holds with statistical indistinguishability of all familiesview conf 1;l
(H)

andview conf 2;l
(H) of l-round prefixes of the views for polynomialsl.

c) We saySys1 �
f;poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with

configurations fromConffpoly(Sys1) andConfpoly(Sys2) and computational indistinguishability
of the families of views.

In all cases, we callconf 2 an indistinguishable configuration forconf 1. Where the difference between
the types of security is irrelevant, we simply write�f

sec, and we omit the indicesf andsec if they are
clear from the context. 3

Definition 5.4 (Blackbox and Universal Simulatability) Universal simulatability means thatA2 in
Definition 5.3 does not depend onH (only onM1, S1, andA1). Blackbox simulatability means that
additionally,A2 (givenM1, S1, and the setP of adversary ports) is a fixed simulatorSim with A1 as a
blackbox submachine. 3

5.2 Naive Specification and Discussion

The simplest trusted hostTHnaive for certified mail can be sketched as follows (omitting verification):

Naive trusted host: WheneverTHnaive obtains two matching inputs(send; r; l;m) at ins? and
(receive; s; l) at inr? in a roundi, it outputs(received; (s; r; i);m) at outr! and (sent; (s; r; i))
at outs! in the next round. For any non-matched input, it outputs(failed; (s; r; i)) to the party
concerned.

Unfortunately, one cannot expect a real protocol to satisfy such a specification (the first two issues were
also discussed in [PSW00b]):

� THnaive hides all interactions between honest parties from the adversary. But in real life, the
adversary can eavesdrop on the channels and learn quite a lot in protocols like that in Figure 1.
In particular the information “who communicates with whom at what time” would be extremely
expensive to hide. As the secure-channel example in [PSW00b] shows how to treat just this
minimal information, we decided here to model unencrypted protocols like that in Figure 1. Thus
for each slot(s; r; i) the adversary will obtain an output(busy; : : :) containing all non-secret
information, and(msg;m) when a message is sent in clear.

11

� THnaive guarantees availability, i.e., the adversary cannot prevent honest parties from sending
certified mails to each other. But in real systems the adversary can typically do this, e.g., by
disrupting a channel. Therefore our trusted host will accept inputssuppress from the adversary
that describe which protocol runs should be killed. (We will need authentic channels to trusted
third parties, however.)

� THnaive produces outputs within one round, while any real optimistic protocol requires at least
four rounds [S00]. Even protocols with more than four rounds should not be considered insecure
just because of that. (Recall that our synchronous model requires that the behavior of a real system
at the specified ports is indistinguishable from that of the ideal system even in its timing, so that
a real system cannot have more timing channels than its specification.) Therefore we will use a
number� of rounds as a free parameter in the specification. We decided to use only one such
parameter here for brevity of the specification, i.e.,� = 6 for Figure 1, although alternativelyMs

could output(sent; : : :) after four rounds andMr could output(received; : : :) after three rounds
in the all-correct case. Verification will work in one round.

� THnaive delivers protocol outputs after the same time� even to the adversary. However, an
adversary can get these outputs faster. For almost all protocols, this holds by at least one round
because the adversary can take a message from the line to him and do all computations still in
the same round, while correct machines will only do them in the next round. In addition, in
Figure 1, an adversarial recipient can immediately use the message after obtainingm3, while a
correct recipient only gets the output(received; (s; r; i);m) in Round 6. One way to model this
would be to look at a real protocol and to model in the ideal system exactly until what round an
adversary can disrupt the protocol, from when on he can obtain a message, etc. However, this
would give a fairly large number of parameters in addition to�. Instead, our ideal system allows
the adversary slightly more than a real adversary can achieve: Roughly, we allow him to disrupt at
any time, or else to decide that he will not disrupt and then to use the results. This is represented
in the treatment of adversary inputssuppress andreceive.9

5.3 An Ideal System for Certified Mail

We now describe an ideal system that formally specifies a particular version of labeled certified mail
with the properties introduced in Section 5.2.

Scheme 5.1 (Trusted Host for Labeled Certified Mail) For any parameterspar 2 ParCM (Defini-
tion 4.3), an ideal system for labeled certified mail is defined as

SysCM;id
par = f(fTHHg;SH)jH 2 ACC

CM
parg;

whereACCCMpar andSH are as in Definition 4.4 andTHH is defined as follows.

Ports: LetPortsTHH = SH [�Sid;H, where the unspecified ports are simply

�Sid;H = fout a!; in a?g:

Overall structure ofTHH: Each slot(s; r; i) 2 Slots is handled by a submachineths;r;i. For simplicity,
we assume that in any roundi, submachinesths;r;j for all (s; r; j) 2 Slotsi exist, although most of them
will remain in their starting state forever.10 There are three types of submachines (where “type” means
equality except for port renaming), one each for(s; r) 2 HS � AR, AS � HR or HS � HR. Each

9This could also be done for the receipts. However, as our protocol has global round numbers, verifiers can simply refuse
to accept receipts too early. Otherwise, the specification of the sending protocol and verification become more intertwined.

10As this is only an ideal system, there is no need to implement its internal state efficiently.

12

submachineths;r;i has one input and output port for each party concerned with this run;in ss;r;i? and
out ss;r;i! if s 2 HS , in rs;r;i? andout rs;r;i! if r 2 HR, and in any caseout vs;r;i!, in as;r;i?, out as;r;i!,
and finallyin ths;r;i? for inputs fromTHH itself.

In Rounds 0 and 1, the trusted host does nothing. (This is time reserved for initialization in the real
system.) We now define the state transition for any roundi > 1.

Global inputs and dispatching in Roundi: At the port in a?, the trusted hostTHH expects a matrix
(in ai;(s;r;j))(s;r;j)2Slotsi of sets of at most four elements.11 THH inputs each element to portin as;r;j?

of ths;r;j and clocks this submachine once for it.12

At each portins? with s 2 HS, THH expects an input vector(ini;s;r)r2MR[fvg 2 InS . It forwards
each entryini;s;r with r 2MR to portin ss;r;i? (of ths;r;i), andini;s;v = (show; (s; r; j)) with (s; r; j) 2
Sloti to port in ss;r;j? (of ths;r;j).13 At each portinr? with r 2 HR, it expects a vector(in i;r;s)s2MS

2
InR and forwards each entryini;r;s to port in rs;r;i? of ths;r;i.

In addition,THH inputsstop to all machinesths;r;i�� at port in ths;r;i��?. ThenTHH clocks all
submachines.

Submachines:The state-transition functions of the machinesths;r;i are shown in Figures 2 to 4 in
standard notation for extended finite-state machines: a circle is a state and an arrow labeledin=out is
a transition resulting from an inputin and causing an outputout . Inputs that are not explicitly shown
in a state are ignored. Notationx:y means thaty is input or output at portx, but the subscripts and the
appendices “!” and “?” of ports are omitted because they are clear from the context.

The diagrams are complete given the following conventions: Each submachineths;r;i obtains its
parameters(s; r; i) in its initial state. Any input parameter is assigned to a variable of the same name if
the name first occurs in a run; otherwise, the input is only accepted if the value of the parameter and the
variable are equal.

The main ideas behind the state-transition functions are the following: Each machineths;r;i is started
by inputs(send; : : :) and/or(receive; : : :) from the corresponding correct user(s); if boths; r 2 H, the
statessr1, sr2, andsr3 occur if there are not two matching inputs. The adversary is immediately told the
parameters of the run at the portout as;r;i!. Then the adversary (the partner in Figures 2 and 3 and an
outsider in Figure 4) has the opportunity to either disrupt the run withsuppress or to decide that it should
end successfully withreceive or (send;m), respectively. In the latter case, he immediately obtains the
message if he is not the sender. The outputs for the honest users only occur upon the inputstop (from
THH itself), and only then can receipts be shown. Showing by an adversary works within the same
round, by an honest user it has one round delay.

Output dispatching in Roundi: MachineTHH puts all outputs from submachine portsout ss;r;j! into
a setout i;s, those atout rs;r;j! into out i;r, those atout vs;r;j! into out i;v, and those atout as;r;j! into
out ai;(s;r;j).

14 Each set is encoded in a deterministic way. It outputsout i;u at outu! for eachu 2 H
and the matrix(out ai;(s;r;j))(s;r;j)2Slotsi atout a!. 3

11By “expects” we mean that it replaces any other input by a vector of all�; similarly for other structures in the following.
By “for each entry, it does: : :” and similar formulations we mean that the entries are treated in lexicographic order of their
index tuples in the structure.

12Clocking the submachines once for each adversary input and once for honest-user inputs per round helps not to have too
many input combinations in the state diagrams. Allowing input sets per slot is not mandatory here (in the state diagrams, never
more than one adversary input is considered between two honest-user inputs), but simplifies the simulation, where each of four
simulated machines may signal to the trusted host.

13The parameter(s; r; j) of (show; (s; r; j)) could be omitted in forwarding; similar for many outputs below because it
could be added systematically as the second parameter of all in- and outputs in dispatching. However, for readability we
currently let all in- and outputs look the same globally and in submachines.

14In statesr0, two outputs can occur at portout as;r;j !; hence more precisely or in more complicated cases, the dispatching
should be seen as set unions.

13

in_a.receive /
out_a.(msg, m) in_a.stop /

out_s.(sent, (s, r, i))

re
ceived

show-

ing
in_s.(show, (s, r, i))

/ out_a.(busy, v)

– / vo.(received,
(s, r, i), l, m)

in_s.(show, (s, r, i)) /
out_a.(busy, v),
out_v.(received, (s, r, i), l, m)in_s.(send, r, l, m) /

out_a.(busy, s, l)
s0

in_th.stop / out_s.(failed,
(s, r, i))

failed

s1

s3

s2
in_a.suppress

 / –

in_th.stop /
out_s.(failed, (s, r, i))

Figure 2:ths;r;i for s 2 HS andr 2 AR, i.e., correct sender only. Dashed arrows arise from adversary
inputs.

in_a.(send, m)
/ –

in_r.(receive, s, l) /
 out_a.(busy, r, l)

in_th.stop /
out_r.(received,

(s, r, i), m)

re-
ceived

r0 r1
in_a.show /
out_v.(received, (s, r, i),
 l, m)

in_th.stop / out_r.(failed,
(s, r, i))

failed
in_a.suppress

 / —

in_th.stop /
out_r.(failed, (s, r, i))

r2

r3

Figure 3:ths;r;i for r 2 HR ands 2 AS , i.e., correct recipient only.

sr1

failed

show-

ing

¬in_s.(show, (s, r, i)) /
out_v.(received, (s, r, i),
l, m)

in_s.(
show, (s, r, i)) /
out_a.(busy, v)

sr0

in_th.stop /
out_s.(sent, (s, r, i)),

 out_r.(received, (s, r, i), m)

in_th.stop / out_r.(failed, (s, r, i))

in_s.(send, r, l, m)
/ out_a.(busy, s, l)

in_r.(receive, s, l')
/ out_a.(busy, r, l)

in_th.stop /
out_s.(failed, (s, r, i)),
out_r.(failed, (s, r, i))

in_a.receive
/ out_a.(msg, m)

in_a.suppress
 / –

in_th.stop / out_s.(failed, (s, r, i))

sr3

in_th.stop /
out_s.(sent, (s, r, i)),

out_r.(received, (s, r, i), m)

in_s(send, r, l, m),
in_r.(receive, s, l')

/ out_a.(busy, s, l),
out_a.(busy, r, l')

l≠l'

l=l'

sr4
re-

ceived in_s.(show, (s, r, i)) /
out_a.(busy, v),
out_v.(received,
(s, r, i), l, m)

sr2

sr5

Figure 4:ths;r;i for s; r 2 H, i.e., correct sender and recipient.

14

5.4 Relation to Requirements-Based Definition

In this section, we show that the ideal system essentially fulfils the integrity requirements from Defini-
tion 4.6, and then mention what this means for real systems.

Lemma 5.1 (Integrity of Ideal System) The ideal system from Scheme 5.1 fulfills Definition 4.6b) to
h). It also fulfills Requirement a) if submachinesths;r;i for s; r 2 H ignore inputssuppress. (Intuitively,
this means to assume authentic connections betweens andr.) 2

Proof. Recall that we can assume that only correct inputs are made at the specified ports because of the
general preconditions in the requirements. This implies that an input(send; r; l;m) in Roundi at ins?
can only occur asini;s;r etc. Furthermore, one can easily see from the input dispatching that no input to
a machineths;r;i is made before Roundi.

Case: Sender and recipient correct, i.e., Figure 4 only:

a) Correct Execution, given thatsuppress is ignored: Let ini;s;r = (send; r; l;m) and ini;r;s =
(receive; s; l0). THH dispatches both toths;r;i. If l = l0, the submachine enters statesr4. As suppress
is ignored, the input ofstop, whichTHH makes after� rounds, leads to outputs(sent; (s; r; i)) and
(received; (s; r; i);m), which are dispatched to the portsouts! andoutr!.

If l 6= l0, the submachine enters statesr3 and, on inputstop, makes two outputs(failed; (s; r; i)),
which are dispatched toouts! andoutr!.

b) Unforgeable Messages:An output (received; (s; r; i);m) 2 out j can only come fromths;r;i. In
Figure 4 one easily sees that this requires a local input(send; r; l;m), which, by dispatching, must have
been an entryini0;s;r.

Case: Only recipient correct, i.e., Figure 3 or 4:

c) Termination for Recipient:If ini;r;s = (receive; s; l), THH startsths;r;i, i.e., it leaves stater0 or sr0,
and then inputsstop to it in Roundi+�. This leads to exactly one of the required outputs in all states
of Figure 3, and in all states reachable without priorstop in Figure 4.

d) Unforgeable Receipts:An output (received; (s; r; i); l;m) can only come fromths;r;i. One easily
sees in Figures 3 and 4 thatths;r;i does not make this output without a prior input(receive; s; l), which
must have come frominr?.

e) No Surprises for the Recipient:Both an output(failed; (s; r; i)) at outr! and(received; (s; r; i); l;m)
atoutv! can only come fromths;r;i. However, one easily sees in Figures 3 and 4 that there is no path on
which both these outputs occur.

f) Fixed Receipts:Both an output(received; (s; r; i);m) at outr! and(received; (s; r; i); l;m0) at outv!
can only come fromths;r;i. One easily sees in Figures 3 and 4 that this impliesm0 = m.

Case: Only sender correct, i.e., Figure 2 or 4:

g) Termination for Sender:If ini;s;r = (send; r; l; m), THH startsths;r;i, i.e., it leaves states0 or sr0,
and then inputsstop to it in Roundi+�. This leads leads to exactly one of the required outputs in all
states reachable without priorstop in Figures 2 and 4.

h) Verifiability of Valid Receipts:An output (sent; (s; r; i)) at outs! can only come fromths;r;i. One
easily sees in Figures 2 and 4 thatths;r;i is from then on always in statereceived or showing and will
output(received; (s; r; i); l;m) on input(show; (s; r; i)) within one round.

These results together with the integrity-preservation theorem from [PW00] (Theorem 3.1) imply
that any real system that is computationally at least as secure as this ideal system also fulfils these
requirements computationally.

15

For secrecy requirements, there is no corresponding general theorem yet, and we do not bother to
prove a specific one here. But we sketch a proof that the ideal system fulfils Definition 4.7: An input
ini;s;r = (send; r; l;m) is dispatched toths;r;i, and an output(failed; (s; r; i)) at outs! can only come
from the sameths;r;i. One easily sees in Figures 2 and 4 that the sameths;r;i does not make any output
with the parameterm. No other parameter ofths;r;i depends onm, THH does not usem except in its
input to ths;r;i, andHs never reusesm. Hencem is perfectly hidden. For relations to formal methods,
note that this is a sketch of a typical information-flow proof, see, e.g., [D82].

6 Rigorous Description of the Real System

Now we rigorously define a real system for labeled certified mail. Recall that we already sketched and
explained the system in Section 2.

6.1 More Details about the Primitives Used

A signature scheme is a triple of algorithms(genS; sign; test). We assume w.l.o.g. that the message
space is�� [D88] andf0; 1g � �. We use slightly abbreviated notation: We write(signu; testu)
genS(1

k) for the generation of a signing key and a test key based on a security parameterk. By sig
signu(m), we denote a signature on the messagem, includingm itself. More precisely, we assume that
sig is a pair(m; s). The scheme may have arbitrary memory. The verificationtestu(sig) returnsm if
the signature is valid with respect to the included message, elsefalse. Security of a signature scheme
means that existential forgery is infeasible even in adaptive chosen-message attacks [GMR 88].

Definition 6.1 (Security of Signature Schemes)An arbitrary (probabilistic) polynomial-time machine
Asig interacts with a signer machineSig (also called signing oracle) defined as follows:

1. Sig generates a key pair,(sign; test) genS(1
k), and sendstest toAsig.

2. In each round,Sig signs an arbitrary messagemj it receives fromAsig.

3. Finally,Asig should output a valuesig .

Asig has won iftest(sig) gives a messagem with m 6= mj for all j, i.e., sig is a valid signature on a
message thatSig did not sign. The probability of this event must be negligible ink. (In our terminology,
we have a closed collection of 2 machines clocked alternately, and the event is a predicate on the runs;
hence the probability is well-defined.) 3

The one-way functionowf is simply a function.

Definition 6.2 (Security of One-way Function) A functionowf : f0; 1g� ! f0; 1g� is called one-way
if for all probabilistic polynomial-time algorithmsAowf ,

P (r� = r :: r R f0; 1gk ; r� Aowf(1
k; owf(r)) 2 NEGL

(as a function ofk). The notation means the probability of the eventr� = r in the space defined by the
two probabilistic assignments after “::”. 3

A non-interactive chameleon commitment scheme is a tuple of algorithms
(genC; genCR; com; trans). Let its message space beMsgC. (In our case, it must comprise the
setMsg of the certified mail scheme.)

� We write(skC;u; pkC;u) genC(1
k) for the generation of a key pair based on a security parameter

k.

16

� In slightly abbreviated notation, we writer genCR;u for the generation of a suitable random
valuer givenpkC;u.

� Similarly, we writec = comu(m; r) for a commitment on a messagem 2 MsgC using a public
keypkC;u and a random valuer.

By (c; r) comru(m), we abbreviate the compositionr genCR;u; c = comu(m; r).

� A commitmentc is opened by sending(m; r). The recipient comparescomu(m; r) with c. If they
are equal, one says that he acceptsm.

� By r� transu(c;m; r;m
�) we denote the transformation that allows the owner of a secret

key skC;u to take a commitmentc, valuesm; r that open it, and another messagem� 2 MsgC
and to derive a valuer� such thatc can be opened tom�. For all correctly generated keys and
c = comu(m; r), this must givec = comu(m

�; r�).

Definition 6.3 (Security of Commitment Scheme)A non-interactive chameleon commitment scheme
is called secure if it has the following three properties.

a) Computationally binding:For any probabilistic polynomial-time algorithmA:

P (comu(m; r) = comu(m
�; r�) ^m 6= m�

:: (skC;u; pkC;u) genC(1
k); (m; r;m�; r�) A(1k; pkC;u))

2 NEGL:

b) Perfectly hiding:For all (skC;u; pkC;u) 2 [genC(1
k)], all probability distributionsDist onMsgC,

all m 2 MsgC and all possible commitmentsc,

PDist�(mjc) = PDist(m)

whereDist� is the distribution defined bym Dist; (c; r) comru(m).15

c) Chameleon:For all(skC;u; pkC;u) 2 [genC(1
k)] andm;m� 2 MsgC: The probability distribution

of the pair(c; r�) in (c; r) comru(m); r� transu(c; m; r; m
�) equals that in(c; r�)

comru(m
�).

3

For example, we can use the commitment scheme from [BCP88, CHP92, P92] with a chameleon
extension combined with a family of collision-resistant hash functions [D88]. In the basic scheme, key
generation means to randomly choose ak-bit prime q and ak0(k)-bit prime p with qj(p � 1) (for a
functionk0 determining a suitable second security parameter), a generatorg of the unique subgroupGq

of orderq in Z�p andx R Z
�
q, and to seth = gx. The public key is(p; q; g; h) and the secret keyx. A

random value is then chosen asr 2 Zq and a commitment on a messagem 2 Zq asc = comu(m; r) =
gmhr mod p. The transformationr� = transu(c;m; r;m

�) is r� = (m �m�)=x + r. The scheme is
computationally binding under the discrete-logarithm assumption for this family of groups.

We now use a family of collision-resistant hash functions to allow commitments to arbitrarily long
inputs. A particular hash functionhashu is also (at least in theory) selected by a public key, which
becomes part of the public key of the extended commitment scheme. Nowhashu(m) is committed
to in the place ofm. One can immediately see that this combination retains all the properties of the
commitment scheme.

For proving simulatability of the certified-mail scheme, we need that an adversary cannot open a
commitment made by someone else even if he has chosen the content. This is Part b) of the following
lemma, and Part a) is a well-known fact used.

15The termPDist�(mjc) is the usual abbreviation ofP (m0 = mjc0 = c :: m0 Dist; (c0; r) comru(m
0)).

17

Lemma 6.1 (Properties of the Commitments) a) For all(skC;u; pkC;u) 2 [genC(1
k)], allm;m0 2

MsgC, and all possible commitmentsc,

P (c0 = c :: (c0; r) comru(m)) = P (c0 = c :: (c0; r) comru(m
0)):

b) For any probabilistic polynomial-time algorithmsA1, A2:

P (c = comu(m
�; r�)

:: (skC;u; pkC;u) genC(1
k); (m; aux) A1(1

k; pkC;u);

(c; r) comru(m); (m�; r�) A2(1
k; pkC;u;m; aux ; c))

2 NEGL:

Hereaux denotes arbitrary information thatA1 hands toA2.
2

Proof. If Part a) were not true, then forPDist(m) = PDist(m
0) = 1=2, we would obtain a contradiction

to the hiding property:

PDist�(mjc) = PDist(m)P (c0 = c :: (c0; r) comru(m))=PDist�(c)

= 1=2P (c0 = c :: (c0; r) comru(m))=PDist�(c)

6= 1=2P (c0 = c :: (c0; r) comru(m
0))=PDist�(c)

= PDist�(m
0jc):

For Part b), assume thatA1, A2 contradict the lemma. Then either the probability with an additional
conditionm� 6= m or with m� = m is still not negligible. The first case can immediately be seen to
contradict the binding property.

In the second case, consider an adversaryA3 that carries out(m; aux) A1(1
k; pkC;u), then

chooses a messagem0 6= m in MsgC (e.g., the first possible one out of two fixed ones), sets
(c; r) comru(m

0) and finally(m�; r�) A2(1
k; pkC;u;m; aux c). By Part a) this does not change

the distribution ofc compared with the assumption aboutA1 andA2. Hence the success probability of
A2 is unchanged, and as in the first case we immediately get a contradiction to the binding property.

6.2 The Real System

We now describe the real system in detail. A comma in messages denotes tuple composition, not con-
catenation, i.e., it must be implemented such that decomposition is unambiguous. We augment the
message formats slightly compared with Figure 1, in particular by adding message type identifiers like
m1 in signed messages (as often tacitly assumed when actually implementing a protocol) and repeating
the slot identifier in places to simplify dispatching.16

Scheme 6.1 (Labeled Certified Mail)For any parameterspar 2 ParCM with � = 6, we define a real
systemSysCM;real

par for labeled certified mail. It is (almost) a standard cryptographic system according to
Definitions 3.1 and 3.2 in [PSW00b], i.e., it can be derived in a standard way from an intended structure
(M �;S �) and a trust model (consisting of an access structure and a channel model).17 However, for
independence and for readability of the proof, we also describe the resulting actual structures.

16In this protocol we could also do without because each type of machine signs only one type of message.
17The difference is that a few user ports are not needed, e.g.,inv?. A larger difference to the rest of that section in [PSW00b]

is that the mappings between real and ideal system are not canonical because we need the trusted third party for the optimistic
protocols.

18

LetM0 = M[ft; bg with t = n + 1; b = n + 2. ThenM � is a setfMu j u 2 M
0g, i.e., one

machine for each user known from the ideal system, a machineMt for a third party, and a broadcast
machineMb. The access structure is

ACC0
CM
par = fH0 = H [ft; bgjH 2 ACCCMparg;

i.e., the third-party machine and the broadcast machine are (like the verifier’s) always correct. The actual
system is

SysCM;real
par = f(MH;SH)jH 2 ACC

CM
parg

whereSH is as in Definition 4.4, whileMH = fMu;Hju 2 H [ft; bgg and the machinesMu;H are now
defined. They only slightly differ from the intended machinesMu in the ports because of the channel
model. The machinesMu are of five types depending on whetheru 2MS ,MR, or u = v, t or b.

Ports and channel model:The ports of a machineMu with u 2 M [ftg arefinu?; outu!; broadu!g [
fbroadw;u?; netu;w!; netw;u?jw 2M[ftgg; except thatMv does not have (need) the portinv? andMt

neitherint? nor outt!. The first two of the six port types are for the user, the second two for broadcast
(of public keys) and the last two for communication to and fromMw.

The broadcast machineMb has the portsfbroadu?ju 2M[ftgg [fbroadu;w! j u;w 2M[ftgg:
The channel model is that all channels involvingMv orMt are authentic (but not private), the broad-

cast channel is authentic (and consistent, i.e., even the adversary cannot send different messages to
different correct recipients—this is why we needMb), and the other channels are insecure. This means
that each portnetu;w! with u 2 fv; tg orw 2 fv; tg gets a duplicatenetau;w? in Mu;H where the machine
makes the same outputs. (The adversary will connect to this port.) SimilarlyMb;H gets an additional
port broadau! for eachu where it makes the same outputs as at its portsbroadu;w;:! Each portnetw;u?
with u;w 62 fv; tg is replaced bynetaw;u;:? (This allows the adversary to connect to both this port and
netw;u!, and thus to control the connection.)

We tacitly omit the duplicated ports in the following, while we keep the notationnetaw;u? for the
replaced ports to keep in mind that the inputs there are not necessarily the outputs of another correct
machine atnetw;u!.

Overall structure of each machine:All machinesMu;H with u 6= b are defined by submachines per
slot. (An overview is given in Figure 12 in the proof.) This is just a convenient way to write the state-
transition function ofMu;H; they are not independent machines as in the system model, in particular
they can use the keys, parameterspar , and current round number as stored inMu;H.18

Ms;H for s 2 HS . Let SlotsS = MR � N>1 andSlotsS;i = MR � f2; : : : ; ig for all i 2 N. In
Ms;H, each slot(r; i) 2 SlotsS is handled by a submachinecm ss;r;i. For simplicity, we assume
that in any roundi, submachinescm ss;r;j for all (r; j) 2 SlotsS;i exist, although most of them
will remain in their starting state forever. Eachcm ss;r;i has portsin ss;r;i?, out ss;r;i!, r2sas;r;i?,
s2rs;r;i!, t2ss;r;i?, s2ts;r;i!, ands2vs;r;i! for in- and outputs to its user and messages from and to
the recipient, the third party and the verifier.

Mr;H for r 2 HR. In exactly the same way, inMr;H each slot(s; i) 2 SlotsR =MS �N>1 is handled
by a submachinecm rs;r;i with portsin rs;r;i?, out rs;r;i!, s2ras;r;i?, r2ss;r;i!, andt2rs;r;i?.

Mv;H andMt;H. In Mv;H, each slot(s; r; i) 2 Slots is handled by a submachinecm vs;r;i with ports
s2vs;r;i? andout vs;r;i!, and inMt;H, by a submachinecm ts;r;i with portss2ts;r;i?, t2ss;r;i!, and
t2rs;r;i!.

18A real implementation should not reserve resources for submachines as long as they remain in their starting state. Then
the submachines ofMv;H andMt;H and all those of unused slots disappear. We uniformly used the submachine notation to
unify dispatching and thus to simplify the proof.

19

Initialization (Rounds 0, 1, and part of 2):In Round 0, each machineMu;H with u 6= v; b generates
signature keys(signu; testu) genS(1

k). Additionally, Mt;H generates a key pair(skC;t; pkC;t)
genC(1

k) of the commitment scheme. EachMu;H with u 2 MS [MR outputstestu at broadu!, and
Mt;H the pair(pkC;t; testt) atbroadt!.

In Round 1, all machines do nothing, except that the broadcast machineMb;H forwards the input at
portbroadu? to the portsbroadu;w! for all u;w. In all other rounds,Mb;H does nothing.

In Round 2, each machineMu;H with u 6= b considers its broadcast inputs. The first input at
broadt;u? is stored as a commitment keypkC;t, the second one astestt, and the input atbroadw;u? for
eachw 2MS [MR astestw. As the broadcast machine guarantees consistency, we do not distinguish
the key versions held by different machines.

Now we consider the state-transition functions of machinesMu;H with u 6= b for Roundsi � 2. Inputs
at the broadcast ports are never considered again after initialization, hence we no longer mention them.

Global inputs and dispatching in Roundi:

Ms;H for s 2 HS . At its port ins?, it expects an input vectorini;s 2 InS . It forwards each entryini;s;r

with r 2MR to port in ss;r;i? (of cm ss;r;i), and each entryini;s;v = (show; (s; r; j)) to in ss;r;j?
(of cm ss;r;j).

At each network input portnetar;s? with r 2 MR, it expects a tuple of at mosti entries
((s; r; j);msg) with j � i and at portnett;s? a tuple of at mostnR � i entries of this form.19

It forwards each entry to portsr2sas;r;j? or t2ss;r;j?, respectively, ofcm ss;r;j.

Mr;H for r 2 HR. At its port inr?, it expects an input vectorini;r 2 InR and forwards each entryini;r;s

to port in rs;r;i? of cm rs;r;i.

At each network input portnetas;r? with s 2MS , it expects a tuple of at mosti entries of the form
((s; r; j);msg) with j � i, and at portnett;r? a tuple of a mostnS � i entries of the same form. It
forwards each entry tocm rs;r;j at ports2ras;r;j? or t2rs;r;j?, respectively.

Mv;H. At each portnets;v? with s 2 MS , it expects at most one message((s; r; j);msg), which it
forwards to ports2vs;r;j? of cm vs;r;j.

Mt;H. At each portnets;t? with s 2 MS , it expects at most one message((s; r; j);msg), which it
forwards to ports2ts;r;j? of cm ts;r;j.

Submachines:Recall that a run of the subprotocolsend was shown in Figure 1. The detailed behavior
of the submachines is illustrated in Figures 5 to 7 in the same notation as for the ideal system, except
that these figures are only complete with respect to the states and accepted input classes, while the local
variables and computations are defined in detail in the following. State transitions without input in the
figure occur at the clock signal, i.e., the submachine counts the number of rounds it waits for some
message. Each submachinecm xs;r;i obtains the values(s; r; i) in its initial state, and the fixed index
s; r; i of its ports is omitted in the descriptions.

cm ss;r;i for s 2 HS . On input(send; r; l;m) at port in s?, it computes(c; rS) comrt(m) and out-
putsm1 signs((s; r; i);m1; l; c) at s2r!.

Then it waits for an inputm2 at port r2sa? in Round i + 2. It tests whethertestr(m2) =
((s; r; i);m2;m1; pR) for some valuepR. (The other occurring variables are already locally de-
fined in cm ss;r;i, and a test of�, i.e., no input, automatically fails.) If not, it waits until Round
i+ 6, outputs(failed; (s; r; i)) atout s!, and enters the final statefailed.

19In slight abuse of notation, we also consider entries correct where(s; r; j) is the first entry in a nested tuple, i.e., the
left-most leaf in the tree. Instead, we could duplicate slot names in some messages below.

20

re-
ceived' in_s.(show,

(s, r, i))
/ out_v.m6

 — /
out_s.(sent, (s, r, i))

failed

re-
ceived in_s.(show,

(s, r, i))
/ out_v.m7

in_s.(send, r, l, m) /
out_r.m1

ps0

 — /
out_s.(failed, (s, r, i))

r2sa.m2 /
s2r.m3

¬r2sa.m2
/ —

r2sa.m4
 / —

¬r2sa.m4 /
s2t.m5

t2s.m6 /
out_s.(sent, (s, r, i))

Figure 5: Sender submachinecm ss;r;i.

¬t2r.m6 / out_r.(failed,
 (s, r, i))

in_r.(receive, s, l)
 / —

— /
out_r.(received, (s, r, i), m)

endpr0
 t2r.m6 /

out_r.(received, (s, r, i), m)

s2ra.m1
/ r2s.m2

¬s2ra.m1
/ —

— / out_r.(failed, (s, r, i))

s2ra.m3
/ r2s.m4

¬s2ra.m3
/ —

Figure 6: Recipient submachinecm rs;r;i.

pv0

s2v.m6 /
out_v.(received, (s, r, i), l, m)pt0

s2t.m5 /
t2s.m6, ro.m6

s2v.m7 /
out_v.(received, (s, r, i), l, m)

Figure 7: Third-party submachinecm ts;r;i and verifier submachinecm vs;r;i.

21

If it received a correctm2, it outputsm3 = ((s; r; i);m; rS) at s2r!. Then, if it obtains a message
m4 = ((s; r; i); rR) at r2sa? in Roundi + 4 with a valuerR for which owf(rR) = pR, it outputs
(sent; (s; r; i)) at out s! in Roundi+ 6 and enters the statereceived. Otherwise, it outputsm5 =
(m1;m2;m3) ats2t!. If it obtains any messagem6 att2s? in Roundi+6, it outputs(sent; (s; r; i))
at out s! and enters the statereceived0.20

On input(show; (s; r; i)) at portin s?, it outputsm7 = ((s; r; i);m7;m1;m2;m3;m4) at s2v! if
it is in statereceived, andm6 if it is in statereceived0.

cm rs;r;i for r 2 HR. On input(receive; s; l) at in r?, it waits for an inputm1 at s2ra? in Roundi+ 1.
It then tests whethertests(m1) = ((s; r; i);m1; l; c) for some valuec. If not, it waits until Round
i+ 6, outputs(failed; (s; r; i)) atout r!, and enters the stateend.

If it has received a correctm1, it selects rR
R f0; 1gk and outputs m2

signr((s; r; i);m2;m1; owf(rR)) at r2s!.

Then it waits for an inputm3 at s2ra? in Roundi+ 3. If m3 = ((s; r; i);m; rS) for some values
m 2 Msg andrS , it tests ifcomt(m; rS) = c. If yes, it outputsm4 = ((s; r; i); rR) at r2s!. In
Roundi+ 6 it then outputs(received; (s; r; i);m) at out r! and enters the stateend.

If it does not receive a correctm3, it waits until Roundi + 6. If it then obtains an inputm6 at
t2r?, it outputs(received; (s; r; i);m) atout r!, where it findsm by retrieving the signed message
((s; r; i);m6;m5), decomposingm5 into (m1;m2;m3), andm3 into ((s; r; i);m; rS). Otherwise
it outputs(failed; (s; r; i)), and in both cases it enters the stateend.

cm ts;r;i. It first tests that the current round number isj = i+5. If yes, then for each inputcomplaint j;s,
it tests that it is a correct messagem5. More precisely, it first tests if it is some triple(m1;m2;m3).
If yes, it verifies (with its own valuesi; s) that tests(m1) = ((s; r; i);m1; l; c) for some values
r 2MR, l 2 L, andc, and thattestr(m2) = ((s; r; i);m2;m1; pR) for some valuepR. Finally, it
tests thatm3 = ((s; r; i);m; rS) for some valuesm 2 Msg andrS andcomt(m; rS) = c. If this
is true, it outputsm6 signt((s; r; i);m6;m5) at t2s! andt2r!.

cm vs;r;i. It first tests thatj � i + 7 for the current round numberj. For each inputreceipt j;s, it first
verifies that it is of the form(((s; r; i);m6;m5); sig) or ((s; r; i);m7;m1;m2;m3;m4) for some
valuesmi and sig . In the first case, it then tests iftestt(receipt j;s) = ((s; r; i);m6;m5) and
performs the test ofm5 as defined forcm ts;r;i.21 In the second case, it performs the same tests
onm5 = (m1;m2;m3), and then testsm4 as defined forcm ss;r;i. If all is correct, it outputs
(received; (s; r; i); l;m) atout v!.

Output Dispatching in Roundi:

Ms;H for s 2 HS . It puts all submachine outputs at portsout ss;r;j! into a setout i;s, those ats2rs;r;j!
into net i;s;r, those ats2vs;r;j! into net i;s;v, and those ats2rs;r;j! into net i;s;t. It outputs these sets
at the ports with the corresponding names in some deterministic encoding.

Mr;H for r 2 HR. It puts outputs atout rs;r;j! into a setout i;r and those atr2ss;r;j! into net i;r;s and
outputs these sets at the portsoutr! andnetr;s! for all s 2MS , respectively.

Mt;H andMv;H. Mt;H puts all outputs att2ss;r;j! into a setnet t;s! and those att2rs;r;j! into a setnet t;r!.
Mv;H puts all outputs atout vs;r;j! into a setout i;v. They output these sets accordingly.

3

20Given the program ofMt;H, it will always receivem6 andm6 will be correct, becauseMt;H is always correct and the
connection toMt;H is authentic. In real life, adding a verification here may be wise; similar forcm rs;r;i below.

21AsMt;H is assumed to be correct, this could be omitted except for extracting parameters.

22

7 Security Proof of the Real System

We now prove that the real system in Scheme 6.1 is computationally at least as secure as the ideal system
in Definition 5.1. Our simulation is blackbox (see Definition 5.4).

The main cryptographic aspect is in the simulation of a messagem1: In Roundi, wherem1 should
be sent, the trusted host only outputs a busy-signal without revealing the actual message. Nevertheless,
the simulator has to giveA a correct-looking network message, which includes a commitment that is
supposed to fix the messagem the honest user wants to send. If the protocol run is successful, the
simulator has to open this commitment two rounds later. If it then reveals a messagem0 6= m, the
simulation is not correct, e.g., an honest recipient may not get the message an honest sender sent. Here
is why we need the chameleon property: It allows the simulator (who also only simulates the machine
Mt and thus knows its key) to first make the commitment on an arbitrary messagemsim , and later open
it to the correct messagem.

The main non-cryptographic aspects of the simulation are to verify that the real adversary has no
possibilities to disrupt protocol runs in certain states, to show receipts too early, etc., that are not provided
in the ideal system.

We structure the simulator as much as possible like the real system, i.e., it simulates the machines
Mu and submachinescm ss;r;i andcm rs;r;i, see Figure 8. One main difference is that the simulator
does not interact directly with the users, but has to communicate with the trusted host for this. The
second one is timing. As the simulator is an adversary, it is clocked in Subrounds[i:2] and[i:4], while
the correct machines are clocked in Subrounds[i:1]. To ease the comparison of the real system, and
the simulator together with the trusted host, in the proof below, we use a 6-round clocking scheme from
which both 4-round schemes can easily be derived.

ui ∈ HS

out_a!in_a?

Sim(A)

TH

Mu1 …Mu2
Mux

Mv Mt

• • •

ui ∈ HR

• • •

Sim

…
S

S

inu1
? outu1

! inu1
? outu1

!outv!

P' P'

outv!

ui ∈ HS ui ∈ HR

A

netu,w? netu,w!
a

• • • • • •• • •

A

netu,w? netu,w!
a

• • • • • •• • •

Mu1 …Mu2
Mux

Mv Mt

Figure 8: Structure of the real system and the simulation. The tiny squares are submachines. All indices
H are omitted. The ports ofA for listening to authentic channels are not shown. Dashed machines are
only simulated, dashed gray submachines are not distinguished as such withinSim.

We use Corollary 5.4 of [PSW00b]; it states that we only need to consider usersH that use precisely
the specified ports of the structures. Hence the set of the ports of the real adversary can be written as
P = �S c

real;H [P
0, where�Sreal;H are the unspecified free ports of the real system and the ports inP 0 will

be connected toH. Furthermore, by Remark 5.4 in [PSW00b], we can assume thatH is not clocked in
Subrounds[i:1].

Scheme 7.1 (Simulator for Labeled Certified Mail) Let parameterspar 2 ParCM with � = 6, a set
H 2 ACCCMpar and a setP = �Sreal;H [P

0 of adversary ports be given. We define a simulatorSimH;P (A)
using an arbitrary adversary with the portsP as a blackbox submachine.

23

In the following, we omit all indicesH and also the indexP of Sim(A). As Sim(A) leaves the
communication betweenA andH unchanged, we can, in slight abuse of notation, saySim for the part of
Sim(A) withoutA.

Ports: The ports ofSim are necessarily�S c
real [fin a!; out a?g.

Overall structure and timing: Internally, Sim simulates each submachinecm xs;r;i by a machine
cm x0s;r;i with the same ports, except thatin xs;r;i? and out xs;r;i! are replaced byin x0s;r;i? and
out x0s;r;i!, and thatcm t has an additional portout t0s;r;i!. The dispatching is done bySim itself.
We define the transitions ofSim(A) as the compressed version of a 6-subround clocking scheme
�6 = (TH;Sim;A;H;A;Sim) where Subrounds 2 with 3 and 5 with 6 are joined to get the correct
clocking for the ideal system. We call the joined subrounds 2a and 2b, and 4a and 4b.22 Essentially, in
Subround[i:2a], Sim transforms the abstract messages it got fromTH into suitable network messages
for A, and in Subround[i:4b] it transforms the messages fromA into corresponding signals toTH.

Initialization (Rounds 0, 1, and part of 2):The simulated key exchange is identical to that in the real
machinesMu. The secret commitment keyskC;t is considered a global variable inSim, available to all
submachines. More precisely,Sim generates keys in Subround[0:2a], switches a simulated broadcast
machine in Subround[1:2a], and reads in broadcast inputs in Subround[1:4b].

Now we consider the state-transition function ofSim for Roundsi � 2, more precisely Subrounds
[i� 1:4b] and[i:2a], not mentioning the broadcast inputs again.

Global inputs and dispatching in roundi: In Subround[i � 1:4b], Sim dispatches the network inputs
(i.e., those at ports withnet in their name) just like the correspondingMu would. (In particular, we still
call the simulated inputs toMv andMt in this subroundreceipt i;s andcomplaint i;s.)

In Subround[i:2a], Sim dispatches the entries of the input matrixout ai at portout a? as shown in
Figure 9, wheremsim is a fixed message fromMsg. By definition ofTH, only the inputs in the table are
possible.

out a i;(s;r;j) Input to port of
(busy; s; l) (send; r; l;msim) in s0s;r;j? cm s0s;r;j
(busy; r; l) (receive; s; l) in r0s;r;j? cm r0s;r;j
(busy; v) (show; (s; r; j)) in s0s;r;j? cm s0s;r;j
(msg;m) (msg;m) in s0s;r;j? cm s0s;r;j

Figure 9: Dispatching of inputs fromTH by Sim. No other inputs can occur.

Sender submachinecm s0s;r;i: It acts likecm ss;r;i except for the following changes. Compared with
Figure 5, we only consider the states where more than the clock signal is considered.23 We treat them
essentially in the order of the rounds where they occur. A subprotocol run with all the simulated ma-
chines is shown in Figures 10 and 11.

22This is defined in Lemma 4.1 in [PSW00b]. Essentially, one can first combine arbitrary machines into one (hereSim and
A). Then, if only this machine is clocked in several successive subrounds, one can join the subrounds into one and let the
machine internally execute the state transitions in the right order.

23The other states would be split in two, asSim is clocked twice per round.

24

Round Changes
[i] In Subround[i:2a], cm s0s;r;i computesm1;sim likem1 with the input messagemsim

and(c; rsim) comrt(msim). It also sets aside a random stringrtrans of sufficient
length for a later call oftrans for c with any other messagem. (Choosing it so early
is helpful in the proof below.)

[i+ 2] In Subround[i + 1:4b], on input of a correctm2 (relative tom1;sim) at s2ra?, it
outputsreceive at out s0!, otherwisesuppress. (This signals to the trusted host to
reveal the messagem or that the run fails.)
If it has output receive, then in Subround[i + 2:2a] it expects an input
(msg;m) at in s0?. If this comes, it transforms the commitment withrS
transt(c;msim ; rsim ;m), using rtrans if random bits are needed in this process,
and outputsm3 = ((s; r; i);m; rS) at s2r!. If it does not come,cm s0s;r;i stops
prematurely.

[i+ 4] The transition is made in Subround[i+ 4:2a] without changes. (It could also be in
[i+ 3:4b].)

[i+ 6] The state transition to a final state is made in Subround[i+ 5:4b] without changes,
but no output is made.

[j] (With j > i+ 6.) Reactions onshow are made unchanged in Subround[j:2a].

Recipient submachinecm r0s;r;i: It acts likecm rs;r;i except for the following changes:

[i+ 1] In Subround[i:4b], if no correctm1 is input, it additionally outputssuppress at
out r0!.

[i+ 3] In Subround[i+ 2:4b], if a correctm3 is input, it additionally outputs(send;m) at
out r0!.

[i+ 6] It does not make an output.

Third-party submachinecm t0s;r;i: It acts likecm ts;r;i with the following change:

[j] In Subround[j�1:4b], it verifies thatj = i+5. For each correct inputcomplaint j;s,
it additionally outputs(send;m) at out t0! for the valuem it obtained during the
verification.

Verifier submachinecm v0s;r;i: It acts likecm vs;r;i with the following change:

[j] In Subround[j � 1:4b], it verifies thatj � i + 7. Then, ifcm vs;r;i would output
(received; (s; r; i); l;m), it outputsshow instead.

Output dispatching in Roundi: Sim takes the outputs of all submachine portsout s0s;r;j!, out r
0
s;r;j!,

out t0s;r;j!, andout v0s;r;j!, and puts them into the setin a i;(s;r;j) of the global output matrixin a i.
All other outputs of submachines (the network messages) are dispatched bySim just as by the

machinesMu. 3

Theorem 7.1 Let parameterspar 2 ParCM be given with� = 6. Let f : SysCM;real
par ! SysCM;id

par be
the function withf(MH;SH) = (fTHHg;SH) for all H 2 ACCCMpar . Then

SysCM;real
par �f;poly

sec SysCM;id
par ;

and this holds even in the blackbox sense. 2

Proof. Let a setH and thus a structure(MH;SH) and a port setP = �S c
real;H [P

0 be given. In the fol-
lowing, we writeSim(A) for the simulatorSimH;P (A) from Scheme 7.1, and also omit all other indices
H. Now let a configurationconf 1 = (M ;S ;H;A) 2 Conff (SysCM;real

par) with PortsA = P be given.
Recall that we can assume thatH is not clocked in Subrounds[i:1]. We claim thatconf 2 = (fTHg;S ;
H;Sim(A)) is an indistinguishable configuration forconf 1, i.e.,view conf 1

(H) � viewconf 2
(H).

25

TH Adversary Sim(A) TH

Round ths;r;i cm s0s;r;i A cm r0s;r;i ths;r;i

ini;s;r = ini;r;s =
(send, . . .) (receive, . . .)

[i.1]
�
(busy; s; l)
��������! �

(busy; r; l)
��������

[i.2]
�
m1;sim

������!

[i.3] (H)

[i.4]
��
ma

1

����!
 �
suppress or �
����������!

[i+1.1]

[i+1.2]

 ��
m2

����

[i+1.3] (H)

[i+1.4] �

receive
or suppress
���������
 ��

ma
2
����

[i+2.1]
�

(msg;m)
or �

�������!

[i+2.2]
��
m3

����!

[i+2.3] (H)

[i+2.4]
��
ma

3
����!
 ��

(send, m)
or �

���������!
[i+3.1]

[i+3.2]

 ��
m4

����

[i+3.3] (H)

[i+3.4] ��
ma

4
����

Round TH cm s0s;r;i A cm t0s;r;i TH

[i+4.1]

[i+4.2]
�
m5

� �!

������������!
[i+4.3] (H)

[i+4.4]

 ��

(send, m)
or �

���������!
[i+5.1]

[i+5.2]

 ��
m6

���

 ������������
[i+5.3] (H)

Round TH cm s0s;r;i A cm r0s;r;i TH

[i+5.4]

[i+6.1]

out i+6;s;r = out i+6;r;s =
(sent, . . .) (received, . . .)
or (failed, . . .) or (failed, . . .)

Figure 10: Simulation of a subprotocol run. Mainly the case withs; r 2 H and an unsuppressed run
is shown, but also all possible reactions on errors as signaled toTH. The symbol
 denotes switching
and “(H)” that of H. Messages with superscripta are those arriving at portsnetaw;u?.

26

Adversary Sim(A) TH

Round A cm v0

s;r;i ths;r;i
[j.1]

[j.2]

[j.3] (H)

[j.4]
�
m6 or m7

��������!
 �
show
����!

[j+1.1]

(received; : : :) or �

Figure 11: Simulation of the verification.

A. Overview. We show the stronger statementview conf 1
(H;A) � view conf 2

(H;A). Intuitively this
means that we compareM and the combination ofTH andSim. For this, we first show that the clocking
makes no difference.

The cryptographic proof ideas should then be fairly clear from the description of the simulator, but
we have to translate them into reduction proofs. Whether the suppression possibilities and timing are
the same may actually seem less clear; the timing is illustrated in Figures 10 and 11.

More rigorously, we define a partial function� from �-round prefixes of runs ofconf 2 for all � to
prefixes of runs ofconf 1 (for the samek and�) and show the following properties:

a) On the entire runs,� is defined for all but a negligible subset (ink).

b) It respects prefixes, i.e., if� is a prefix of��, then�(�) is a prefix of�(��).

c) If �(�) is defined, the joint view ofH andA in � equals that in�(�).

d) As far as� is defined, it retains probabilities: For allk and all prefix lengths�, the distri-
bution �(runconf 2;k;�) equals the conditional distribution of the image of� in the distribution
runconf 1;k;�.

By Properties a), c) and d), the views are even statistically indistinguishable for the classNEGL. This
implies the desired result (recall Definitions 5.2 and 5.3).24

Showing Part c) rigorously for composed automata with a state space this size is not trivial, even
without the exceptions arising from cryptographic aspects. First note that a run (or�-round prefix)�
is uniquely determined byk and the random valuesrand chosen by all machines of the configuration
(during the� rounds). Hence we only have to define a partial function�0 on those. We then have
deterministic configurations and have to prove equality of the views in the resulting runs�2;k;rand and
�1;k;�0(rand) (while the internal states are different). For this, we define a partial function rand between
reachable global states of the two configurations and show that the same input in corresponding states
leads to the same output and corresponding next states as long as� is defined.

We structure this proof by identifying a substructurestrucs;r;i of the real structure andstruc 0s;r;i
of the simulation for each slot(s; r; i). We show that different substructures do not interact except via
H andA and by using global keys (once they have obtained their different initial states.) One can then
define�0 and rand and prove their properties more or less separately for each substructure, i.e., they are
composed of functions�0s;r;i and rand ;(s;r;i) of random values used by, and states of, the substructures
(and identity functions on global parts).25

As the transition diagrams for the submachines are moderately straight-line, we carry out the reach-
ability analysis of global states of the substructures, the definition of�0s;r;i and rand ;(s;r;i), and the

24Nevertheless, we only obtain “�f;poly
sec ” because the properties only hold for polynomial-timeH andA.

25“More or less separately” means that, while the compositions are as said, the definitions of�0s;r;i and rand;(s;r;i) for
different slots are not completely independent.

27

correctness proof together by a parallel walkthrough throughstrucs;r;i andstruc 0s;r;i with a small num-
ber of cases. In most places, we map a new random valuerx used in the simulation to the same valuerx
in the real system, i.e.,�0 is defined componentwise onrand and is the identity on most components.
After the first time, we will only mention the definition of�0 where it is not the identity for a component,
and, in slight abuse of notation, we also call the component functions�0. Also, except for the first time,
we do not mention rand ;(s;r;i) at all; it simply maps the states that we consider at the same time on each
other.

In these walkthroughs, we collect the valuesrand for which we do not define�0 (and thus rand) in
the followingerror sets(we omit an indexk at each set for brevity):

� Forgeu with u 2 H [ftg (for the forgery of a signaturesigf of participantu),

� OwfBreaks;r ;i (for breaking the one-way function) with(s; r; i) 2 Slots imax (k), whereimax de-
notes a polynomial bounding the number of rounds with thisA andH,

� BindBreak (for breaking the binding property of the commitment scheme), and

� ComOwfBreaks;r ;i with (s; r; i) 2 Slots imax (k) (for breaking the one-way property of the com-
mitment scheme, Lemma 6.1).

At the end, we show that these error sets are negligible (and thus that Property a) holds) by global
reduction proofs with the security of the cryptographic primitives. (Slot-wise reductions are not possible
because the keys are common to all substructures.) For use in those reductions, the walkthroughs also
show the following properties:

e) The conditions defining the error sets are functions of the views ofH andA up to a round where�
is still defined.26 Together with Property c) this implies that the conditions can be verified in one
run�2;k;rand or �1;k;�0(rand) alone.

f) Membership in the error sets is efficiently verifiable, i.e., without significant overhead one can
simulate a run�2;k;rand or �1;k;�0(rand) and stop at the first occurrence of a condition that puts
rand in one (any or a specific one) of the error sets.

g) For each run in an error set, we identify a forged signaturesigf in the first case and similar values
for the other cases.

B. Clocking. We definedSim(A) in conf 2 as a combination based on a collection whereSim andA are
separate (we now call itconf 62) and a 6-subround clocking scheme�6. Henceviewconf 2

(H;A) equals
view conf 62

(H;A) except for subround renaming. Inconf 62, only Sim andTH are clocked in Subrounds
4b, 1, and 2a. LetTH + Sim denote the combination ofTH andSim where these subrounds are joined
(again according to Lemma 4.1 of [PSW00b]). Thenconf �2 = (TH + Sim;S ;H;A) is a configuration
with the standard clocking scheme which we can compare withconf 1, andview conf �2

(H;A) equals
view conf 62

(H;A) except for the subround renaming. In both renamings ofconf 62,H ends up in Subround
3 andA in 2 and 4. Hence

viewconf �2
(H;A) = viewconf 2

(H;A)

and in the following, we actually compareconf �2 andconf 1.
26In each case, the condition first becomes true by an output ofA to TH + Sim or M , respectively, and the views would

only become unequal whenTH+ Sim andM switch in Subround 1 of the next round.

28

C. Defining Substructures. We now define substructures containing all submachines that handle a
slot (s; r; i). This is illustrated in Figure 12.

By strucs;r;i, we denotecm ss;r;i, cm rs;r;i, cm ts;r;i, andcm vs;r;i. By struc0s;r;i, we denoteths;r;i,
cm s0s;r;i, cm r0s;r;i, cm t0s;r;i, cm v0s;r;i, a machineclks;r;i that only outputsstop in Roundi + 6, and
a machinediss;r;i that dispatches internally between the other machines. Its ports are as shown in
the figure, i.e.,struc 0s;r;i has the same free ports asstrucs;r;i. The dashed lines represent authentic
channels.27 If s 62 HS, cm ss;r;i andcm s0s;r;i are missing anddiss;r;i and the connections are modified
accordingly; and similarly forr 62 HR.

cm_ss,r,i

r2sa?
s2r!

out_s!
in_s?

t2s?
s2t!

s2v!

cm_rs,r,i

s2ra?
r2s!

out_r!
in_r?

t2r?

cm_s's,r,i cm_r's,r,i

S

A A

ths,r,i

in_a?
out_a!

in_th

S

cm_vs,r,i

out_v!

s2v?

cm_ts,r,i

s2t?
t2s! t2r!

cm_vs,r,i cm_t's,r,i'

clks,r,i

Global dispatching

Global dispatching Global dispatching

Global dispatching

diss,r,i

out_s!
in_s?

out_r!
in_r? out_v!

out_s'!
in_s'?

out_r'!
in_r'? out_v'! out_t'!

r2sa?
s2r!

t2s?
s2t!

s2v! s2ra?
r2s!

t2r? s2v?
s2t?
t2s!

t2r!

Figure 12: Substructuresstrucs;r;i andstruc 0s;r;i for s; r 2 H. The indexs; r; i of all ports has been
omitted. The dashed lines are authentic, but not private channels.

D. Initialization. The initialization is equal inSim and the machinesMu by construction, and hence
in the overall systems becauseTH and the specified ports are not involved. (The clocking becomes
identical by the combination ofTH + Sim in conf �2.) Hence on the random valuesrandglob used here
(the only ones outside substructures) we can indeed define�0 to be the identity function, and similarly
 rand on the global part of the state. We can now restrict ourselves to roundsi > 2 without considering
broadcasts again.

E. Correct Dispatching. We first show that all inputs at the portsinu? or at the network lead to identi-
cal inputs to eachstrucs;r;i andstruc0s;r;i. Similarly, we show that outputs from free ports ofstrucs;r;i or
struc0s;r;i lead to identical global outputs. Finally, we definediss;r;i and show that it dispatches correctly
as in the global simulation, and that the global dispatching in fact corresponds to the authentic channels.

Inputs at the specified ports:An input ini;s;r with s 2 HS; r 2 MR is dispatched to portin ss;r;i? of
cm ss;r;i by Ms and ofths;r;i by TH. An input ini;s;v = (show; (s; r; j)) is forwarded toin ss;r;j? of
cm ss;r;j andths;r;j, respectively. An inputini;r;s with r 2 HR is input toin rs;r;i? of cm rs;r;i or ths;r;i.
Note that this implies that inputs(send; : : :) at in ss;r;i? and any inputs atin rs;r;i? are only possible in
Roundi, and that their syntactic correctness has already been verified.

All other inputs atS are ignored. Furthermore, the only spontaneous action ofTH is to make inputs
stop; this has been built intoclks;r;i. The machinesMu andSim make no spontaneous actions.

27Recall that channels are no explicit components in our system model; the ports are named correspondingly. Of course
we have to show below that these connections have the same effects as the global dispatching when the ports are internal to
different machines. Recall also that for brevity we have omitted the replicated ports that our model would use for the authentic
channels.

29

Network in- and outputs:By construction,Sim dispatches network inputs, i.e., those at ports withnet

in their names, just like the machinesMu. Similarly, it collects outputs to network ports from the
submachines just like the machinesMu.

Outputs at the specified ports:TH dispatches outputs fromout ss;r;i! of ths;r;i to outs!, those from
out rs;r;i! to outr!, and those fromout vs;r;i! to outv!. The machinesMs, Mr, andMv do the same for
the corresponding ports instrucs;r;i. No other outputs at the specified ports are made in the real system
and byTH.

Definition and correctness ofdiss;r;i: In the “upward” direction, in Roundj Sim takes the outputs of the
submachine portsout s0s;r;i!, out r

0
s;r;i!, out t

0
s;r;i!, andout v0s;r;i!, and puts them into the setin aj;(s;r;i).

ThenTH dispatches precisely this set toin as;r;i? of ths;r;i. Hence here,diss;r;i can simply join the
output sets.28

In the “downward” direction,TH puts the outputs atout as;r;i! into out aj;(s;r;i). ThenSim dis-
patches them according to Figure 9; they all remain instruc0s;r;i. No other inputs are made at these ports
by Sim. Hence here,diss;r;i simply implements Figure 9.

Finally, we show that the authentic connections shown by dashed lines in Figure 12 are correct: All
outputs at a portu2ws;r;i! are dispatched tonetu;w! and transported tonetu;w?. Then they are dispatched
to u2ws;r;i? because they all have(s; r; i) as their first component (or leftmost leaf).

From now on, we consider the substructuresstrucs;r;i and struc 0s;r;i for one particular slot(s; r; i).
Hence we omit the indexs; r; i of the submachines and their ports for brevity. By “a machinecm x

receives a correct messagemj” we always mean that the message passes the verifications ofcm x

defined for its type. We have to distinguish three cases.

F. Comparison of Substructures

Case S: Correct Sender; Incorrect Recipient. We first comparestrucs;r;i andstruc 0s;r;i for s 2 HS

andr 2 AR. In this case, we have Figure 12 withoutcm r andcm r0.

1. States reached without inputsend: By the global dispatching, the only round wherecm s and th
(with the index(s; r; i)) can obtain an input(send; r; l;m) at portin s? is Roundi. If they do not, both
remain in their starting state forever and do not make any outputs; hencecm s0 does not get an input
(send; : : :) via dis either and also remains in its starting state. As the only inputs tocm t, cm t0, cm v,
andcm v0 are on authentic connections fromcm s andcm s0, respectively, they also never get inputs
and make outputs.

2. States reached on inputsend: If (send; r; l;m) is input atin s? of th in Roundi, it changes to State
s1 and outputs(busy; s; l) at out a!, which dis dispatches as(send; r; l;msim) to cm s0. Thuscm s

and cm s0 sendm1 andm1;sim , respectively. These messages only differ in the commitmentsc and
csim . We therefore define�0(rsim ; rtrans) = rS transt(csim ;msim ; rsim ;m), wherertrans is used if
random bits are needed in this process.29 By the chameleon property, the resultingc equalscsim , and
thusm1 = m1;sim in the corresponding states. Furthermore, the chameleon property implies that the
distribution of(c; rS) in �(runconf 2;k) equals that inrunconf 1;k, as required for Property d) of�.30

28As in the ideal system,ths;r;i must be clocked once for each such input. Hence it must be considered a submachine of
diss;r;i.

29Recall that we letcm s0 choose a valuertrans already in this round. Also note thatrS may depend on other slots viam,
which was chosen byH andA.

30Let us once mention how this first walkthrough step implies a definition of rand;(s;r;i): If we call the first state after
ps0 in Figure 5ps1, then we have shown that only states(th:(s1; l; m); cm s0:(ps1; l;msim ; rsim ; rtrans)) are reachable from
the initial state instruc0s;r;i, and defined their rand;(s;r;i)-image to becm s:(ps1; l;m) (with the samel;m). There may be
one more type of state component: the internal memory of the signature system for each secret key; these states are mapped
identically. This is possible because identical messages are signed.

30

Nom2. If the adversary does not respond with a correctm2 (the test is equal forcm s andcm s0 in the
given states), thencm s outputs(failed; (s; r; i)) atout s! in Roundi+6, while cm s0 immediately
sendssuppress via dis to th, which changes from States1 to s2. Thus, whenclk inputsstop in
Roundi + 6, th outputs(failed; (s; r; i)) at out s! as well. No network outputs are made in this
process, and all three machines end up in Statefailed.

Correct m2. If cm s andcm s0 receive a correctm2, cm s sendsm3, while cm s0 inputsreceive to th,
which changes from States1 to s3 and outputs(msg;m). Thuscm s0 never stops at this point, and
it sendsm3 still in Roundi+2 using the valuerS transt(c;msim ; rsim ;m), usingrtrans in the
process. By definition of�0, thisrS is also used bycm s.

No further actions ofcm s0 refer torsim andmsim . Hence after sendingm3, the behavior ofcm s

andcm s0 with respect to the network is identical. If they send a messagem5, it arrives atcm t

andcm t0 because these connections are authentic, and it passes the test by definition, so thatcm s

andcm s0 will obtain a correctm6. Thus in Roundi + 6, cm s andcm s0 either both enter the
statereceived or bothreceived0, andth entersreceived and remains in this state and inshowing.
In this round, bothcm s andth also output(sent; (s; r; i)) atout s!.

This covers all states reachable and inputs accepted bycm s, cm s0, andth as long as the only input
at in s? is (send; : : :). As the only inputs tocm t, cm t0, cm v, andcm v0 are on authentic connections
from cm s andcm s0, respectively, the same holds for those machines.

3. Reactions on inputshow: Now we consider an input(show; (s; r; i)) in Roundj at in s?. Machine
cm s considers this input if it is in Statereceived or received0, while th considers it in Statereceived or
showing. Above we showed that the machines enter these states under the same conditions in Round
i + 6, and thatcm s0 is then in the same state ascm s. Now th goes into Stateshowing and outputs
(busy; v), whichdis dispatches as(show; (s; r; i)) to cm s0. Hencecm s0 sends the same messagem6 or
m7 to cm v0 ascm s to cm v on authentic connections. By construction, these messages are accepted.
Thus cm v outputs(received; (s; r; i); l;m) in Roundj + 1, just like th does because it is in State
showing.31

Case R: Correct Recipient; Incorrect Sender. We now comparestrucs;r;i andstruc0s;r;i for r 2 HR

ands 2 AS. In this case, we have Figure 12 withoutcm s andcm s0.
In Parts 1 and 2 we consider all states reachable and inputs accepted except bycm v andcm v0.

1. States reached without inputreceive: By the global dispatching, the only round wherecm r andth
can obtain an input(receive; s; l) at port in r? is Roundi. If they do not, both remain in their starting
state forever and do not make any outputs; hencecm r0 does not get an input(receive; : : :) via dis either
and also remains in its starting state and does not make outputs.

If the adversary nevertheless inputs a correctm5 at s2t? of cm t and cm t0 in Round i + 5
(the only round where these machines accept inputs), this must contain a correct messagem2, i.e.
testr(m2) = ((s; r; i);m2; : : :). Then we letrand be in the setForger andsigf = m2. Note that no
other submachine signs a message starting((s; r; i);m2; : : :) with signr, and recall that tuple decom-
position is unambiguous. Hencecm t andcm t0 also do not make any outputs. (And recall that the
verifier submachines are considered separately below.)

2. States reached on inputreceive: If (receive; s; l) is input atin r?, thenth changes to Stater1 and
outputs(busy; r; l), which dis dispatches as(receive; s; l) to cm r0. Thuscm r andcm r0 wait for an
inputm1 in Roundi+ 1.

31In addition,cm v0 outputsshow, which is dispatched toth, butth ignores it, being in Stateshowing. This corresponds to
the fact that the trusted host specifies that showing receipts by a correct sender mustalwayswork.

31

Nom1. If the adversary does not send a correctm1, thencm r outputs(failed; (s; r; i)) at out r! in
Roundi + 6, while cm r0 immediately outputssuppress to th, which changes from Stater1 to
r2. Thus, whenclk inputsstop in Roundi + 6, th outputs(failed; (s; r; i)) at out r! as well and
changes into Statefailed. No network outputs are made in this process, andcm r, cm r0 andth
never accept any other inputs.

Again, if the adversary nevertheless inputs a correctm5 to cm t andcm t0 in Roundi+ 5, we let
rand be inForger andsigf = m2 for the messagem2 contained inm5.

m1 andm3. If cm r andcm r0 receive a correctm1, both sendm2. If they receive a correctm3 =
((s; r; i);m; rS) in Roundi + 3, both sendm4 andcm r0 outputs(send;m) at out r0!. This is
dispatched toth, which changes into Stater3. Thus bothcm r andth output(received; (s; r; i);m)
at out r! in Roundi+ 6, and all three make no further network outputs or accept other inputs.

If the adversary additionally inputs a correctm5 to cm t andcm t0 in Roundi+5, they both output
m6 at t2r!. Additionally, cm t0 outputs(send; : : :) at out t0!, but th ignores it, being already in
Stater3.

m1, nom3, but m5. If cm r andcm r0 do not receive a correctm3 (after sendingm2), both wait until
Roundi+ 6.

If cm t and cm t0 obtain a correctm5 in Round i + 5, they both sendm6, and cm t0 out-
puts (send;m) at out t0! for them contained inm5. Thusth changes to Stater3 and outputs
(received; (s; r; i);m) at out r! in Roundi + 6. As the channel fromcm t to cm r is authentic,
cm r obtainsm6 as sent bycm t and also outputs(received; (s; r; i);m) at out r!.

m1, nom3, nom5. In this case, ifcm r andcm r0 obtain a correctm6 in Roundi + 6, we letrand be
in Forge t andsigf = m6. Note that the message signed inm6 starts((s; r; i);m6; : : :) and no
other submachine signs such a message withsignt.

Otherwise,cm r outputs(failed; (s; r; i)) in Roundi+6, and so doesth (changing to Statefailed)
because we saw that it is still in Stater1.

3. Inputs tocm v andcm v0: The remaining accepted inputs are at the portss2v? of cm v andcm v0;
they must be made in a roundj � i + 7 and must be correct receipts. (Thus primarily, this part of the
proof proves that receipts are unforgeable and fixed.) We now denote receipts and their parts bym0

i, and
messages handled by the other submachines bymi.

If a correct messagem0
6 orm0

7 arrives,cm v outputs(received; (s; r; i); l0;m0) atout v!, while cm v0

outputsshow at out v0!, which is dispatched toin a?. Thenth also outputs(received; (s; r; i); l0;m0) at
out v! if it is in Statereceived with the parametersl = l0 andm = m0. We show that this is true except
in certain (rare) cases.

l0 = l. Both a correctm0
6 andm0

7 must contain correct messagesm0
1 andm0

2. If cm r andcm r0 did
not send a messagem2 with the same content((s; r; i);m2;m1; pR), let rand be inForger and
sigf = m0

2. Note that no other submachine signs a message starting((s; r; i);m2; : : :) with signr.

From now on, we consider that they sentm2 and thusm0
1 = m1. The verifications incm r and

cm r0 imply that the valuel0 in m1 equalsl as it was input tocm r andcm r0, and thus toth.
Furthermore,cm r0 makes no outputsuppress and thusth never changes to Stater2.

Statereceived.

i. If a correctm0
7 is shown, it contains a correctm0

4, in particular a valuer0R with owf(r0R) =
pR. If cm r andcm r0 did not sendm4, let rand be in the setOwfBreaks;r ;i . Note that the
original rR is internal tocm r andcm r0 and only used in the assignmentpR owf(rR).

32

If cm r0 sentm4, it must have received a correctm3, i.e., ((s; r; i);m; rS) with m 2 Msg

and comt(m; rS) = c for the fourth component,c, of m1. Then it output(send;m) at
out r0!, which causedth to change to Stater3, and thus in Roundi+6 to received, with this
parameterm.

ii. If a correctm0
6 is shown, butcm t andcm t0 did not sendm6, let rand be inForget and

sigf = m0
6. Note that no other submachine signs a message starting((s; r; i);m6; : : :) with

signt.

If cm t and cm t0 sentm6, they must have received a correct triple(m00
1 ;m

00
2 ;m

00
3). If

the content ofm00
2 is unequal to that ofm2 sent bycm r, we let rand be inForger with

sigf = m00
2 . Otherwise, we havem00

1 = m1 andm00
3 = ((s; r; i);m; rS) with m 2 Msg

andcomt(m; rS) = c for the fourth component,c, of m1. Thencm t0 output (send;m).
This causedth to change to Stater3, and thus in Roundi + 6 to received, with this param-
eterm, except if it is already in Stater3 with a parameterm00 6= m. This would imply
that cm r0 output (send;m00), which it does only after receiving a correctm3 containing
m00; r00S with comt(m

00; r00S) = c = comt(m; rS). We then letrand be inBindBreak and
bindbreak = (m; rS ;m

00; r00S).

m0 = m. Both m0
6 andm0

7 must also contain a correctm0
3, i.e., ((s; r; i);m0; r0S) wherem0 2 Msg

andcomt(m
0; r0S) = c for the fourth component,c, of m1. Thism0 is indeed the one thatcm v

outputs.

If m0 6= m, let rand be in the setBindBreak andbindbreak = (m; rS ;m
0; r0S) with m; rS from

m3 orm0
3 as derived under “Statereceived”.

Case SR: Correct Sender and Recipient. Finally, we comparestrucs;r;i andstruc0s;r;i for s 2 HS

andr 2 HR. In this case, we have Figure 12 with all machines. As in the first case, inputs tocm t,
cm v andcm t0, cm v0 can only come fromcm s andcm s0, respectively.

1. States reached without inputsend: As in the first two cases,cm s, cm r andth can only obtain inputs
(send; r; l;m) and(receive; s; l0) at portsin s? and in r? in Roundi. If neither of these inputs occurs,
they remain in their starting state forever without making any outputs, and so docm s0 andcm r0.

2a. Input send alone: If (send; r; l;m) is input, but(receive; s; l0) is not, thenth changes to State
sr1 and outputs(busy; s; l), which dis dispatches as(send; r; l;msim) to cm s0, while cm r0 obtains
no input. cm s andcm s0 then sendm1 andm1;sim , respectively. Precisely as in Case S, we define
�0 such thatm1 = m1;sim . cm r and cm r0 never leave their starting state and send nothing. If the
adversary now inputs a correctm2 to cm s andcm s0, let rand be inForger andsigf = m2. (As before,
note that no other submachine signs a message((s; r; i);m2; : : :) with signr.) Otherwise,cm s outputs
(failed; (s; r; i)) atout s! in Roundi+6, and so doesth, being in Statesr1. No further outputs are made,
or inputs accepted, in this process, andcm s, cm s0, andth are in Statefailed.

2b. Input receive alone: If (receive; s; l) is input, but(send; : : :) is not, th changes to Statesr2 and
outputs(busy; r; l), which dis dispatches as(receive; s; l) to cm r0. Thencm r andcm r0 wait for m1,
while cm s andcm s0 remain in their starting states without making any outputs. If the adversary inputs
a correctm1 to cm r andcm r0, let rand be inForges andsigf = m1. Note that no other submachine
signs a message((s; r; i);m1; : : :) with signs. Otherwise,cm r outputs(failed; (s; r; i)) at out r! in
Roundi+ 6 and so doesth, being in Statesr2. No further outputs are made, or inputs accepted, in this
process.

2c. Different labels:If inputs (send; r; l;m) and (receive; s; l0) with l 6= l0 are made,th changes to
Statesr3 and makes outputs(busy; s; l) and(busy; r; l0), which are dispatched as(send; r; l;msim) and
(receive; s; l0). Hencecm s andcm s0 sendm1 andm1;sim . Precisely as in Case S, we define�0 such
thatm1 = m1;sim . If the adversary now inputs anm0

1 to cm r andcm r0 that passes their test withl0

33

(whilem1 containsl), let the run be inForges andsigf = m0
1. Otherwise,cm r andcm r0 do not send

any messages. If the adversary can then input a correctm2 to cm s andcm s0, let rand be inForger and
sigf = m2. Otherwise,cm s andcm s0 do not send further messages either, andcm s andcm r output
(failed; (s; r; i)) in Roundi+ 6. So doesth, being in Statesr3. cm s, cm s0, andth are in Statefailed.

2d. Two matching inputs:Finally, let inputs(send; r; l;m) and(receive; s; l) be made. Thenth goes to
Statesr4 and (after outputsbusy and dispatching),cm s andcm s0 sendm1 = m1;sim , respectively.

No correctma
1. If the adversary does not forward a correctma

1 to cm r andcm r0, thencm r outputs
(failed; (s; r; i)) in Roundi+6, while cm r0 outputssuppress, which causesth to change to State
sr3 and thus to output(failed; (s; r; i)) at bothout s! andout r! in Roundi + 6. If the adversary
inputs a correctm2 to cm s andcm s0 in Roundi + 2, let rand be inForger andsigf = m2.
Otherwise,cm s also outputs(failed; (s; r; i)) in Roundi+ 6, and no machine makes any further
output or considers inputs.cm s, cm s0, andth are in Statefailed.

Correct ma
1, no correctma

2. If the adversary forwards a correctma
1 to cm r andcm r0, both sendm2.

If the valueca in ma
1 differs fromc in m1, let rand be inForges andsigf = ma

1. Thus from now
on, we can assumeca = c.

If no correctma
2 is forwarded by the adversary,cm s outputs(failed; (s; r; i)) in Roundi + 6,

while cm s0 inputssuppress to th, which changes to Statesr3 and thus tofailed in Roundi + 6,
outputting(failed; (s; r; i)) at out s! andout r!. They do not make further outputs or consider
inputs.

If the adversary nevertheless inputs a correctma
3 to cm r and cm r0, let rand be in

ComOwfBreaks;r ;i . Note thatma
3 must contain values(ma; raS) with c = comt(m

a; raS), and
that the valuersim from the assignment(c; rsim) comrt(msim) in cm s0, and similarlyrS in
cm s, has not yet been used anywhere else.

Otherwise,cm r and cm r0 wait for m6, but this does not come: It could only come over an
authentic connection fromcm t andcm t0, and those only react on a message over an authentic
connection fromcm s andcm s0, respectively. Hencecm r andcm r0 also do not send further
messages, andcm r outputs(failed; (s; r; i)) at out r! as well.

Correct ma
1 andma

2. If the adversary forwards a correctma
2, cm s sendsm3, while cm s0 first only

outputsreceive at out s0!, which is dispatched toth. Thusth changes from Statesr4 to sr5 and
outputs(msg;m), which is dispatched tocm s0. Thencm s0 sendsm3 = ((s; r; i);m; rS) as well
(still in the same round). Ifma

2 contains a valuepaR 6= pR, let rand be inForger andsigf = ma
2.

Otherwise, we can now speak of one fixedpR.

Now th will output (sent; (s; r; i)) at out s! and (received; (s; r; i);m) at out r! in Roundi +
6 and from then on always be in Statereceived or showing. Furthermore, the behavior of all
corresponding machines with respect to the network is clearly identical from now on, andcm s

andcm s0 enter the same final state. Hence only the final states and outputs ofstrucs;r;i remain
to be derived.

i. If the adversary does not forward a correctma
3, thencm r andcm r0 do not sendm4 and wait

for m6. If the adversary nevertheless inputs a correctma
4 to cm s andcm s0, it must contain

an raR with owf(raR) = paR = pR. Then letrand be inOwfBreaks;r ;i and note that the
originalrR is internal tocm r andcm r0 and only used in the one assignmentpR owf(rR).
Otherwise,cm s sendsm5. It arrives atcm t because the connection is authentic and passes
the test by construction. Hencecm t sendsm6 to cm s and cm r, again over authentic
connections. Hence they make outputs(sent; (s; r; i)) at out s! and(received; (s; r; i);m)
at out r! in Roundi+ 6 as desired, andcm s is in Statereceived0.

34

ii. Now let the adversary input a correct messagema
3 = ((s; r; i);ma; raS) to cm r. If

ma 6= m, then comt(m
a; raS) = comt(m; rS) = ca = c. Then let rand be in

BindBreak and bindbreak = (m; rS ;m
a; raS). Otherwise,cm r now storesm and out-

puts (received; (s; r; i);m) in Roundi + 6. Thencm s either obtains a correctma
4, or it

sendsm5 and getsm6 as in Case i. In both cases, it outputs(sent; (s; r; i)) in Roundi + 6
and changes to Statereceived or received0.

3. Reactions on inputshow. The argument for an input(show; (s; r; i)) is identical to Case S, except
that Statesr5 plays the role of States3.

G. Final Reductions. We have now carried out the program described in Part A, except that it remains
to be shown that the sequence of unions of the error sets (for which the mappings are not defined) has
negligible probability (ink). Written with the indexk, which was so far omitted for brevity, these
sets areForgeu;k with u 2 H [ftg, OwfBreakk =

S
(s;r;i)2Slots imax (k)

OwfBreaks;r ;i;k , BindBreakk ,

andComOwfBreakk =
S

(s;r;i)2Slotsimax (k)
ComOwfBreaks;r ;i;k . This is a constant number of sets

(independent ofk; this is why we took the two unions). Hence if each sequence has a negligible
probability, then so has the sequence of unions.

Hence we now assume for contradiction that one sequence has a larger probability.

1. (Forgeu;k)k2N for a certainu 2 H[ftg. We construct an adversaryAsig against the signer machine
Sig from Definition 6.1. It simulates the configurationconf �2 using the public keytest obtained from
Sig as testu. I.e., it runs this configuration withk as the initial state of each machine and a random
valuerand chosen during the run as usual, except that it sends every messagemj to be signed with
signu to Sig instead and uses the result as the signature.32 In addition, it keeps track of the conditions for
puttingrand in Forgeu;k . (By Properties e) and f) from Part A they can be verified efficiently onconf �2
alone.) If one of them is fulfilled,Asig outputs the designated valuesigf as its forged signature. In each
case, it was already shown in the walkthrough thatsigf is indeed a valid signature fortestu and that the
contained messagemf was not signed by the given submachine or any other simulated machine, i.e.,
Asig did not askSig to signmf .

Hence the success probability ofAsig for eachk is at least the probability of the setForgeu;k , which
is the desired contradiction.

2. (OwfBreak k)k2N . We construct an adversaryAowf as in Definition 6.2. On input(1k; p), it first
chooses a slot(s; r; i) 2 Slots imax (k) randomly. Then it simulatesconf �2 using the givenp aspR in the
submachinecm r0s;r;i, instead of settingpR = owf(rR) for randomrR. It then checks if the condition
for puttingrand intoOwfBreaks;r ;i ;k is fulfilled. (There is one such condition each in Item i. of Case R
and Case SR, and(s; r; i) fixes which of them applies, if any.) If yes, a valuer0R (calledraR in the second
case) withowf(r0R) = pR = p is obtained, andAowf outputs it. It was already shown in the walkthroughs
that the (now unknown) valuerR was not used outside the replaced assignmentpR = owf(rR) up to
this point; hence the simulation is possible.

Hence for anyrand 2 OwfBreak s0;r0;i0;k for a slot (s0; r0; i0) 2 Slots imax (k), the probability that
Aowf is successful in the sense of Definition 6.2 for this valuerand is at leastjSlots imax (k)j

�1. (Because
Aowf is certainly successful if(s; r; i) = (s0; r0; i0).) The overall success probability ofAowf is therefore
at least(nSnRimax (k))

�1 times the probability of the setOwfBreakk . As imax (k) is polynomial, this is
still not negligible.

3. (BindBreakk)k2N . We construct an adversaryAbind as in Definition 6.3a. It obtains a public com-
mitment keypkC;u, which it uses aspkC;t in a simulation. However, without the secret key, it cannot
executetranst. Hence we letAbind simulate the real configurationconf 1 directly, choosing the random

32There is no clocking problem although we defined thatSig signs only one message per round becauseAsig can clock its
submachines itself, i.e., the rounds of the signature attack and of the simulated certified mail system are different.

35

valuesrand 0 when needed. By Property d) from Part A, this gives the same probability distribution as
simulating�1;k;�0(rand) as far as it is defined.Abind keeps track whether the conditions forBindBreakk
are fulfilled; this can be done efficiently on a run�1;k;�0(rand) by Properties e) and f). Recall that there
were two conditions at the end of Case R and one at the end of Case SR. Each time,Abind outputs the
designated tuplebindbreak , for which we have already shown that it fulfils the condition from Defini-
tion 6.3a.

Hence the success probability ofAbind for all k is at least the probability of the setBindBreakk ,
which is the desired contradiction.

4. (ComOwfBreak k)k2N . We construct adversary algorithmsA1, A2 as in Lemma 6.1b. On input
(1k; pkC;u), A1 first chooses a slot(s; r; i) 2 Slots imax (k) randomly. Then it starts simulatingconf 1,
using the given commitment keypkC;u as pkC;t. If the (simulated)H inputs (send; r; l;m) at ins?
in Roundi, thenA1 outputs thism as its ownm and its entire state asaux . ThusA2 can continue
the simulation, using its additional inputc as the commitmentc in m1 for this slot (s; r; i), instead
of choosing it as(c; rS) comrt(m). If the condition forComOwfBreaks;r ;i;k (in Case SR under
“Correctma

1, no correctma
2”) is fulfilled, A2 outputs(ma; raS). We have already shown that this fulfils

the condition from Lemma 6.1b and thatrS (now unknown) is not used so that the simulation is possible.
Hence, similar to Case 2, the overall success probability ofA1 andA2 is at least(nSnRimax (k))

�1

times the probability ofComOwfBreakk and thus still not negligible.

Hence we have shown that if any sequence of error sets had more than negligible probability, we could
break one of the underlying cryptographic primitives. This finishes the proof.

8 Conclusion

We have proven the security of an efficient certified-mail system in the framework of a general simulata-
bility definition. Apart from the value for certified mail, we believe that this is convincing evidence that
general simulatability definitions, in particular that from [PSW00b], are a useful basis for specifying
and proving the security of practical reactive systems.

We have also shown how further properties of the protocol can then be derived from the ideal system
used as a specification by applying a theorem on the preservation of integrity properties from [PW00].
This is one step in a program to link cryptographic systems and abstract models accessible to formal
methods. However, actual formal methods remain to be applied. The first step is to express the ideal
system in a standard specification language.

Orthogonally to the primary goals of the paper, we have tried to make the proofs really rigorous.
The typical cryptographic proof sketches are often not convincing to the formal-methods community
(and some not at all), so that one even sometimes meets the misconception that cryptography cannot
provide any strict protocol proofs. This rigorosity implies that large parts concern “boring” details
like dispatching and walkthroughs through many cases. The dispatching could easily be defined and
proven once for a large class of systems.33 However, the walkthroughs are system-specific, and they are
typical proof parts that machines should do better than humans. Hence we hope that the abstraction (i.e.,
definition of corresponding ideal systems) can in the future already be applied at a lower level, so that
the walkthroughs can be made with the abstractions.34 The composition theorem from [PW00] would
then imply that the real protocol is secure whenever the version with the abstract primitives is secure.

33These would be systems with subprotocols with a finite number of participants per subprotocol, subprotocol runs identified
by some transaction IDs (here the slot numbers), and transaction IDs in all network messages. The subprotocol runs are similar
to the “oracles” in [BR94].

34An approach of this type is [AR00], although not in the context of simulatability definitions.

36

Acknowledgments

We thankVictor ShoupandMichael Steinerfor interesting discussions.

References

[AR00] Martı́n Abadi, Phillip Rogaway: Reconciling Two Views of Cryptography (The Compu-
tational Soundness of Formal Encryption); to appear at IFIP International Conferences on
Theoretical Computer Science (IFIP TCS2000), Sendai, Japan, August 2000.

[ASW97] N. Asokan, Matthias Schunter, Michael Waidner: Optimistic Protocols for Fair Exchange;
4th Conference on Computer and Communications Security, ACM, New York 1997, 6–
17.

[ASW00] N. Asokan, Victor Shoup, Michael Waidner: Optimistic Fair Exchange of Digital Signa-
tures; IEEE Journal on Selected Areas in Communications 18/4 (2000) 593–610.

[B83] Manuel Blum: How to Exchange (Secret) Keys; ACM Transactions on Computer Systems
1/2 (1983) 175–193.

[B91] Donald Beaver: Secure Multiparty Protocols and Zero Knowledge Proof Systems Toler-
ating a Faulty Minority; Journal of Cryptology 4/2 (1991) 75–122.

[BBM00] Mihir Bellare, Alexandra Boldyreva, Silvio Micali: Public-Key Encryption in a Multi-
user Setting: Security Proofs and Improvements; Eurocrypt 2000, LNCS 1807, Springer-
Verlag, Berlin 2000, 259–274.

[BCC88] Gilles Brassard, David Chaum, Claude Cr´epeau: Minimum Disclosure Proofs of Knowl-
edge; Journal of Computer and System Sciences 37 (1988) 156–189.

[BCP88] Jurjen Bos, David Chaum, George Purdy: A Voting Scheme; unpublished manuscript,
presented at the rump session of Crypto ’88.

[BD84] Andrei Z. Broder, Danny Dolev: Flipping coins in many pockets (Byzantine agreement
on uniformly random values); 25th Symposium on Foundations of Computer Science
(FOCS), IEEE, 1984, 157–170.

[BDM98] Feng Bao, Robert Deng, Wenbo Mao: Efficient and Practical Fair Exchange Protocols
with Off-Line TTP; Symposium on Research in Security and Privacy, IEEE, 1998, 77–
85.

[BGMR90] Michael Ben-Or, Oded Goldreich, Silvio Micali, Ronald L. Rivest: A Fair Protocol for
Signing Contracts; IEEE Transactions on Information Theory 36/1 (1990) 40–46.

[BR94] Mihir Bellare, Phillip Rogaway: Entity Authentication and Key Distribution; Crypto ’93,
LNCS 773, Springer-Verlag, Berlin 1994, 232–249.

[C00] Ran Canetti: Security and Composition of Multiparty Cryptographic Protocols; Journal
of Cryptology 13/1 (2000) 143–202.

[CHP92] David Chaum, Eug`ene van Heijst, Birgit Pfitzmann: Cryptographically Strong Undeni-
able Signatures, Unconditionally Secure for the Signer; Crypto ’91, LNCS 576, Springer-
Verlag, Berlin 1992, 470–484.

[D82] Dorothy Denning: Cryptography and Data Security; Addison-Wesley, Reading 1982;
reprinted with corrections, January 1983.

37

[D88] Ivan Bjerre Damg˚ard: Collision free hash functions and public key signature schemes;
Eurocrypt ’87, LNCS 304, Springer-Verlag, Berlin 1988, 203–216.

[G84] Oded Goldreich: Sending Certified Mail using Oblivious Transfer and a Threshold
Scheme; Technion - Israel Institute of Technology, Computer Science Department, Tech-
nical Report, 1984.

[GJM99] Juan A. Garay, Markus Jakobsson, Philip MacKenzie: Abuse-Free Optimistic Contract
Signing; Crypto ’99, LNCS 1666, Springer-Verlag, Berlin 1999, 449–466.

[GL91] Shafi Goldwasser, Leonid Levin: Fair Computation of General Functions in Presence of
Immoral Majority; Crypto ’90, LNCS 537, Springer-Verlag, Berlin 1991, 77–93.

[GM84] Shafi Goldwasser, Silvio Micali: Probabilistic Encryption; Journal of Computer and Sys-
tem Sciences 28 (1984) 270–299.

[GMR 88] Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks; SIAM Journal on Computing 17/2 (1988)
281–308.

[GMR89] Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of Inter-
active Proof Systems; SIAM Journal on Computing 18/1 (1989) 186–207.

[HM00] Martin Hirt, Ueli Maurer: Player Simulation and General Adversary Structures in Perfect
Multiparty Computation; Journal of Cryptology 13/1 (2000) 31–60.

[L96] Nancy Lynch: Distributed Algorithms, Morgan Kaufmann, San Francisco 1996.

[LMMS98] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov: A Probabilistic Poly-Time Framework
for Protocol Analysis; 5th Conference on Computer and Communications Security, ACM,
New York 1998, 112–121.

[M97] Silvio Micali: Certified E-Mail with Invisible Post Offices—or—A Low-Cost, Low-
Congestion, and Low-Liability Certified E-Mail System; presented at RSA 97.

[MR92] Silvio Micali, Phillip Rogaway: Secure Computation; Crypto ’91, LNCS 576, Springer-
Verlag, Berlin 1992, 392–404.

[P92] Torben Pryds Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing; Crypto ’91, LNCS 576, Springer-Verlag, Berlin 1992, 129–140.

[P93] Birgit Pfitzmann: Sorting Out Signature Schemes; 1st Conference on Computer and Com-
munications Security, ACM, New York 1993, 74–85.

[PSW00a] Birgit Pfitzmann, Matthias Schunter, Michael Waidner: Cryptographic Security of Reac-
tive Systems; Workshop on Secure Architectures and Information Flow, Electronic Notes
in Theoretical Computer Science (ENTCS), March 2000,http://www.elsevier.
nl/locate/entcs/volume32.html .

[PSW00b] Birgit Pfitzmann, Matthias Schunter, Michael Waidner: Secure Reactive Systems; IBM
Research Report RZ 3206 (#93252) 02/14/2000, IBM Research Division, Zurich, May
2000.

[PW00] Birgit Pfitzmann, Michael Waidner: Composition and Integrity Preservation of Secure
Reactive Systems; accepted for 7th ACM Conference on Computer and Communication
Security, Athens, November 2000. Preliminary version as IBM Research Report RZ 3234
(#93280) 06/12/00, IBM Research Division, Zurich, June 2000.

38

[R83] Michael O. Rabin: Transaction Protection by Beacons; Journal of Computer and System
Sciences 27/ (1983) 256–267.

[RS92] Charles Rackoff, Daniel R. Simon: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack; Crypto ’91, LNCS 576, Springer-Verlag, Berlin 1992,
433–444.

[S00] Matthias Schunter: Optimistic Fair Exchange; PhD thesis (submitted); Universit¨at des
Saarlandes, Saarbr¨ucken, February 2000.

[VV83] Umesh V. Vazirani, Vijay V. Vazirani: Trapdoor Pseudo-random Number Generators, with
Applications to Protocol Design; 24th Symposium on Foundations of Computer Science
(FOCS), IEEE, 1983, 23–30.

[Y82] Andrew C. Yao: Protocols for Secure Computations; 23rd Symposium on Foundations of
Computer Science (FOCS), IEEE, 1982, 160–164.

[Y82a] Andrew C. Yao: Theory and Applications of Trapdoor Functions; 23rd Symposium on
Foundations of Computer Science (FOCS), IEEE, 1982, 80–91.

[ZG97] JianYing Zhou, Dieter Gollmann: An Efficient Non-repudiation Protocol; 10th Computer
Security Foundations Workshop, IEEE, Los Alamitos 1997, 126–132.

39

