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Abstract

This paper presents a novel scheme for parallel packet classi�cation. The basic idea behind
the scheme, which di�erentiates it from other parallel classi�cation schemes, is that the re-
sults of parallel range searches on di�erent packet header segments embed classi�cation rule
information in the form of pre�xes. The overall classi�cation result can then be determined by
applying a conventional longest matching pre�x search on these intermediate search results,
which are interleaved in a speci�c order. This provides two key advantages over other methods.
First, the storage requirements can be reduced signi�cantly, which is an essential prerequisite
for scaling beyond a couple of thousand rules. Second, the assignment of intermediate result
values becomes more exible, which makes it possible to perform dynamic updates for at least
a selected subset of the classi�cation rules.



1 Introduction

Signi�cant e�orts are being undertaken to transform the current Internet, in which all packets
receive the same best-e�ort service, into a network in which new services such as Integrated
Services and Di�erentiated Services dedicate available network resources di�erently over packet
streams in order to provide certain transmission and delivery guarantees. To enable these
types of services routers must be able to perform multi-�eld packet classi�cation function at
wire-speed.

Packet classi�cation is the problem of searching among multiple rules for the one with the
highest priority that matches a packet header. A rule is said to match a packet header if
all the conditions speci�ed by that rule are met by the actual values of �elds in the given
packet header. Rules conditions are typically expressed as exact match, pre�x match and
range match operators on IP source and destination addresses, TCP source and destination
port numbers, protocol type and other �elds.

Packet forwarding for traditional best-e�ort service is based on searching a routing table for
the longest matching pre�x of one �eld, the IP destination address. This problem is considered
to be solved, as can be seen from the large number of publications in the past few years. In
contrast, only a few methods for packet classi�cation have been published, which have in
common that they are limited to a few thousand classi�cation rules and do not support fast
dynamic updates. Packet classi�cation is a much harder problem than conventional routing
table search, due to the much larger part of the packet header that forms the input to the
classi�cation operation. The �elds upon which the classi�cation rules are speci�ed can cover
more than one hundred bits, resulting in an enormous input value space. As a consequence,
one of the main problems in realizing a packet classi�cation scheme that supports several
thousand rules at wire-speed is the storage required to construct a data structure that allows
a fast search to be performed on the entire input value space to determine the highest priority
rule that matches. In addition, complex relations that occur within this data structure due to
overlapping conditions of multiple rules make it diÆcult to create an eÆcient data structure
that can be updated incrementally.

As it is currently not clear what kind of characteristics the classi�cation rules are expected
to have even in the near future, a general packet classi�cation scheme must meet wire-speed
performance for worst-case input and rule conditions in order not to risk being outdated by
future internet developments.

This paper presents a new scheme for parallel packet classi�cation. Parallel packet classi-
�cation involves multiple parts of the packet header to be processed in parallel, which can be
used to exploit parallelism available in custom hardware implementations in order to obtain
high classi�cation performance. This in contrast to classi�cation schemes such as [1] that
process various parts of the packet header in a sequential way. The paper is organized in the
following way. Section 2 describes the basic elements of a parallel packet classi�cation scheme.
Section 3 discusses previous work on parallel classi�cation schemes. Section 4 introduces the
novel classi�cation scheme, which is the main contribution of this paper. Section 5 discusses
the storage and performance aspects of the scheme. The �nal Section 6 summarizes the paper.
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Figure 1: d-way parallel packet classi�cation.

2 Concept of Parallel Packet Classi�cation

Figure 1 illustrates the concept of d-way parallel packet classi�cation in which d distinct
segments of the packet header are processed in parallel. Each segment can consist of any not
necessarily contiguous part of the packet header, which may cover multiple packet header �elds
entirely or partially. The concept of parallel packet classi�cation discussed here is partially
based on [2] and [3].

Rules are typically speci�ed as operators such as exact match, pre�x match and range
match, applied on various packet header �elds. By `projecting' the rule speci�cation on (the
�elds covered by) a header segment, it can be determined for which segment values the rule
certainly will not apply, and for which values of the header segment the rule might apply
(which is also dependent on the values of the other header segments). The values for which a
rule might apply are denoted as a rule range, which is not necessarily a contiguous range.

In Figure 1 a range search is performed on each header segment. The result of a range
search operation is called a range vector. Based on the d range vectors, it can be determined
within which rule ranges the header segment values fall and consequently, the highest priority
rule that is applicable to the packet header. This process is called rule search. The output of
the rule search is a rule identi�cation (ID), which is the packet classi�cation result.

3 Previous Work

Two papers on parallel packet classi�cation schemes have been published, a classi�cation
scheme based on bit-parallelism by Lakshman and Stiliadis [2] and a scheme called recursive
ow classi�cation (RFC) by Gupta and McKeown [3]. Both schemes employ parallel range
searches on multiple distinct header segments as shown in Figure 1. However, none of the
schemes speci�es the number and location of the segments. As the RFC scheme applies range
searches based on table indexing for which the table size grows quadratically with the index
size, the segments used by this scheme are likely to be smaller than those of the bit-parallelism
scheme, which applies binary search operations based on integer comparators and counters.
Both schemes derive for each segment a set of non-overlapping ranges from the rule ranges for



that segment.
The two schemes are in a sense extremes with regard to the rule information that is em-

bedded in the range vectors that result from the parallel range searches, and the way in which
this information is processed to determine the classi�cation result. The range vectors of the
bit-parallelism scheme include bit ags for all rules, which are ordered according to the rule
priorities. Each range vector indicates for all rules whether the segment value is located within
the corresponding rule range. As all necessary information is provided by the range vectors,
a simple logical AND operation can be used to determine the applicable rule with the highest
priority.

The range vectors used by the RFC scheme provide no information regarding the rule ranges
in which a segment value is located nor their priorities. Each range vector only consists of
a unique range identi�cation. As a result a more complex rule search operation is required,
which involves a large amount of precomputed information regarding the highest priority rules
that apply for each possible combination of d range identi�cations. If there are more than two
header segments, the rule search operation can be performed in multiple steps, which allows
the storage requirement to be minimized using certain rule characteristics.

Storage Requirements

The maximum number of ranges that have to be tested by each range search operation is
determined by the boundaries of the rule ranges and has a maximum value of 2n + 1. This
results in a worst-case total number of range vectors equal to (2n+1)d that have to be stored
for d-way parallel classi�cation. The range vectors of the bit-parallelism scheme consist of n
bits to support n rules. The range vectors of the RFC scheme, which only provide unique
range identi�ers within one dimension, consist of dlog(k)e bits for a dimension with k ranges.
Consequently the worst-case storage requirements for storing all range vectors scales according
to n2 with the number of rules for the bit-parallelism scheme and according to n log(n) for
the RFC scheme. The latter worst-case storage requirements can also be obtained for the bit-
parallelism scheme by storing the range vectors in a di�erent way, however, this will decrease
the classi�cation performance [2]. The actual storage required for the range searches depends
on the algorithm and corresponding data structure that are used. In order to perform a `fair'
comparison, only the storage of the range vectors is considered here.

The RFC scheme needs to store additional information for the rule search. Since this infor-
mation basically consists of the classi�cation result for each possible combination of d range
vectors resulting from d range searches, the storage required for the rule search could in the
worst-case scale according to nd with the number of rules. However, the RFC scheme involves
special heuristics to reduce these storage requirements by exploiting common characteristics
observed in existing rule databases. For this reason, it is very diÆcult to estimate the storage
requirements of the RFC scheme for general rule databases.

Classi�cation Performance

Since both schemes could apply the same algorithms to perform the parallel range searches,
the di�erence in classi�cation performance will be related to the rule search operation. The
rule search operation of the bit-parallelism scheme consists of a logical AND-operation of d
range vectors of n bits. The main factor determining the classi�cation performance is the
memory bandwidth, which dictates the speed at which the range vector bits can be read from



memory. Therefore, to support several thousands of rules at wire-speed, the bit-parallelism
scheme requires fast memories with wide data paths (e.g., embedded memories). For the
same memory technology, the classi�cation performance is limited by the number of rules.
By exploiting pipelining, the RFC scheme provides a classi�cation performance that is only
dependent on the cycle time of the memories that are used. This allows a very high number
of classi�cation operations per second, independent of the number of rules.

Update Performance

Both schemes can only handle updates at a low frequency. For the bit-parallelism scheme this
is caused by the obligation to reect the rule priorities in the bit ags within the range vectors,
which might require modi�cation of all range vectors (in the worst-case 2(n+1)d vectors) for
each rule update. For the RFC scheme, this is caused by the complex data structure used
for the rule search, which requires signi�cant precomputation time in order to minimize the
storage requirements. Consequently, both schemes should only be applied in environments in
which rules have a static nature and no fast dynamic rule updates have to be performed.

4 Pre�x-based Classi�cation Scheme

4.1 Concept

This paper presents a novel classi�cation scheme called pre�x-based classi�cation. Pre�x-
based classi�cation involves the same type of parallel range searches on header segments as
with the bit-parallelism scheme and the RFC scheme. It is di�erent regarding the range vectors
and the corresponding rule search operation.

Pre�x-based classi�cation considers ranges to be related when they are subsets of at least
one rule range. These range relations are expressed within the range vectors in the form of
pre�xes. This is in contrast to the bit-parallelism scheme in which the range vectors contain
rule range information related to individual ranges. The concept of pre�x-based classi�cation
is illustrated in Figure 2. This �gure shows an example of a two-way parallel classi�cation
operation using a set of four rules, which are represented as rectangles in a two-dimensional
space (Figure 2 shows a representation similar to Figure 2 in [2] but with di�erent rules and
range vectors). The two axes correspond to the value spaces of the two header segments that
are processed in parallel. For simpler illustration and understanding, all four rules involve
contiguous rule ranges in both dimensions. The boundaries of all the rule ranges in both
dimensions are projected on the corresponding axes. As a result, two sets of non-overlapping
ranges are derived, which are labeled X0 to X8 and Y0 to Y6. These are the ranges that are
searched for by the parallel range searches. These ranges are derived in exactly the same way
as with the bit-parallelism scheme and the RFC scheme.

Ranges X4 to X7 and ranges Y2 to Y5 are located within the rule ranges of rule 2 in the
respective dimensions. These relations are now embedded in the corresponding range vectors
in the form of a common pre�x `01' and `1', respectively. In a similar way, the range vectors
of ranges X5 and X6, and Y2 and Y3 that are related due to rule 4 have a common pre�x
equal to `011' and `101', respectively. As Figure 2 shows, not all relations can be expressed
using pre�xes. For example, rule 1 applies to ranges X2 to X5. As the range vectors of ranges
X4 and X5 already have a pre�x for the relation due to rule 2, the relation due to rule 1 is
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Figure 2: Pre�x-based classi�cation.

only coded for the remaining two ranges X2 and X3 by a pre�x `100'. The generation of these
range vector pre�xes will be discussed in Section 4.2.

The range vectors shown in Figure 2 have another special property that will be explained
below. Owing to this property, the classi�cation result can be determined by applying a
conventional longest matching pre�x search operation on the bit-interleaved result of the range
vectors that result from the parallel range searches in the X and Y dimensions (di�erences in
range vector sizes are resolved by padding zeros). To each rule corresponds at least one so
called rule pre�x. If a certain rule pre�x is found to be the longest matching pre�x, then an
identi�cation of the corresponding rule is output as the classi�cation result. The rule pre�x
for rule 2 equals `011' and the rule pre�x of rule 4 equals `011011' for the example of Figure 2
(Section 4.3 discusses how these rule pre�xes are derived). If the values of the two header
segments correspond to a point within the area determined by, for example, range X6 and
Y3, then the range searches will result in the range vectors `011' and `1011'. Bit-interleaving
these two vectors after padding a zero to the �rst range vector results in `01101101'. Both
rule pre�xes of rule 2 and rule 4 are pre�xes of this vector. The longest of the two matching
rule pre�xes (intentionally) corresponds to rule 4, which has the highest priority. This shows a
second property of pre�x-based classi�cation, namely that when multiple rule pre�xes match
a range-vector-interleaving-product, then the longest matching rule pre�x corresponds to the
rule with the highest priority.

There are some variations on the rule search operation mentioned here. Figure 3 will be
used to explain the rationale behind these search types. In this �gure two range vectors are
shown for both the X and Y dimensions that are the result of the parallel range searches on
the two header segments. The two range vectors have pre�xes `01' and `1', indicating that
both segment values are located in the rule range of rule 2 as discussed before. In order to
determine that rule 2 applies for these segment values, the �rst two bits of the X dimension
range vector must have been processed and found to be equal to `01' and the �rst bit of the
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Y range vector must have been processed and found to be equal to `1'. If the rule search
operation is realized as a binary search tree with a search key that is obtained by interleaving
the range vectors in a certain �xed order, then the indication that rule 2 is applicable has to
be stored at exactly one node in the tree if the range vectors are interleaved such that the �rst
three bits of the interleave result include the �rst two bits of the X range vector and the �rst
bit of the Y range vector. Figure 3 shows an example of a good interleaving for which this
condition holds, and an example of a bad interleaving for which it does not hold. For a search
key based on the interleave order of the bad example, the binary search tree has to store an
indication that rule 2 is applicable at two nodes, which are reached by search keys starting
with `0101' and `0111', respectively, unless the additional X range vector bit, shown as a dot
in the bad interleaving example in Figure 3, can only have one value.

The pre�x-based classi�cation scheme includes the following three types of rule searches
that employ `good' range vector interleaving as explained above:

� type A: Pre�x-based range vectors are applied in only one dimension. The range vec-
tors of the other dimensions consist of �xed-size range identi�cations. The rule search
consists of a conventional longest matching pre�x search on a search key, which is the
concatenation of the �xed range identi�cations followed by the pre�x-based range vector.

� type B: The rule search is realized as an enhanced longest matching pre�x search oper-
ation, which determines the interleaving of the unprocessed parts of the range vectors
based on those parts that have already been processed and by information stored by in
the data structure for the enhanced longest matching pre�x search operation.

� type C: The (sizes of the) range vector pre�xes are adapted for all rules to match a
�xed interleave order. The rule search consists of a conventional longest matching pre�x
search on a search key that is obtained by interleaving the range vectors according to
this �xed interleave order.

Section 4.2 and Section 4.3 discuss how range vectors and rule pre�xes can be derived for these
three types of rule searches. Section 4.4 describes how this can be done in an incremental way.
Although pre�x-based classi�cation can be used for multi-way packet classi�cation involving
the simultaneous processing of any number of header segments, only examples will be given
that involve two dimensions for easy illustration and understanding.



4.2 Range Vectors

A relation between multiple ranges will be expressed by a so called primitive range that
consists of these ranges. To facilitate the generation of range vectors and rule pre�xes, a
layered structure of primitive ranges is constructed, which will be denoted as primitive range

hierarchy.
As the �rst step in the construction of a primitive range hierarchy, a certain ordering of the

rules is derived, which will be called the rule order. The rule order can be based on parameters
such as rule priority, the `volume' or `size' of the d-dimensional `area' covered by a rule, or the
expected lifetime of a rule. A typical rule order involves a rule to come before all rules that
have a higher priority and which are subsets of that rule. The rule order will be discussed in
more detail in Sections 4.4 and 5. For the example shown in Figure 2 the following rule order
will be used: rule 2, rule 4, rule 1 and rule 3.

Based on the selected rule order, a primitive range hierarchy is constructed for each dimen-
sion, which has the following properties:

� all primitive ranges at the same hierarchy layer are non-overlapping, and

� primitive ranges at higher layers are a subset of primitive ranges at lower layers.

The construction process is illustrated in Figure 4. The rule ranges of the �rst rule according
to the rule order, rule 2, are taken and placed as primitive ranges at layer 1 (L1) in the primitive
range hierarchies in both dimensions. The hierarchy for the Y dimension is shown from left
to right at the left side of the Y axis. A primitive range that reects a range relation due
to a certain rule, is (for illustrative purposes) labeled after this rule as shown in Figure 4.
Primitive range 2 in the X dimension consists of ranges X4 to X7, and primitive range 2 in
the Y dimension consists of ranges Y2 to Y5.

Rule 4 is processed next. The rule ranges of rule 4 are in each dimension a subset of
primitive range 2. Therefore, in each hierarchy a primitive range 4 can be created at layer 2
while preserving the hierarchy properties. Next rule 1 is processed. In both dimensions the
rule ranges of rule 1 overlap with the primitive ranges that are already in the hierarchy. These
overlaps are resolved by splitting rule 1 into rules 1a, 1b, 1c and 1d as shown in Figure 4. The
remaining part of rule 1 that is covered by rule 2, which has a higher priority, is discarded
because this will not a�ect the classi�cation result. The corresponding rule ranges of the
newly created rules can be placed as primitive ranges on top of the primitive ranges that are
already in the hierarchy while preserving the hierarchy property. As within the hierarchy in
the Y dimension, primitive range 4 equals the rule range of rule 1a, no new primitive range
is created for rule 1a but is instead merged with primitive range 4. The merge operation is
reected by the label (which is used purely for illustrative purposes, as mentioned above) of
the primitive range 4/1a as shown in Figure 4. Finally, for similar reasons a split operation
is performed on rule 3, and the rule ranges corresponding to the new rules 3a, 3b, 3c and 3d
are placed as primitive ranges within the two hierarchies.

In this example, the split and discard operations that are performed to construct the prim-
itive range hierarchies, are performed after the rule order has been determined. However, it is
also possible to mix these two steps. This allows rule parts that are split from the same rule,
to be placed at di�erent locations in the rule order. This can be used to optimize the storage
requirements as will be discussed in Section 5.

The last step in the construction of the primitive range hierarchy is the assignment of
identi�ers (IDs) to each primitive range such that the following conditions hold:
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� for all the primitive ranges at layer 1, no ID can be the pre�x of another ID,

� for all primitive ranges at layer L that are a subset of the same primitive range at layer
L� 1, no ID can be the pre�x of another ID,

� each primitive range ID must contain at least one `1'.

Figure 5 illustrates the IDs assigned to the primitive ranges within the hierarchies in both
dimensions. Each set of primitive ranges, as distinguished in the �rst two items above, are
assigned non-zero IDs of at most dlog(k + 1)e bits if there are k ranges in a set. In the case
that not all combinations for a given ID size are used, then some IDs can be one bit shorter.
For example, when there are two primitive ranges in a set (e.g., primitive ranges 1c and 4 at
layer 2 in the X dimension), then not all possible non-zero two bit combinations (`01', `10',
`11') will be used, and the IDs `01' and `1' can be assigned while preserving the primitive range
ID conditions listed before.

The range vectors are obtained directly from the primitive range hierarchy. For each range
the range vector is obtained by concatenating the IDs of the primitive ranges of which that
range is a subset starting with the primitive range ID at layer 1. Figure 5 also shows the
range vectors that correspond to both primitive range hierarchies. The shortest range vector
pre�x that is embedded in a range vector consists of the ID of the primitive range at layer
1, of which the corresponding range is a subset. The next range vector pre�x consists of the
same primitive range ID concatenated with the ID of the primitive range at layer 2 of which
the given range is a subset, and so on.

The primitive range hierarchy shown in Figure 5 can be used to generate range vectors and
rule pre�xes (which will be discussed in Section 4.3) for type A and type B rule searches. For
type C rule search operations, the primitive range hierarchy has to be adapted to match a
�xed range-vector-interleave-order as mentioned in Section 4.1.



Primitive range hierarchy for search type C

An interleave order can be expressed indirectly by indicating for each bit position in the
interleave product how many bits of each of d range vectors are already part of the interleave
product up to that bit position. For an interleave product consisting of k bits obtained from
two range vectors the interleave order can be expressed as the following series:

I = f(cx;0; cy;0); (cx;1; cy;1); (cx;2; cy;2); : : : ; (cx;k�1; cy;k�1)g; (1)

where cx;i and cy;i represent the number of bits of the X and Y dimension range vectors,
respectively, that are part of the interleave product up to bit position k. For example, a
bit-interleave product of the X and Y range vectors can be speci�ed as

f(0; 0); (1; 0); (1; 1); (2; 1); (2; 2); : : : ; (j; j); (j + 1; j); : : : ; (k � 1; k � 1)g: (2)

The advantage of representing the interleave order in this way is that it directly indicates all
the possible bit count combinations that have been processed at certain times by the longest
matching pre�x rule search operation. In order to ful�ll the `good' interleaving condition
expressed in Section 4.1, the lengths of the range vector pre�xes for each rule have to match
one of the bit count combinations in the interleave order speci�cation, unless the range vector
pre�xes that are too short to match a combination are not pre�xes of longer range vector
pre�xes and therefore the corresponding (padded) range vectors will always contain zeros at
bit positions after these pre�xes.

The primitive range hierarchy shown in Figure 4 does not match a bit-interleave order for
rule 1a. The two range vector pre�xes of this rule are `10' in the X dimension and `101' in the
Y dimension, with respective lengths 2 and 3. Since (2,3) is not a valid combination according
to Equation (2), and both pre�xes are part of longer range vector pre�xes (namely pre�x `101'
of rules 3b and 3d in the X dimension, and pre�x `1011' of rules 3c and 3d in the Y dimension),
no rule pre�x can be created that consists of exactly 5 bits.

There are two ways to construct a primitive range hierarchy for generating range vector
pre�xes that will ful�ll the `good' interleaving property. One method is to selectively increase
the sizes of certain primitive range IDs by padding zeros without changing the range hierarchy.
The other method is to build the primitive range hierarchy in a di�erent way such that
primitive ranges related to the same rule are always located at the same layer and by making
sure that all primitive range IDs at the same layer have the same size.

The primitive range hierarchy in Figure 4 can be adapted to match a bit-interleave order,
by padding a zero to the ID of primitive range 1a/1b in the hierarchy in the X dimension which
becomes `100'. Only the two range vectors corresponding to ranges X2 and X3 are a�ected
which become `1001' and `100' respectively. These are the range vectors that are shown in
Figure 2.

4.3 Rule Pre�xes

The generation of rule pre�xes for the three types of rule search operations will now be
discussed separately. The rules discussed are the rules that remain after the split and discard
operations performed for building the primitive range hierarchies.
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Figure 5: Primitive range IDs for search types A and B.

Rule search type A

This type of rule search is the simplest one. A primitive range hierarchy is constructed in only
one dimension. The range vectors in the other dimensions consist of �xed-size range identi�-
cations. For example, the range vectors X1 to X7 in Figure 2 could be assigned range vectors
`001', `001', `010', to `111' respectively. The rule pre�xes are now obtained by determining
for each rule the X ranges that are a subset of its X dimension rule range and for which it
holds that in these ranges the rule is not completely `covered' by a higher priority rule. The
range identi�cations of these X ranges are simply concatenated with the range vector pre�xes
of that rule. For example, in Figure 4, ranges X5 and X6 are subsets of the rule range of rule
4. The rule pre�xes for rule 4 are now obtained by concatenating the range identi�cations of
ranges X5 and X6, `101' and `110' with the Y dimension range vector pre�x of rule 4, `101'
(Figure 5), which results in the rule pre�xes `101101' and `110101'. Figure 6 (a) shows the
rule pre�xes for all the rules. It can be seen that for range X5 the rule pre�x of rule 2, `1011'
is a pre�x of the rule pre�x of rule 4, `101101'.

Rule search type B

For a rule search of type B, a primitive range hierarchy is constructed in each dimension. The
rule pre�x for each rule consists of the corresponding range vector pre�xes. For example, the
rule pre�xes for rule 2, rule 4 and rule 3c can be written as:

X(01) Y(1) ! rule 2
X(011) Y(101) ! rule 4
X(11) Y(1011) ! rule 3c

The rule pre�x of rule 2 indicates that the �rst two bits of the X range vector must equal `01'
and the �rst bit of the Y range vector must equal `1'. Only then will rule 2 be applicable.
The rule pre�x for rule 4, speci�es that the �rst three X range vector bits must equal `011'
and the two �rst Y range vector bits must equal `101'. In order to realize an eÆcient search
operation in which each bit is analyzed only once, the rule pre�xes can be rearranged in the
following way, simply by changing the interleaving of the various range vector pre�xes from
di�erent dimensions:

X(0) X(1) Y(1) ! rule 2
X(0) X(1) Y(1) X(1) Y(01) ! rule 4
X(1) X(1) Y(1011) ! rule 3c

With this representation, the rule pre�x of rule 2 can be regarded as a pre�x of the rule pre�x
of rule 4. The way the primitive range hierarchies are constructed guarantees that it is always
possible to organize the rule pre�xes such that an eÆcient search operation can be realized in



00111 ! rule 3 (3a) 01101 ! rule 1 (1b) 101101 ! rule 4
0011011 ! rule 3 (3c) 011101 ! rule 1 (1a) 1101 ! rule 2
01001 ! rule 1 (1b) 10001 ! rule 1 (1c) 110101 ! rule 4
01011 ! rule 3 (3b) 1001 ! rule 2 1111 ! rule 2
010101 ! rule 1 (1a) 10101 ! rule 1 (1d)
0101011 ! rule 3 (3d) 1011 ! rule 2

(a) Type A rule pre�xes

X(0) X(1) Y(0) Y(1) X(0) X(1) ! rule 1 (1c) 0011001 ! rule 1 (1c)
X(0) X(1) Y(0) Y(1) X(1) X(1) ! rule 1 (1d) 0011101 ! rule 1 (1d)
X(0) X(1) Y(1) ! rule 2 011 ! rule 2
X(0) X(1) Y(1) X(1) Y(01) ! rule 4 011011 ! rule 4
X(1) X(0) Y(0) Y(1) ! rule 1 (1b) 1001 ! rule 1 (1b)
X(1) X(0) Y(1) Y(0) Y(1) ! rule 1 (1a) 110001 ! rule 1 (1a)
X(1) X(0) Y(1) Y(0) Y(1) X(1) Y(1) ! rule 3 (3d) 11000111 ! rule 3 (3d)
X(1) X(0) Y(1) Y(1) X(1) ! rule 3 (3b) 1101001 ! rule 3 (3b)
X(1) X(1) Y(1) Y(0) Y(11) ! rule 3 (3c) 111000111 ! rule 3 (3c)
X(1) X(1) Y(1) Y(1) ! rule 3 (3a) 1111 ! rule 3 (3a)

(b) Type B rule pre�xes (c) Type c rule pre�xes

Figure 6: Rule pre�xes.

which each bit is processed only once. Figure 6 (b) shows the rule pre�xes for all rules.

Rule search type C

For this type of rule search, the primitive range hierarchies have been created such that they
match a certain interleave order. As a result, the rule pre�xes for each rule can now be
created by interleaving the corresponding range vector pre�xes according to that interleave
order. The primitive range hierarchies shown in Figure 5 can be matched to a bit-interleave
order by modifying primitive range ID 1a/b to `100' as described in Section 4.2. The range
vector pre�xes for rule 3a (which do not require modi�cation) equal `11' in both dimensions.
The rule pre�x for rule 3a is obtained by bit-interleaving these two range vector pre�xes, which
results in `1111'. Figure 6 (c) shows the rule pre�xes for all other rules obtained in a similar
way.

4.4 Incremental Updates

Information related to each rule is stored within the range vectors of the ranges that are within
the rule ranges of that rule, and in the form of one or multiple rule pre�xes. The following two
properties of pre�x-based classi�cation make it possible to limit the number of modi�cations
that have to be made to the range search and rule search data structures, for updating rule
related information. This allows to perform fast incremental rule updates at least for selected
sets of rules.
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Figure 7: Incremental update.

Addition of a rule requires splitting of at most two ranges into two new ranges, in each
dimension. Figure 7 shows how the X dimension rule range of a new rule 5, is added as two
primitive ranges 5a and 5b on top of the primitive range hierarchy of Figure 5. This new
rule range covers the second part of range X3, denoted as X3', and the �rst part of range
X4, denoted as X4'. As can be seen from Figure 7, the two new primitive ranges 5a and 5b
can be assigned unique IDs, without having to modify any other primitive range ID. This is
guaranteed for every addition of a new primitive range due to the way the primitive range IDs
are generated. The range vectors for the new ranges X3' and X4' embed all the pre�xes that
were already contained in the original ranges X3 and X4, and in addition a new pre�x for the
new rule. As a consequence, only rule pre�xes for rule 5 have to be added, and all other rule
pre�xes remain valid. This is a powerful feature of pre�x-based classi�cation.

The number of rule pre�xes that are contained in the rule search data structure for one rule,
equals the number of rule parts into which that rule has been split during the construction
of the primitive range hierarchies as described in Section 4.2. The number of rule pre�xes is
likely to be smaller if the rule is placed earlier within the rule order and, therefore, updates
for this rule will require less modi�cations to the rule search data structure. Of course, it is
only possible to place a limited set of rules early in the rule order.

5 Storage Requirements and Performance

Storage requirements

The range search and rule search data structures can be eÆciently stored by exploiting their
pre�x characteristics as will be discussed in this section.

The number of primitive ranges in each primitive range hierarchy equals the number of
ranges in the corresponding dimension, due to the similarity between the way in which the
ranges are obtained by projection of the rule ranges, and the way in which the range hierarchies
are constructed. Consequently, the worst-case number of primitive ranges for one dimension
equals 2n + 1. The IDs of the primitive ranges have to be unique only within certain sets
of primitive ranges as described in Section 4.2. Therefore, for search types A and B, each



primitive range ID only requires a maximum of dlog(2n+ 1)e bits.
Minimum storage requirements for storing the range vectors can be obtained when the

range search operations stepwise search for primitive ranges according to the layering within
the primitive range hierarchy. For example, a stepwise range search operation according to the
primitive range hierarchy shown in Figure 5 for a segment value that is located in primitive
range X5, would determine that the segment value is located within primitive range 2 at layer
1 in the �rst search step, that the value is located within primitive range 4 at layer 2 in the
second search step, and that the value is located within primitive range 1 at layer 3 in the
�nal search step. The range vector, that results from the range search, can now be build by
concatenating the IDs of the primitive ranges that are found in the successive search steps.
In this way, each primitive range ID only needs to be stored once in the data structure. The
worst-case total storage requirements for storing all range vectors equals the worst-case total
storage requirements for storing all primitive range IDs, and is less than (2n+1)d�dlog(2n+1)e
bits (the actual storage requirements are likely to be much less than the maximum, since the
maximum is achieved when all primitive ranges are located at layer 1). This shows that the
worst-case storage requirements for storing the range vectors scales better than n log(n) with
the number of rules.

The storage requirements of the rule search data structure, is dependent on the longest
matching pre�x algorithm that is used. To have a storage parameter that is independent
from the selected search algorithm, only the storage requirements of the rule pre�xes will be
regarded here. The number of rule pre�xes equals the number of rules that remain after the
split and discard operations during the construction of the primitive range hierarchies, which
is directly dependent on the applied rule order. This can be understood from the example
shown in Figure 4. If rule 4 was put in the rule order before rule 2, then each of the rule
ranges of rule 2 had to be split into three primitive ranges, corresponding to splitting rule
2 into 3 � 3 = 9 rule parts from which the center part could discarded since it would be
completely covered by rule 4. The number of rules that remain after the split operation has
an upperbound equal to (2n+1)2. The number of rule pre�xes can be minimized by applying a
rule order that matches the rule properties. The storage requirements can further be reduced
by exploiting the fact that the rule pre�xes have common pre�xes, which are the IDs of the
primitive ranges at the lower layers. A binary search tree is an example of a data structure
in which common pre�xes of search table entries are stored only once. This type of search
structures allows very eÆcient storage of the rule pre�xes.

We are currently investigating which rule orders and search methods have to be applied
on real rule databases in order to obtain minimum storage requirements, and which also
allow fast construction times of the classi�cation data structures. An (analytical) analysis
of this problem, which includes the characterization of rule properties, is beyond the scope
of this paper but will be the topic of a follow-up paper. Figure 9 shows some simulation
results for pre�x-based classi�cation according to type B, for a small rule set consisting of
one hundred randomly generated rules for two 32-bit header segments (e.g., IP source and
destination addresses) that have considerable overlaps. The rule order is based on the sizes
of the rectangles formed by the rule ranges. Only a small set of rules is used which allows
to visualize the overlap characteristics in Figure 8. Better ways of expressing overlap and
other rule characteristics and how these can be used to optimize the storage requirements
of the classi�cation scheme for real rule based involving multiple thousands of rules, will be
discussed in the follow-up paper. Although just an example, Figure 9 shows that the storage
requirements of the range vectors represented by the sums of the primitive range ID lengths,
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Figure 8: One hundred randomly generated rules.

number of rules, n 100

2n+ 1 201

(2n+ 1) log(2n+ 1) 1538

(2n+ 1)2 40402

number of X ranges 201

number of Y ranges 200

sum of X prim.range ID lengths 539 bits

sum of Y prim.range ID lengths 573 bits

number of rule pre�xes 7784

number of binary tree

nodes for rule search 23521

Figure 9: Data structure parameters.

are clearly below the worst-case value (2n+1)d� log(2n+1) bits. The number of rule pre�xes
is also much below the worst-case value (2n+1)2. The rule search could be implemented using
a binary search tree consisting of 23521 nodes. If each node would contain one bit to select the
range vector to be processed, seven bits for a possible rule identi�er, and two 32-bit pointers
to child nodes, then the search would require 23521� (8 + 32) bits = 117605 bytes. This can
be reduced through an intelligent organization of the tree, in which less bits are needed for
the two pointers in each node.

Classi�cation and build performance

Several longest matching pre�x algorithms have been published that allow pipelined oper-
ation. The rule search is intended to be based on one such algorithm. Consequently, the
classi�cation performance will only be determined by the cycle time of the memories used,
and is independent of the number of rules. The total time to build the classi�cation data
structures from scratch for a given set of rules, is very dependent on the complexity of the rule
order and related split and discard operations, and can not be expressed for a general case.
The follow-up paper will discuss this issue as well.

6 Summary

This paper has presented a novel scheme for parallel packet classi�cation in which rule infor-
mation is embedded in the form of pre�xes within intermediate parallel search results, and a
conventional longest matching pre�x search can be used to determine the classi�cation result.
The data structures required by the scheme are generated using so called primitive range hi-
erarchies, which also can be done incrementally to allow dynamic rule updates. The use of
pre�xes has the potential for signi�cant reductions in storage requirements, which would allow
multiple thousands of classi�cation rules to be supported at wire-speed.
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