RZ 3215 (# 93261) 03/13/00
Computer Science/Mathematics 10 pages

Research Report

Efficient Downloading and Updating Applications on Portable Devices using
Authentication Trees

Luke O’Connor and @nter Karjoth

IBM Research

Zurich Research Laboratory
8803 Ruschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Re-
search Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to
publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally
obtained copies of the article (e.g., payment of royalties).

= Research
= Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Efficient Downloading and Updating Applications on Portable Devices using
Authentication Trees

Luke O’Connor and @nter Karjoth

IBM Research, Zurich Research Laboratory, 88@&étilikon, Switzerland

Abstract

Consider the problem of securely downloadingapplication blocksBy, Bs, ..., B, from an application
provider to a smart card (SC) with the possibility of updating a bi&gkat a later time. In this paper we
describe a scheme called Ordered Authentication Trees (OTA), which solves the problem of downloading and
updating application blocks with the following properties: (1) a single signature based on an authentication
tree is computed for the blocks, (2) or}(log n) additional memory is required by SC beyond the memory

for the blocks themselves, (3) blodk can be verified as correct upon receipt at the SC, and (4) blocks can be
updated inO(logn) time. All previously known solutions requir@(n) memory and/or delay requirements

for the download/update of code blocks. The OTA scheme also generalizes to other portable devices that
share common characteristics with smart cards.

Keywords: Portable device, smart card, authentication tree, digital signature.

1. INTRODUCTION

A general computing device such as a PC or a workstation stores applications in some permanent storage
media, such as a hard disk, and then reads an application into main memory (RAM) for execution as required.
Subject to available memory, new applications can be freely added while old applications can be easily removed
or updated. However for a smart card (SC), given its limited memory capacity, applications are typically loaded
into its ROM at the time of fabrication. This approach is convenient for the large scale production of SCs
supporting one or a few fixed applications. But this approach is less suitable if the set of applications to be
supported is expected to change, or if old applications need to be updated, or if the number of cards supporting
a given application are not to be produced in large quantities.

A more flexible approach is to design the SC so that applications can be downloaded to the card as re-
quired. For example, in the ESPRIT project CASCADE [CASCADE, 1997], an SC was designed where the
pre-installed software consists of a small boot kernel, libraries for basic I/O and cryptography, and a secure
downloading mechanism, where other applications and systems code are downloaded securely to a FLASH
memory (approximately 16 KB) to the card. As an application may be quite large with respect to the amount
of RAM or bandwidth available to the SC, it is anticipated that an application will be partitioned into blocks
By, Bs, ..., B, and each block will be downloaded from an Application Provider (AP) in a separate commu-
nication to the SC. Also, if an application is to be updated, then only those blocks that have been modified need
be re-installed on the SC. We note that the blocks may represent either application code and/or application data.
Using this scheme of block partitioning, there are two parameters of interest in evaluating a given solution with
respect to downloading and updating blocks: delay requirements and memory requirements.

Delay Requirements. The downloading or updating of blocks should be ‘on-the-fly’ in the sense that blocks
that are incorrect due to some error should be detected quickly to avoid wasting bandwidth and memory. If a
block B; arrives at time but cannot be verified (e.g. by a hash check) until the arrival of bl®gk; at time

t + d, we say that the verification d8; is delayedfor d blocks. For a given scheme, we are interested in the
maximum delay for block verification. O

Memory Requirements. During block verification, storage is required for intermediate calculations and the
caching of intermediate values that will be used for future blocks verifications. As memory on SCs is limited
we seek solutions that minimize memory requirements. d

For code downloading, the worst case delay and memory requirements ar@(gthAn O(n) delay means
that all blocks must be received before verification can begin, whéréasmemory means that an additional
linear amount of space beyond the storage forriliocks themselves is required. A protocol demonstrates
a gain in efficiency if either the memory or verification delay is reduced fédm) to possiblyO(logn) or
evenO(1). We say that block verification is ‘on-the-fly’ if the maximum delayl$l).

11 RELATED WORK

Our research has been partly motivated by the fact that little work has been done to address the code
download/update problem for portable devices. According to its authors, the CASCADE project report [Dhem,
1998] describes the first protocols that considered these problems. The solution in this case was to produce
a hash vectod = (Hy,Hos,...,H,+1) of (n + 1) components such thd{,, is randomly chosen and
H; < h(H;;1, B;) for some hash function(-) such as SHA-1 [SHA, 1994]. The AP sigis;, and then
sends the following: + 2 messages to the SC:

SZQ’I’L(Hl), (Hla Bl)a (HQa BQ)? sy (H’n,a Bn)a Hn—H-
The SCfirst verifies the signature &R and then proceeds to verify the hash chain used to form the hash vector.

Owing to the form of the chain defined above, each biBglcan be verified after the next pgif; 2, Bi+1)
has been received, yielding a constant dela@ ¢f). However if a blockB; is to be updated, then the hash

chain must be recomputed from positibforward due to the linear nature of the hash chain. This scheme will
be denoted as ‘CASCADE with hashes'.

As noted by Dhem [Dhem, 1998], thehash valuedd;, H», ..., H, need not be sent by the AP, because
these values can be generated by the SC. We will refer to this scheme as ‘CASCADE without hashes’. However
the penalty for this reduced transmission is that the code block verification cannot begi® pntilhas
been received, meaning that the maximum block delay before verificati@tvis when no hashes are sent.
Regardless of whether the hashes are sent at the time of download, they have been discarded by the time o
update and thus incur a@(n) update time for a block.

A problem related to efficient application downloading/updating is that of signing digital data streams. The
solution that has commonalities with our results is the Wong-Lam scheme [Wong and Lam, 1999] based on
authentication trees [Merkle, 1989]. Their protocol breaks a data stream pratoketsP,, Ps, ..., P, ..., P,
that are collected into a transmission grai. The packets of'G are then arranged to be the leaves of an
authentication tre&’, and the hash of the tree is computed and signed by the sender to p&Sigucd'G).
WhenT'G is transmitted, each packBtis sent with the sequence of hash values that were used to form the path
in the hash tree from the leaf representifgo the root of the authentication trée The signature&ign(TG)
on the authentication treE is also sent with each packet and packet hash path. This permits each Backet
to be verified as it is received, even though other packets iffhef P, may have been lost or reordered. To
verify a given packer’;, the receiver is typically required to recompute the path in the authentication tree from
the leaf representin@; to the root of7T’, and then verifySign(TG) based on the computed root hash. The
full hash path from the leaf to the root must be computed for the first packet received, but the verification of
subsequent packets can be optimized by reusing hash values that were previously computed, verified and thel
cached. The next received paclet ; is verified by hashing it until a node in the cache is reached that was
previously authenticated. The cache structure suggested by Wong-Lam mimics the structure of the original
authentication tree that the sender used to compute the signatiit@.ofhe receiver then requires a storage
of the sizeO(n) because this is the size of the authentication tree.

1.2 NEW CONTRIBUTIONS

The solution to the application code download/update problem presented in this paper ©uigied Tree
Authentication or simply OTA. OTA gives a)(1) verification delay and logarithmic time for block update.

This is achieved by sending a particuaderedsequence of hash values from the authentication tree along
with the blocks to be authenticated, thus allowing verification of nodes of the tree besides the root. The OTA
algorithm improves the approaches described in Section 1.1 in two aspects. First, the OTA algorithm needs a
significantly lower amount of verification data to be transmitted with each data packet than Wong-Lam. Second,
the OTA algorithm lowers the amount of storage required at the receiving end without increasing the time for
verification at the receiver. Thus, the OTA algorithm allows safe transmission between an application or service
provider and a portable device having a limited storage or memory capacity and/or restricted processing power,
such as smart cards and the like. A comparison between previous schemes and the proposed OTA method i
given in Table 1.

The remainder of this paper is as follows. Section 2. begins with an example of an authentication tree that
will be used to display the workings of OTA. The OTA scheme is described in Section 3., where Section 3.1
details the format of the blocks at the AP for transmission, and Section 3.2 details the process that the SC uses
to verify the blocks. The problem of incrementing blocks is discussed in Section 4.. Conclusions are presented
in Section 5..

2. AUTHENTICATION TREES

As orginally proposed by Merkle [Merkle, 1989], an authentication tree is a data structure used to authen-
ticate individual data items such as the bloéks B, . .., B,,. The basic idea is to select a labeled binary tree
T with n = 2% leaves and to associafg with thei-th leaf. For simplicity, we assume thatis a power of
two but this is not required for the construction. The length of the path from the root to acriediee depth

Table 1 Summary of time and storage requirements for block download and update.

Download Update
Method Storage Max Delay Storage Max Delay
CASCADE with hashes O(1) O(1) O(n) O(1)
CASCADE without hashes O(n) O(n) O(1) O(n)
Tree Authentication O(logn) O(n) O(logn) O(logn)
Wong-Lam O(n) O(1) N/A N/A
OTA O(logn) O(1) O(logn) O(logn)

of 2 in T. The root is at depth 0 and there &fenodes at deptih An authentication tre@ hasheightd, the
largest depth of any node 1. TreeT has exactly: leaves associated with the valuesif, Bs, ..., B,, and
exactlyn — 1 internal nodes with two children each.

Hr

H5 H6

Hl HQ H3 H4

e

By By Bg B, B5 B6 B7 BS

Figure 1 An authentication tree for = 8 andd = 3.

To compute the hash of the tree, thth leaf is labeledH (B;) = h(B;), whereB; is associated with the
leaf. Then, beginning at depthand proceeding to the root at depth 0, each internal riasiéabeled

Hj = h(L(H;)||R(H;))

where|| denotes concatenation ahdH ;) andR(H;) are the labels of the left and right child, respectively, of
nodej. The label at the root, denotddl, is a hash value that depends Bp, Bs, ..., B,. The structure of
an authentication tree on= 8 valuesBy, B, ..., Bg is shown in Figure 1.

The AP signs the hasHy of T, then sendd1, its signature, and the block3;, B, ..., B,. To verify
the signature on the blocks, the SC must repeat all the hashing computati@htoatetermineH,. Note
that no block can be rejected as corrupted until all blocks have been received, because the locally computed
value of H is not available until that time. Further, if the generated root hash does not match the received
root hash, then the incorrect block(s) cannot be identified and all blocks must be retransmitted. Thus, the
verification delay for basic tree authentication(¢n). By recursively calculating the nodes as blocks are

iv

received, the verification df" requires a memory of the size(logn). Table 2 illustrates the verification of
the authentication tree shown in Figure 1.

Table 2 Storage requirements to verify a tree authenticatiomfer 8.

Received block Compute Hash Storage
B H(By) H(By)

By H(Bs), Hy H,

B3 H(B3) Hy, H(Bs)

By H(B4), Ho, H; Hj

Bs H(Bs) Hs, H(Bs)

Bg H(Bs), H3 Hj, Hj

By H(Br) Hs, H3, H(Br)
Bg H(Bg),Hy, Hg Hs, Hg
Sign(Hr) Hr Sign(Hr)

An advantage of the tree authentication over other methods such as linear hashing is that an individual block
can be updated in a logarithmic number of messages (or by a single message with a logarithmic number of
components). To updatg; to B,, the AP first associates thieh leaf with B, and then recomputes the hash
values of the tree to yield the new root valfi.. The AP then signs the new root valé. and then sends
HY., its signature, and3;. The SC then recomputes the hash tree of its blocks after repl@;ingth B;,
and verifies that the newly computed root hash equals the received valile. df the hashes agree, and the
signature is correct, theh; is updated a®;. Thus, using tree authenticatiomplocks can be downloaded in
time O(n) usingO(log n) memory, and a block can be updatediiflog n) time and withO(log n) memory.

3. ORDERED TREE AUTHENTICATION

To verify a block, the verifier needs the tree signature and the siblings of each node in the block’s path
to the root. With this information, the verifier computes the hash values of each of the block’s ancestors in
the tree. That is, it first computes the hash value of the block, and then recursively the hash values of each
ancestor by concatenating the last computed hash value with the corresponding node’s sibling. For example,
block Bs is verified if H'(B3) = h(Bs), Hy = h(H'(B3)||H(Ba4)), Hy, = h(H,||H}), H}. = h(H||Hs),
andHr = Hl,, whereHr is contained in the tree signature.

Note that the above calculation also verifies noHé®,), H,, H», Hs, andHg. If their values are cached,
the verification of other blocks can be shortened. We defindateverified noddor a block B; to be the
closest verified ancestor on the block’s path to the root of the authentication tree. For example, after the above
calculation, blockB,’s last verified node ig7; and blockBy’s last verified node ig7 (B4). In general, it is
sufficient to verify a block against its last verified node.

In the OTA scheme, we exploit the above observations. By sending the tree signature first, the root becomes
the last verified node for all blocks. Sending blaBk and the siblings of each node in the block’s path the
to root, verifies not only the path froff (B;) to the root but also the siblings of the nodes on the path. We
observe that removing the nodes on the path from #@B;) to the root splits the authentication tree imto
subtrees, wheréd is the height of the tree. The roots of the subtrees are the siblings of the nodes on the path.
Each sibling is the last verified node of its children. In the OTA scheme, blocks are sent in sequence. Each
message contains one block and all the nodes that constitute the block’s path to its last verified node.

In the remainder of this section, we specify the OTA scheme in detail via pseudo-code description of two
routines calledsendBlockandReceiveBlocks

3.1 SENDING BLOCKS

As SendBlocksvill act on the authentication treg for the blocks, we assume the following tree structure
and operations based on the concept nbde For our purposes maodehas a parent, a left and a right child,
and a hash value. Let functidPurent(-) return the parent node and let functiiiyht(-) return the hash value
of the right sibling. LetH7 denote the hash of the authentication tree. As by construction the leaves of the
authentication tree correspond to blocks, we alsdlted€ B;) denote the leaf corresponding ;.

The pseudo-code for tHeendBlocksoutine is shown in Figure 2. This routine will be run by the AP that
wishes to send the block3,, B, ..., B, to the SC. Each code blodR; will be sent in a messagil;, where
M; will contain B; and possibly some additional hash values ffBm

1. int depth« log(n)
2. booleancache[0 .. depth];
[* generate and sign authentication tree, send signature */

3. T + authentication tree faB;,

Bo,...,B,; 4. Send(Signilr));
AP signature orf{y 5. cachel0]
+ true;
[* generate message blocks */
6. for i from 1ton

do 7. M; + B;;
8. node« NoddB;);
9. j < depth; 10. while
cachel[j] = falsedo /* siblings of each node in the
path to the last verified node */ 11. M; +
(M;|| Right(node)); 12. cache[j}-
true; 13. node— Pareni{node); 14. j—j-1; 15. od; * while */
16. SendM;) 17. cache[jl~
false; 18. od; [* for */
Figure 2 Pseudo-code for théendblocksoutine.
When theSendBlocksoutine is executed, al blocks By, B-, ..., B, are passed as inputs. Routine

SendBlocksnaintains the following variablesiepth holds the height of the corresponding authentication tree
T of the blocksgcache is a boolean array of sizéepth + 1, andnode is a pointer into tre€". A field cacheli]
indicates whether a node on depttonstitutes the verified root of a subtree for a block not yet received.

First, SendBlocksonstructs and hashes the authenticationZrés the blocks, with the resulting signature
Sign(Hr) sent to the SC. Alseache[0] is set to true to indicate that the root hash has been sent. Next, the
messages corresponding to the blocks that will be used to verify this signature are created. StmatBlocks
has a mairfor loop (steps 6 to 18) that executesimes and processds; at thei-th iteration to generaté/;,
which is sent to the receiver at step 16. At each iteration, meskids initialized to B; (step 7), variable
node points toNod€g B;), the leaf node corresponding & (step 8), and auxiliary variablgis set to the depth
of the leaf nodes of” (step 9). Further processing adds any additional hash valugs tieat will be required
at the SC to perform the verification &; after it is received.

We now explain how the additional hashes féy are determined. Thehile loop from steps 10 to 15
traverses the path fromVode(B;) to the last verified node towards the root of the authentication tree by
repeatedly assigningodeto its parent (step 13). At each new node referenceddmefor which the hash
value of the right sibling has not been sent as part of a previous message @iaths,, ..., M; 1), this
hash value is appended Ad; (step 11) and the cache field of the corresponding depth is set to true (step 12).
Note that thevhile loop is executed for odd-numbered messages only; therefore there is always a right sibling.
Equivalently, ifcachgj] is false, thenRight(node) is appended td/; at step 11, andache([j] is set to true to

Vi

indicate that this hash value need not be sent with any future message. This process of appending hash value
to M; continues in thevhile loop until cache[j] = true indicates that the hash value of this depth was sent

by a previous message. At this point, the mesdagéor block B; is complete and can be sent to the SC. The
creation of the next messagdé;,, for the blockB;; begins at thgi + 1)-st iteration of the main loop of
SendBlocksThe main loop continues in this manner untilralinessages for all blocks have been generated

and sent, at which poirfgendBlockexits.

Example 1 Consider executingSendBlockson the authentication tree of Figure 1 with the blocks
By, B, ..., Bg. After the signature ol has been sent, the contents of the eight messeges/s, ..., My
corresponding to the blockB,, Bs, ..., Bg are

MI = {BlaH(BQ)aHQaHfi}a

M; = {B.},

M; = {Bs, H(B4)},
My = {Ba},

M; = {Bs,H(Bg),H,},
Mg = {Bs},

M; = {Br,H(Bs)},
Mg = {Bg}.

We note that the longest messag#fisand that even-indexed messages contain no hash values b&kaBige
will be sent withMs;_1. O

We first prove a crucial property of ti&endBlocksoutine, the proper termination of thehile loop.
Lemma 1 Before processing messafi, 1 < i < n, there is at least one field in theche set to true.

Proof. Before processing messadé,, cache[0] = true holds (step 5). At every iteration of tHer loop,
only the field with the highest index set to true is set to false (step 17). However, thenihitetoop will flip

all fields holding value false, starting fronache[depth] up to the field that corresponds to the depth of the
last verified node. This means that all fields of the cache are only set to falseé idepth] is the only true
field (thewhile loop is not executed). O

In other words, data structur@iche behaves like a counter if we regard its fields to represent a binary

number, wherérue denotes 1 andache[0] is the most significant bit. Its initial value is = 2depth Thefor
loop decrements its value at every iteration. Aftdterations the counter is zero.

Lemma 2 MessageV/; contains exactly those hash values that are required to compute the hash of a subtree
of T' for which nodeH (B;) is the leftmost child.

Proof. To compute the above subtrees, it is sufficient that mesadggeontains blockB; together with the
siblings of each node in the path from Igd{ B;) to block B;’s last verified node. The proof is by induction.
Base caseBefore creating messagdé; , cache[0] = true holds (step 5). Execution of thvehile loop adds
to messagel/; the siblings of each node in blodR;’s path to its last verified node, rod{r. In addition,
fields cache[depth] to cache[l] are set to true, and fielehche[0] is set to false.
Induction steplet us assume that messalyg has been sent. Case analysis.

1. M;,q is an even-indexed message: Then mesddgearried the hash value of blodk;, 1, the sib-
ling of block B;, and fieldcache[depth] = true. Thus, no hash value is added to messafje; but
cache[depth] = false holds afterwards.

2. M;.4 is an odd-indexed message: Then bldgk , is the left child of its ancestor and its last verified
node is at depth, 0 < j < depth. Thus, execution of thevhile loop adds to messagd¢; ,; the siblings

Vii

of each node in bloclB;;1’s path to its last verified node at depthlIn addition, fields:ache|depth] to
cache[j + 1] are set to true, and fielehchelj] is set to false.

O We now prove some simple properties concerning the messages gener8edBlocks

Lemma3 LetBy, B,,..., B, be a set ofi = 2¢ blocks andM;, My, . .., M, the corresponding. messages
generated by SendBlocks for thesblocks. Then no messagé; contains more thaw hash values, and no
more thann — 1 hash values are sent in total with themessages.

Proof. Thewhile loop of SendBlockgannot execute more thahtimes before the root of the authentication

tree is reached, which proves the first statement of the lemma. To prove the second statement we observe the
hash values appended to messageSdndBlocksnust be labels of right children in the authentication tree. As
there ar@&n —1 nodes in the authentication tree, at mostl hashes of right children can be sent in messages.

The proof of this lemma shows that on average each message genera®entilockscontains at
most one additional hash value.

3.2 RECEIVING BLOCKS

TheReceiveBlocksutine executes at the SC and verifies code blocks by processing the messages generated
by the SendBlocksoutine at the AP. The pseudo-code for ReceiveBlocksoutine is shown in Figure 3.
ReceiveBlockmaintains a data structure calledche which is an array of hash values. The fieldscathe
can be addressed from 0 updpthe depth of the authentication tré&e For each depth of the authentication
treeT’, cachéi] holds hash valué/ () of a node that was verified last in the processing of a previous message.
In the setup phase (steps 2-5 of Figure 3), ReeeiveBlocksoutine first reads and verifies the signature
Sign(Hr) on the authentication treg, extracts the hash valué; of the root, and then stores the hd$h of
the authentication tree in fielchchg0].

2. depth« log(n);

3. cachel0 .. depth]; [* array of hash
values */
4. sig<+ read(} * read Sign(Hr) */ 5. cache[0]
< Hr;
6. for i from 1to n do /* read messages and verify blocks */
7. M; + read()
8. B; + block fromM;;
9. h < h(B;); 10. j
+ depth;
11. while cache[j] = 0do 12. cache[jl«~- head(M;); 13. h
+ h(h||cache[j); 14.]
+J-1; 15. od; * while */ 16. if cache[j] =h 17. then cachel[j]
« 0; 18. elseerror 19. fi 20. od; /* for */

Figure 3 Pseudo-code for thReceiveBlocksoutine.

ReceiveBlockhsas a mairfior loop (steps 6—20) that executetimes, receiving and verifying theth block
B; at thei-th iteration. At thei-th iteration, it receives messagé; (step 7), extracts blocB; from M; (step
8), computes the hash vali® B;) of that block, and stores the computed hash value in the temporary variable
h (step 9). NexReceiveBlocksimulates the computation of the hash pathBgin T until it reaches a node
which has already been verified in the processing of a previous mea$adds, ..., M;_; (steps 10 - 15).
For each not yet verified nod®eceiveBlockextracts the hash value of its right sibling from the received
messageé/; and stores the value in the corresponding field of the cache (step 12), computes the hash value of
the parent node, and stores it in temporary varidb(step 13). Finally, the routine compares the computed

viii

hash value stored in variablewith the hash value of the already verified intermediate node (step 16). If the
values are equal, blodk; is considered verified arfdleceiveBlockslears the hash value of the already verified
intermediate node igache(step 17). OtherwiseReceiveBlockindicates an error (step 18). The mdim

loop continues in this manner until allmessages for att blocks have been received and verified, at which
point ReceiveBlocksxits.

Table 3 Storage requirements for OTA far= 8.

Received message SC Compute SC Verify SC Hash Storage
Sign(Hr) - - Hr
{BlaH(BQ)aH%HfS} H(Bl)aHlaHFnHT Hr H(BQ)aHZaHfS
{B3) H(B3) H(By) Hs, Hg
{Bs, H(B4)} H(B3), H> Hy H(B4), Hg
{Ba} H(By) H(By) Hs
{BSaH(Bﬁ)7H4} H(B5)aH3aH6 Hg H(Bﬁ)aH4
{Bs} H(Bg) H(Bg) Hy
{Br}, H(Bs) H(Br), He Hy H(Bs)

{Bs} H(Bs) H(Bs) -

Example 2 The operation of th&eceiveBlockeoutine as run on the messages produce8édaydBlockérom
Example 1is shown in Table 3. After the signatureffnhas been verified, fieldach€0] holds Hy. All other
fields are empty. NexReceiveBlockseceives the first messagéf; = { B, H(Bz), Ha, Hg}. As the fields
caché3], caché2], andcachel] are empty, thevhile loop extracts the three hash valug$B,), H,, andHg
from the message. These hash values are the siblings of the nodes on the Patarfdrthus allow nodél

to be computed and verified. As a side effect, noHé®-), H,, and Hg are also verified and thus stored in
the cache. As nod#7 is verified, fieldcachg0] is cleared.

Let us assume that the next message received contains an even-indexed block. Then the previous messac
contained the block’s hash value and was stored in fiatdh¢3]. Thus, the even-indexed block can be imme-
diately verified and fieldachg3] will be cleared. In general, whenever a node is verified, the corresponding
field in the cache is cleared (step 17).

Finally, let us consider the case where the next message received contains an odd-indexgg; blodk/e
know from the discussion above that the previous iteration (iteratidof thefor loop cleared fieladachg3]
and thus at least the hash value of the next biBgk, » will be extracted from the message. If the parent node
has not been verified previously, the hash value of the parent’s right child will be extracted from the message.
Note that intermediate nodes are verified before their right child are verified. Thus, walking up towards the
root until an already verified node is reached, the shortest hash path to verify the code block is obtained.

Lemma 4 The ReceiveBlocksroutine verifiesB; given My, M,, ..., M; in constant time using (logn)
storage.

Proof. The proof is by induction.

Base caseMessagé\/; carries the right siblings of each node in the path fi¥inde (B) to but excluding
the rootHr (Lemma 2) that has been sent before and is kept in fi@ttle[0]. With this information, SC can
compute the root value @f by iteratively computing the hash value of each parent node by combining the left
child (first by computing the hash value of blogk; later using the result of the last computation) with the
hash value of the right child contained in messafje Block B, in messagé/; is verified. In addition, fields
cachel[depth] to cache[l] keep the hash values of the siblings, and fielche[0] is set to zero.

Induction step.Let us assume that block3,, B,, ..., B; have been verified. Consider verifying block
B; 1 with messagé\/; ;. Case analysis.

iX

1. M;, is an even-indexed message: According to Lemma 2, meddagarries the hash value of block
B; 1, the (right) sibling of blockB;. Hash valueH (B;1) was stored in fielcdcache[depth]. Thus,
block B; 11 can immediately be verified. Fieldiche|depth] is set to zero.

2. M, is an odd-indexed message: Then bldgk , is the left child of its ancestor and its last verified
node is at depthj, 0 < j < depth. Thus, messag#/; . contains the siblings of each node in block
B;.1’s path to its last verified node at depthExecution of thevhile loop calculates the hash value of
block B;11's last verified node and compares that value with the hash value stored atfigtd;]. In
addition, fieldscache[depth] to cache[j + 1] keep the hash values of the siblings, and fieldhe[;] is

set to zero.
RoutineReceiveBlockstores the intermediate hash values in artayie of sizelogn + 1. O
4. INCREMENTAL BLOCKS
It may also be the case that a given application bfocks B+, Bs, . .., B, is to be increased to have+ 1

blocks with the addition of a new blod; ;. Adding a new block can be considered a special update operation
in OTA. Let Hy be the OTA authentication tree for the blodRs, B, . .., B, which will consist of a binary
tree with internal nodes and leaves, where each internal node will have two children (excluding the case of
n = 1). Each leaf is a blockB;, and is positioned at some depitin Hr. To add a new bloci3,,.; to Hr,
one considers the set of leaves that are at the minimum daptti/, and pick one at random, here denoted
B;. Then the node foB; is replaced by an internal node that Hasand B,, 1 as its children.

To add the newB;; block to those existing in the SC, the AP adBg,; to the Hr as described above
and then computes the new root valié. Then, the AP sendHY., its signatureSign(H?.), the index:, and
B,,,1 to the SC, where indicates the leaf in the current authentication tree that will become the parent of the
new block. The SC insertB,,,; into the authentication tree, recomputes the hash tree and verifies that the
newly computed root hash equals the received valugaf If the hashes agree, and the signature is correct,
then B,,; 1 is added to the blocks. The above protocol naturally extends to the casewmw blocks are
added.

5. CONCLUSIONS

The OTA scheme presented for downloading to and/or updating and authenticating data or applications on
a portable device has clear advantages for the chosen specific example of a smart card as portable device &
well as for other applications. The algorithm can easily be adapted and applied to any problem where complex
applications must be downloaded to or updated in a device having constraints in memaory, processing speed
and/or bandwidth or where updating time and/or security play significant roles.

Hr
Message SC Storage
| | Sign(Hr) Hy
H, Bs {B1,H(B,),H(B3)} H(Bs),H(Bs)
{B2} H(Bj3)
{Bs} -
By By

Figure 4 An authentication tree fat = 3 andd = 2.

If the number of blocks to be downloaded is not a power of 2, there is a simple change to adapt the two
routines. Before executing thwhile loop, variablg is assigned the value of the height of the authentication
tree (j« depth). It is sufficient to replace the constdepthby a function,Depth(-), that returns the depth of
the leaf associated with the current block to be processed. If we take, for example, an application that consists
of three blocks, we get the authentication tree in Figure 4. The major difference is in sending/receiving the
third block. After the second message has been proceasda,[1] = H(B3) holds. Setting the initial value
of variablej to 1 (j< Depth(Bgs) instead to 2 (y— depth) skips the processing of the (missing) nodes at depth
2.

References

[CASCADE, 1997] Seéttp://www.dice.ucl.ac.be/crypto/cascade/cascade.html.

[SHA, 1994] (1994). FIPS 180-1, Secure Hash Standard, Federal Information Processing Standards
Publication 185, US Department of Commerce/NIST, National Technical Information Service,
Springfield, Virginia, 1994. Available at http://csrc.nist.gov/fips/fip180-1.ps.

[Dhem, 1998] Dhem, J.F. (1998Resign of an efficient public key cryptographic library for RISC-based
smart cards PhD thesis, Univergitcatholique de Louvain. Available at
http://www.dice.ucl.ac.be/crypto/dhem/dhem.html.

[Merkle, 1989] Merkle, R.C. (1989). A certified digital signatufedvances in Cryptology, CRYPTO 89,
Lecture Notes in Computer Science, vol. 218, G. Brassard ed., Springer-\agiges 218—-238.

[Wong and Lam, 1999] Wong, C.K. and Lam, S.S. (1999). Digital signatures for flows and multicasts.
IEEE/ACM Transactions on Networking(4):502-513.

