
RZ 3215 (# 93261) 03/13/00
Computer Science/Mathematics 10 pages

Research Report

Efficient Downloading and Updating Applications on Portable Devices using
Authentication Trees

Luke O’Connor and G̈unter Karjoth

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Re-
search Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to
publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally
obtained copies of the article (e.g., payment of royalties).

IBM
Research
Almaden � Austin � Beijing � Delhi � Haifa � T.J. Watson � Tokyo � Zurich

Efficient Downloading and Updating Applications on Portable Devices using
Authentication Trees

Luke O’Connor and G̈unter Karjoth

IBM Research, Zurich Research Laboratory, 8803 R¨uschlikon, Switzerland

Abstract

Consider the problem of securely downloadingn application blocksB1; B2; : : : ; Bn from an application
provider to a smart card (SC) with the possibility of updating a blockBi at a later time. In this paper we
describe a scheme called Ordered Authentication Trees (OTA), which solves the problem of downloading and
updating application blocks with the following properties: (1) a single signature based on an authentication
tree is computed for the blocks, (2) onlyO(log n) additional memory is required by SC beyond the memory
for the blocks themselves, (3) blockBi can be verified as correct upon receipt at the SC, and (4) blocks can be
updated inO(logn) time. All previously known solutions requireO(n) memory and/or delay requirements
for the download/update ofn code blocks. The OTA scheme also generalizes to other portable devices that
share common characteristics with smart cards.

Keywords: Portable device, smart card, authentication tree, digital signature.

i

1. INTRODUCTION

A general computing device such as a PC or a workstation stores applications in some permanent storage
media, such as a hard disk, and then reads an application into main memory (RAM) for execution as required.
Subject to available memory, new applications can be freely added while old applications can be easily removed
or updated. However for a smart card (SC), given its limited memory capacity, applications are typically loaded
into its ROM at the time of fabrication. This approach is convenient for the large scale production of SCs
supporting one or a few fixed applications. But this approach is less suitable if the set of applications to be
supported is expected to change, or if old applications need to be updated, or if the number of cards supporting
a given application are not to be produced in large quantities.

A more flexible approach is to design the SC so that applications can be downloaded to the card as re-
quired. For example, in the ESPRIT project CASCADE [CASCADE, 1997], an SC was designed where the
pre-installed software consists of a small boot kernel, libraries for basic I/O and cryptography, and a secure
downloading mechanism, where other applications and systems code are downloaded securely to a FLASH
memory (approximately 16 KB) to the card. As an application may be quite large with respect to the amount
of RAM or bandwidth available to the SC, it is anticipated that an application will be partitioned into blocks
B1; B2; : : : ; Bn and each block will be downloaded from an Application Provider (AP) in a separate commu-
nication to the SC. Also, if an application is to be updated, then only those blocks that have been modified need
be re-installed on the SC. We note that the blocks may represent either application code and/or application data.
Using this scheme of block partitioning, there are two parameters of interest in evaluating a given solution with
respect to downloading and updating blocks: delay requirements and memory requirements.

Delay Requirements. The downloading or updating of blocks should be ‘on-the-fly’ in the sense that blocks
that are incorrect due to some error should be detected quickly to avoid wasting bandwidth and memory. If a
blockBi arrives at timet but cannot be verified (e.g. by a hash check) until the arrival of blockBi+d at time
t+ d, we say that the verification ofBi is delayedfor d blocks. For a given scheme, we are interested in the
maximum delay for block verification. �

Memory Requirements. During block verification, storage is required for intermediate calculations and the
caching of intermediate values that will be used for future blocks verifications. As memory on SCs is limited
we seek solutions that minimize memory requirements. �

For code downloading, the worst case delay and memory requirements are bothO(n). An O(n) delay means
that all blocks must be received before verification can begin, whereasO(n) memory means that an additional
linear amount of space beyond the storage for then blocks themselves is required. A protocol demonstrates
a gain in efficiency if either the memory or verification delay is reduced fromO(n) to possiblyO(log n) or
evenO(1). We say that block verification is ‘on-the-fly’ if the maximum delay isO(1).

1.1 RELATED WORK

Our research has been partly motivated by the fact that little work has been done to address the code
download/update problem for portable devices. According to its authors, the CASCADE project report [Dhem,
1998] describes the first protocols that considered these problems. The solution in this case was to produce
a hash vectorH = (H1;H2; : : : ;Hn+1) of (n + 1) components such thatHn+1 is randomly chosen and
Hi h(Hi+1; Bi) for some hash functionh(�) such as SHA-1 [SHA, 1994]. The AP signsH1, and then
sends the followingn+ 2 messages to the SC:

Sign(H1); (H1; B1); (H2; B2); : : : ; (Hn; Bn); Hn+1:

The SC first verifies the signature onH1 and then proceeds to verify the hash chain used to form the hash vector.
Owing to the form of the chain defined above, each blockBi can be verified after the next pair(Hi+2; Bi+1)
has been received, yielding a constant delay ofO(1). However if a blockBi is to be updated, then the hash

ii

chain must be recomputed from positioni forward due to the linear nature of the hash chain. This scheme will
be denoted as ‘CASCADE with hashes’.

As noted by Dhem [Dhem, 1998], then hash valuesH1;H2; : : : ;Hn need not be sent by the AP, because
these values can be generated by the SC. We will refer to this scheme as ‘CASCADE without hashes’. However
the penalty for this reduced transmission is that the code block verification cannot begin untilHn+1 has
been received, meaning that the maximum block delay before verification isO(n) when no hashes are sent.
Regardless of whether the hashes are sent at the time of download, they have been discarded by the time of
update and thus incur anO(n) update time for a block.

A problem related to efficient application downloading/updating is that of signing digital data streams. The
solution that has commonalities with our results is the Wong-Lam scheme [Wong and Lam, 1999] based on
authentication trees [Merkle, 1989]. Their protocol breaks a data stream inton packetsP1; P2; : : : ; Pi; : : : ; Pn

that are collected into a transmission groupTG. The packets ofTG are then arranged to be the leaves of an
authentication treeT , and the hash of the tree is computed and signed by the sender to produceSign(TG).
WhenTG is transmitted, each packetPi is sent with the sequence of hash values that were used to form the path
in the hash tree from the leaf representingPi to the root of the authentication treeT . The signatureSign(TG)
on the authentication treeT is also sent with each packet and packet hash path. This permits each packetPi

to be verified as it is received, even though other packets in theTG of Pi may have been lost or reordered. To
verify a given packetPi, the receiver is typically required to recompute the path in the authentication tree from
the leaf representingPi to the root ofT , and then verifySign(TG) based on the computed root hash. The
full hash path from the leaf to the root must be computed for the first packet received, but the verification of
subsequent packets can be optimized by reusing hash values that were previously computed, verified and then
cached. The next received packetPi+1 is verified by hashing it until a node in the cache is reached that was
previously authenticated. The cache structure suggested by Wong-Lam mimics the structure of the original
authentication tree that the sender used to compute the signature onTG. The receiver then requires a storage
of the sizeO(n) because this is the size of the authentication tree.

1.2 NEW CONTRIBUTIONS

The solution to the application code download/update problem presented in this paper is calledOrdered Tree
Authentication, or simply OTA. OTA gives aO(1) verification delay and logarithmic time for block update.
This is achieved by sending a particularorderedsequence of hash values from the authentication tree along
with the blocks to be authenticated, thus allowing verification of nodes of the tree besides the root. The OTA
algorithm improves the approaches described in Section 1.1 in two aspects. First, the OTA algorithm needs a
significantly lower amount of verification data to be transmitted with each data packet than Wong-Lam. Second,
the OTA algorithm lowers the amount of storage required at the receiving end without increasing the time for
verification at the receiver. Thus, the OTA algorithm allows safe transmission between an application or service
provider and a portable device having a limited storage or memory capacity and/or restricted processing power,
such as smart cards and the like. A comparison between previous schemes and the proposed OTA method is
given in Table 1.

The remainder of this paper is as follows. Section 2. begins with an example of an authentication tree that
will be used to display the workings of OTA. The OTA scheme is described in Section 3., where Section 3.1
details the format of the blocks at the AP for transmission, and Section 3.2 details the process that the SC uses
to verify the blocks. The problem of incrementing blocks is discussed in Section 4.. Conclusions are presented
in Section 5..

2. AUTHENTICATION TREES

As orginally proposed by Merkle [Merkle, 1989], an authentication tree is a data structure used to authen-
ticate individual data items such as the blocksB1; B2; : : : ; Bn. The basic idea is to select a labeled binary tree
T with n = 2d leaves and to associateBi with the i-th leaf. For simplicity, we assume thatn is a power of
two but this is not required for the construction. The length of the path from the root to a nodex is thedepth

iii

Table 1 Summary of time and storage requirements for block download and update.

Download Update
Method Storage Max Delay Storage Max Delay

CASCADE with hashes O(1) O(1) O(n) O(1)
CASCADE without hashes O(n) O(n) O(1) O(n)
Tree Authentication O(logn) O(n) O(log n) O(log n)
Wong-Lam O(n) O(1) N/A N/A
OTA O(logn) O(1) O(log n) O(log n)

of x in T . The root is at depth 0 and there are2i nodes at depthi. An authentication treeT hasheightd, the
largest depth of any node inT . TreeT has exactlyn leaves associated with the values ofB1; B2; : : : ; Bn and
exactlyn� 1 internal nodes with two children each.

HT

B1 B6 B7
B8B2 B3 B4 B5

H1 H2 H3
H4

H5 H6

Figure 1 An authentication tree forn = 8 andd = 3.

To compute the hash of the tree, thei-th leaf is labeledH(Bi) = h(Bi), whereBi is associated with the
leaf. Then, beginning at depthd and proceeding to the root at depth 0, each internal nodej is labeled

Hj = h(L(Hj)jjR(Hj))

wherejj denotes concatenation andL(Hj) andR(Hj) are the labels of the left and right child, respectively, of
nodej. The label at the root, denotedHT , is a hash value that depends onB1; B2; : : : ; Bn. The structure of
an authentication tree onn = 8 valuesB1; B2; : : : ; B8 is shown in Figure 1.

The AP signs the hashHT of T , then sendsHT , its signature, and the blocksB1; B2; : : : ; Bn. To verify
the signature on the blocks, the SC must repeat all the hashing computations onT to determineHT . Note
that no block can be rejected as corrupted until all blocks have been received, because the locally computed
value ofHT is not available until that time. Further, if the generated root hash does not match the received
root hash, then the incorrect block(s) cannot be identified and all blocks must be retransmitted. Thus, the
verification delay for basic tree authentication isO(n). By recursively calculating the nodes as blocks are

iv

received, the verification ofT requires a memory of the sizeO(logn). Table 2 illustrates the verification of
the authentication tree shown in Figure 1.

Table 2 Storage requirements to verify a tree authentication forn = 8.

Received block Compute Hash Storage

B1 H(B1) H(B1)
B2 H(B2);H1 H1

B3 H(B3) H1;H(B3)
B4 H(B4);H2;H5 H5

B5 H(B5) H5;H(B5)
B6 H(B6);H3 H5;H3

B7 H(B7) H5;H3;H(B7)
B8 H(B8);H4;H6 H5;H6

Sign(HT) HT Sign(HT)

An advantage of the tree authentication over other methods such as linear hashing is that an individual block
can be updated in a logarithmic number of messages (or by a single message with a logarithmic number of
components). To updateBi to B0

i, the AP first associates thei-th leaf withB0

i and then recomputes the hash
values of the tree to yield the new root valueH 0

T . The AP then signs the new root valueH 0

T and then sends
H 0

T , its signature, andB0

i. The SC then recomputes the hash tree of its blocks after replacingBi with B0

i,
and verifies that the newly computed root hash equals the received value ofH 0

T . If the hashes agree, and the
signature is correct, thenBi is updated asB0

i. Thus, using tree authentication,n blocks can be downloaded in
timeO(n) usingO(log n) memory, and a block can be updated inO(log n) time and withO(log n) memory.

3. ORDERED TREE AUTHENTICATION

To verify a block, the verifier needs the tree signature and the siblings of each node in the block’s path
to the root. With this information, the verifier computes the hash values of each of the block’s ancestors in
the tree. That is, it first computes the hash value of the block, and then recursively the hash values of each
ancestor by concatenating the last computed hash value with the corresponding node’s sibling. For example,
blockB3 is verified ifH 0(B3) = h(B3), H 0

2 = h(H 0(B3)jjH(B4)), H 0

5 = h(H1jjH
0

2), H
0

T = h(H 0

5jjH6),
andHT = H 0

T , whereHT is contained in the tree signature.
Note that the above calculation also verifies nodesH(B4),H1,H2,H5, andH6. If their values are cached,

the verification of other blocks can be shortened. We define thelast verified nodefor a blockBi to be the
closest verified ancestor on the block’s path to the root of the authentication tree. For example, after the above
calculation, blockB2’s last verified node isH1 and blockB4’s last verified node isH(B4). In general, it is
sufficient to verify a block against its last verified node.

In the OTA scheme, we exploit the above observations. By sending the tree signature first, the root becomes
the last verified node for all blocks. Sending blockB1 and the siblings of each node in the block’s path the
to root, verifies not only the path fromH(B1) to the root but also the siblings of the nodes on the path. We
observe that removing the nodes on the path from leafH(B1) to the root splits the authentication tree intod
subtrees, whered is the height of the tree. The roots of the subtrees are the siblings of the nodes on the path.
Each sibling is the last verified node of its children. In the OTA scheme, blocks are sent in sequence. Each
message contains one block and all the nodes that constitute the block’s path to its last verified node.

In the remainder of this section, we specify the OTA scheme in detail via pseudo-code description of two
routines calledSendBlocksandReceiveBlocks.

v

3.1 SENDING BLOCKS

As SendBlockswill act on the authentication treeT for the blocks, we assume the following tree structure
and operations based on the concept of anode. For our purposes anodehas a parent, a left and a right child,
and a hash value. Let functionParent(�) return the parent node and let functionRight(�) return the hash value
of the right sibling. LetHT denote the hash of the authentication tree. As by construction the leaves of the
authentication tree correspond to blocks, we also letNode(Bi) denote the leaf corresponding toBi.

The pseudo-code for theSendBlocksroutine is shown in Figure 2. This routine will be run by the AP that
wishes to send the blocksB1; B2; : : : ; Bn to the SC. Each code blockBi will be sent in a messageMi, where
Mi will containBi and possibly some additional hash values fromT .

1. int depth log(n)
2. booleancache[0 .. depth];

/* generate and sign authentication tree, send signature */
3. T authentication tree forB1;

B2; : : : ; Bn; 4. Send(Sign(HT));
AP signature onHT 5. cache[0]

 true;
/* generate message blocks */

6. for i from 1 to n

do 7. Mi Bi;
8. node Node(Bi);
9. j depth; 10. while

cache[j] = falsedo /* siblings of each node in the
path to the last verified node */ 11. Mi
(MijjRight(node)); 12. cache[j]
true; 13. node Parent(node); 14. j j-1; 15. od; /* while */
16. Send(Mi) 17. cache[j]
false; 18. od; /* for */

Figure 2 Pseudo-code for theSendblocksroutine.

When theSendBlocksroutine is executed, alln blocksB1; B2; : : : ; Bn are passed as inputs. Routine
SendBlocksmaintains the following variables:depth holds the height of the corresponding authentication tree
T of the blocks,cache is a boolean array of sizedepth+1, andnode is a pointer into treeT . A field cache[i]
indicates whether a node on depthi constitutes the verified root of a subtree for a block not yet received.

First,SendBlocksconstructs and hashes the authentication treeT for the blocks, with the resulting signature
Sign(HT) sent to the SC. Alsocache[0] is set to true to indicate that the root hash has been sent. Next, the
messages corresponding to the blocks that will be used to verify this signature are created. RoutineSendBlocks
has a mainfor loop (steps 6 to 18) that executesn times and processesBi at thei-th iteration to generateMi,
which is sent to the receiver at step 16. At each iteration, messageMi is initialized toBi (step 7), variable
node points toNode(Bi), the leaf node corresponding toBi (step 8), and auxiliary variablej is set to the depth
of the leaf nodes ofT (step 9). Further processing adds any additional hash values toMi that will be required
at the SC to perform the verification ofBi after it is received.

We now explain how the additional hashes forBi are determined. Thewhile loop from steps 10 to 15
traverses the path fromNode(Bi) to the last verified node towards the root of the authentication tree by
repeatedly assigningnodeto its parent (step 13). At each new node referenced bynodefor which the hash
value of the right sibling has not been sent as part of a previous message (that isM1;M2; : : : ;Mi�1), this
hash value is appended toMi (step 11) and the cache field of the corresponding depth is set to true (step 12).
Note that thewhile loop is executed for odd-numbered messages only; therefore there is always a right sibling.
Equivalently, ifcache[j] is false, thenRight(node) is appended toMi at step 11, andcache [j] is set to true to

vi

indicate that this hash value need not be sent with any future message. This process of appending hash values
to Mi continues in thewhile loop until cache[j] = true indicates that the hash value of this depth was sent
by a previous message. At this point, the messageMi for blockBi is complete and can be sent to the SC. The
creation of the next messageMi+1 for the blockBi+1 begins at the(i + 1)-st iteration of the main loop of
SendBlocks. The main loop continues in this manner until alln messages for alln blocks have been generated
and sent, at which pointSendBlocksexits.

Example 1 Consider executingSendBlockson the authentication tree of Figure 1 with the blocks
B1; B2; : : : ; B8. After the signature onHT has been sent, the contents of the eight messagesM1;M2; : : : ;M8

corresponding to the blocksB1; B2; : : : ; B8 are

M1 = fB1;H(B2);H2;H6g;

M2 = fB2g;

M3 = fB3;H(B4)g;

M4 = fB4g;

M5 = fB5;H(B6);H4g;

M6 = fB6g;

M7 = fB7;H(B8)g;

M8 = fB8g:

We note that the longest message isM1 and that even-indexed messages contain no hash values becauseH(B2i)
will be sent withM2i�1. �

We first prove a crucial property of theSendBlocksroutine, the proper termination of thewhile loop.

Lemma 1 Before processing messageMi, 1 � i � n, there is at least one field in thecache set to true.

Proof. Before processing messageM1, cache[0] = true holds (step 5). At every iteration of thefor loop,
only the field with the highest index set to true is set to false (step 17). However, the innerwhile loop will flip
all fields holding value false, starting fromcache[depth] up to the field that corresponds to the depth of the
last verified node. This means that all fields of the cache are only set to false ifcache[depth] is the only true
field (thewhile loop is not executed). �

In other words, data structurecache behaves like a counter if we regard its fields to represent a binary
number, wheretrue denotes 1 andcache[0] is the most significant bit. Its initial value isn = 2depth. Thefor
loop decrements its value at every iteration. Aftern iterations the counter is zero.

Lemma 2 MessageMi contains exactly those hash values that are required to compute the hash of a subtree
of T for which nodeH(Bi) is the leftmost child.

Proof. To compute the above subtrees, it is sufficient that messageMi contains blockBi together with the
siblings of each node in the path from leafH(Bi) to blockBi’s last verified node. The proof is by induction.

Base case.Before creating messageM1, cache[0] = true holds (step 5). Execution of thewhile loop adds
to messageM1 the siblings of each node in blockB1’s path to its last verified node, rootHT . In addition,
fieldscache[depth] to cache[1] are set to true, and fieldcache[0] is set to false.

Induction step.Let us assume that messageMi has been sent. Case analysis.

1. Mi+1 is an even-indexed message: Then messageMi carried the hash value of blockBi+1, the sib-
ling of blockBi, and fieldcache[depth] = true. Thus, no hash value is added to messageMi+1 but
cache[depth] = false holds afterwards.

2. Mi+1 is an odd-indexed message: Then blockBi+1 is the left child of its ancestor and its last verified
node is at depthj, 0 < j < depth. Thus, execution of thewhile loop adds to messageMi+1 the siblings

vii

of each node in blockBi+1’s path to its last verified node at depthj. In addition, fieldscache[depth] to
cache[j + 1] are set to true, and fieldcache[j] is set to false.

�We now prove some simple properties concerning the messages generated bySendBlocks.

Lemma 3 LetB1; B2; : : : ; Bn be a set ofn = 2d blocks andM1;M2; : : : ;Mn the correspondingn messages
generated by SendBlocks for thesen blocks. Then no messageMi contains more thand hash values, and no
more thann� 1 hash values are sent in total with then messages.

Proof. Thewhile loop of SendBlockscannot execute more thand times before the root of the authentication
tree is reached, which proves the first statement of the lemma. To prove the second statement we observe that
hash values appended to messages bySendBlocksmust be labels of right children in the authentication tree. As
there are2n�1nodes in the authentication tree, at mostn�1hashes of right children can be sent in messages.�

The proof of this lemma shows that on average each message generated bySendBlockscontains at
most one additional hash value.

3.2 RECEIVING BLOCKS

TheReceiveBlocksroutine executes at the SC and verifies code blocks by processing the messages generated
by theSendBlocksroutine at the AP. The pseudo-code for theReceiveBlocksroutine is shown in Figure 3.
ReceiveBlocksmaintains a data structure calledcache, which is an array of hash values. The fields ofcache
can be addressed from 0 up tod, the depth of the authentication treeT . For each depthi of the authentication
treeT , cache[i] holds hash valueH(j) of a node that was verified last in the processing of a previous message.
In the setup phase (steps 2–5 of Figure 3), theReceiveBlocksroutine first reads and verifies the signature
Sign(HT) on the authentication treeT , extracts the hash valueHT of the root, and then stores the hashHT of
the authentication tree in fieldcache[0].

2. depth log(n);
3. cache[0 .. depth]; /* array of hash

values */
4. sig read(); /* readSign(HT) */ 5. cache[0]
 HT ;
6. for i from 1 to n do /* read messages and verify blocks */
7. Mi read();
8. Bi block fromMi;
9. h h(Bi); 10. j
 depth;
11. while cache[j] = 0do 12. cache[j] head(Mi); 13. h
 h(hjjcache[j]); 14. j
 j-1; 15. od; /* while */ 16. if cache[j] = h 17. then cache[j]
 0; 18. elseerror 19. fi 20. od; /* for */

Figure 3 Pseudo-code for theReceiveBlocksroutine.

ReceiveBlockshas a mainfor loop (steps 6–20) that executesn times, receiving and verifying thei-th block
Bi at thei-th iteration. At thei-th iteration, it receives messageMi (step 7), extracts blockBi fromMi (step
8), computes the hash valueH(Bi) of that block, and stores the computed hash value in the temporary variable
h (step 9). NextReceiveBlockssimulates the computation of the hash path forBi in T until it reaches a node
which has already been verified in the processing of a previous messageM1;M2; : : : ;Mi�1 (steps 10 - 15).
For each not yet verified node,ReceiveBlocksextracts the hash value of its right sibling from the received
messageMi and stores the value in the corresponding field of the cache (step 12), computes the hash value of
the parent node, and stores it in temporary variableh (step 13). Finally, the routine compares the computed

viii

hash value stored in variableh with the hash value of the already verified intermediate node (step 16). If the
values are equal, blockBi is considered verified andReceiveBlocksclears the hash value of the already verified
intermediate node incache(step 17). Otherwise,ReceiveBlocksindicates an error (step 18). The mainfor
loop continues in this manner until alln messages for alln blocks have been received and verified, at which
point ReceiveBlocksexits.

Table 3 Storage requirements for OTA forn = 8.

Received message SC Compute SC Verify SC Hash Storage

Sign(HT) – – HT

fB1;H(B2);H2;H6g H(B1);H1;H5;HT HT H(B2);H2;H6

fB2) H(B2) H(B2) H2;H6

fB3;H(B4)g H(B3);H2 H2 H(B4);H6

fB4g H(B4) H(B4) H6

fB5;H(B6);H4g H(B5);H3;H6 H6 H(B6);H4

fB6g H(B6) H(B6) H4

fB7g;H(B8) H(B7);H6 H4 H(B8)
fB8g H(B8) H(B8) –

Example 2 The operation of theReceiveBlocksroutine as run on the messages produced bySendBlocksfrom
Example 1 is shown in Table 3. After the signature onHT has been verified, fieldcache[0] holdsHT . All other
fields are empty. Next,ReceiveBlocksreceives the first message:M1 = fB1;H(B2);H2;H6g. As the fields
cache[3], cache[2], andcache[1] are empty, thewhile loop extracts the three hash valuesH(B2), H2, andH6

from the message. These hash values are the siblings of the nodes on the path forB1 and thus allow nodeHT

to be computed and verified. As a side effect, nodesH(B2), H2, andH6 are also verified and thus stored in
the cache. As nodeHT is verified, fieldcache[0] is cleared.

Let us assume that the next message received contains an even-indexed block. Then the previous message
contained the block’s hash value and was stored in fieldcache[3]. Thus, the even-indexed block can be imme-
diately verified and fieldcache[3] will be cleared. In general, whenever a node is verified, the corresponding
field in the cache is cleared (step 17).

Finally, let us consider the case where the next message received contains an odd-indexed blockB2j+1. We
know from the discussion above that the previous iteration (iteration2j) of the for loop cleared fieldcache[3]
and thus at least the hash value of the next blockB2j+2 will be extracted from the message. If the parent node
has not been verified previously, the hash value of the parent’s right child will be extracted from the message.
Note that intermediate nodes are verified before their right child are verified. Thus, walking up towards the
root until an already verified node is reached, the shortest hash path to verify the code block is obtained.�

Lemma 4 The ReceiveBlocksroutine verifiesBi givenM1;M2; : : : ;Mi in constant time usingO(log n)
storage.

Proof. The proof is by induction.
Base case.MessageM1 carries the right siblings of each node in the path fromNode(B1) to but excluding

the rootHT (Lemma 2) that has been sent before and is kept in fieldcache[0]. With this information, SC can
compute the root value ofT by iteratively computing the hash value of each parent node by combining the left
child (first by computing the hash value of blockB1; later using the result of the last computation) with the
hash value of the right child contained in messageM1. BlockB1 in messageM1 is verified. In addition, fields
cache[depth] to cache[1] keep the hash values of the siblings, and fieldcache[0] is set to zero.

Induction step.Let us assume that blocksB1; B2; : : : ; Bi have been verified. Consider verifying block
Bi+1 with messageMi+1. Case analysis.

ix

1. Mi+1 is an even-indexed message: According to Lemma 2, messageMi carries the hash value of block
Bi+1, the (right) sibling of blockBi. Hash valueH(Bi+1) was stored in fieldcache[depth]. Thus,
blockBi+1 can immediately be verified. Fieldcache[depth] is set to zero.

2. Mi+1 is an odd-indexed message: Then blockBi+1 is the left child of its ancestor and its last verified
node is at depthj, 0 < j < depth. Thus, messageMi+1 contains the siblings of each node in block
Bi+1’s path to its last verified node at depthj. Execution of thewhile loop calculates the hash value of
blockBi+1’s last verified node and compares that value with the hash value stored at fieldcache[j]. In
addition, fieldscache[depth] to cache[j + 1] keep the hash values of the siblings, and fieldcache[j] is
set to zero.

RoutineReceiveBlocksstores the intermediate hash values in arraycache of sizelog n+ 1. �

4. INCREMENTAL BLOCKS

It may also be the case that a given application ofn blocksB1; B2; : : : ; Bn is to be increased to haven+1
blocks with the addition of a new blockBi+1. Adding a new block can be considered a special update operation
in OTA. LetHT be the OTA authentication tree for the blocksB1; B2; : : : ; Bn, which will consist of a binary
tree with internal nodes and leaves, where each internal node will have two children (excluding the case of
n = 1). Each leaf is a blockBi, and is positioned at some depthd in HT . To add a new blockBn+1 toHT ,
one considers the set of leaves that are at the minimum depthd in HT , and pick one at random, here denoted
Bi. Then the node forBi is replaced by an internal node that hasBi andBn+1 as its children.

To add the newBi+1 block to those existing in the SC, the AP addsBn+1 to theHT as described above
and then computes the new root valueH 0

T . Then, the AP sendsH 0

T , its signatureSign(H 0

T), the indexi, and
Bn+1 to the SC, wherei indicates the leaf in the current authentication tree that will become the parent of the
new block. The SC insertsBn+1 into the authentication tree, recomputes the hash tree and verifies that the
newly computed root hash equals the received value ofH 0

T . If the hashes agree, and the signature is correct,
thenBn+1 is added to the blocks. The above protocol naturally extends to the case wherem new blocks are
added.

5. CONCLUSIONS

The OTA scheme presented for downloading to and/or updating and authenticating data or applications on
a portable device has clear advantages for the chosen specific example of a smart card as portable device as
well as for other applications. The algorithm can easily be adapted and applied to any problem where complex
applications must be downloaded to or updated in a device having constraints in memory, processing speed
and/or bandwidth or where updating time and/or security play significant roles.

HT

B1 B2

H1 B3

Message SC Storage

Sign(HT) HT

fB1;H(B2);H(B3)g H(B2);H(B3)
fB2g H(B3)
fB3g –

Figure 4 An authentication tree forn = 3 andd = 2.

x

If the number of blocks to be downloaded is not a power of 2, there is a simple change to adapt the two
routines. Before executing thewhile loop, variablej is assigned the value of the height of the authentication
tree (j depth). It is sufficient to replace the constantdepthby a function,Depth(�), that returns the depth of
the leaf associated with the current block to be processed. If we take, for example, an application that consists
of three blocks, we get the authentication tree in Figure 4. The major difference is in sending/receiving the
third block. After the second message has been processed,cache [1] = H(B3) holds. Setting the initial value
of variablej to 1 (j Depth(B3) instead to 2 (j depth) skips the processing of the (missing) nodes at depth
2.

References

[CASCADE, 1997] Seehttp://www.dice.ucl.ac.be/crypto/cascade/cascade.html.

[SHA, 1994] (1994). FIPS 180-1, Secure Hash Standard, Federal Information Processing Standards
Publication 185, US Department of Commerce/NIST, National Technical Information Service,
Springfield, Virginia, 1994. Available at http://csrc.nist.gov/fips/fip180-1.ps.

[Dhem, 1998] Dhem, J.F. (1998).Design of an efficient public key cryptographic library for RISC-based
smart cards. PhD thesis, Université catholique de Louvain. Available at
http://www.dice.ucl.ac.be/crypto/dhem/dhem.html.

[Merkle, 1989] Merkle, R.C. (1989). A certified digital signature.Advances in Cryptology, CRYPTO 89,
Lecture Notes in Computer Science, vol. 218, G. Brassard ed., Springer-Verlag, pages 218–238.

[Wong and Lam, 1999] Wong, C.K. and Lam, S.S. (1999). Digital signatures for flows and multicasts.
IEEE/ACM Transactions on Networking, 7(4):502–513.

