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Abstract

The periodic motion of a harmonic pendulum in an arbitrary force �eld including viscous
damping is studied as it pertains to dynamic force microscopy. It is shown that the damping
constant as a function of tip-sample distance and thus the dissipative force can be obtained
unambiguously by measuring the driving-force amplitude versus displacement of the force
sensor. This methodology provides the basis for quantitative force spectroscopy of dissipative
interactions.



Interaction sensing in dynamic force microscopy essentially involves two fundamentally
di�erent physical mechanisms, namely conservative forces, which give rise to a shift of the
resonance frequency, and dissipative interactions, which determine the amount of driving force
that must be supplied in order to sustain a stationary oscillatory motion of the force sensor.
To date, most of the published work is based on exploiting conservative forces for imaging
purposes by means of noncontact dynamic force microscopy, a technique that was pioneered
in the mid-nineties[1, 2, 3]. Dissipative interactions, on the other hand, have so far been
only rarely discussed in the literature, although they constitute an important complementary
observable[3, 4, 5]. In particular, a comprehensive theory that would allow one to relate in
a quantitative manner experimental observables such as the amplitude of the driving force
to physical quantities such as the dissipative tip-sample force is lacking. This Letter takes
a step towards a quantitative understanding of dissipative force sensing. Using a �rst-order
perturbative approach, a well-de�ned methodology is presented that allows one to extract
the damping coeÆcient associated with a viscous dissipative interaction from experimentally
measured power-loss characteristics.

We consider a dynamic force microscopy experiment in which the force sensor oscillates
at the resonance frequency with a constant amplitude a1 (see Fig. 1). The motion of the
tip, termed orbital  (t), is a periodic function, meaning that an appropriate driving force
F0(t) is applied, which compensates for the energy loss due to dissipative interactions. The
tip-sample force FTS = Fint+Fdiss can be decomposed into a conservative force Fint(x), which
is an explicit function of the tip-sample distance x, and a dissipative force Fdiss, which is
antisymmetric with respect to inversion of the tip motion,[5] viz. the dissipative force at some
position x during approach changes sign during retraction (note that Fint is even with respect
to path inversion). In this Letter we assume that the dissipation originates from a viscous
force Fdiss = � _ �(x) that is proportional to the local tip velocity and a damping coeÆcient.
For a harmonic orbital the velocity is an odd function with respect to path inversion. Hence,
it follows that the damping coeÆcient �(x) is an explicit function of the tip-sample distance
alone. Note, however, that other types of dissipative interactions exist that cannot be mapped
onto this framework. A prominent example as discussed in Ref. [5] is the well-known adhesion
hysteresis, which is associated with mechanical instabilities in the tip-sample contact zone and
which persists in the adiabatic limit, viz. for arbitrarily slow motion.

Figure 1: Schematic drawing of dynamic force sensing: z0: o�set parameter, a1 amplitude of
oscillation, z = z0 � a1: distance of closest approach. The tip-sample interaction comprises a
conservative interaction Fint(x) and a dissipative viscous interaction, which is represented by
a damping coeÆcient �(x).
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Let the force sensor be a one-dimensional harmonic oscillator with spring constant C and
resonance frequency !0. The corresponding equation of motion for the tip orbital is

C

!2
0

� (t) + _ (t)�(z0 +  (t)) + C (t)� Fint(z0 +  (t)) = F0(t); (1)

where z0 is an o�set parameter that �xes the position of the force sensor with respect to the
sample.

It is presumed that the tip-sample interaction is weak in the sense that the orbital devi-
ates only slightly from a harmonic motion. This allows us to use a �rst-order perturbative
approach, whereby the orbital function, is approximated by the lowest-order harmonic term
 (t) = a1 cos(!t). A re�ned analysis including higher harmonics and their implications for
force sensing will be published elsewhere[5]. For the sake of simplicity we further assume a
harmonic driving force F0(t) = F0 [cos� cos(!t) + sin� sin(!t)], where � denotes the phase
angle between the tip motion and the driving force.

Invoking the relation ! = !0

q
1 + Ce�

i =C, the oscillation frequency can be expressed in
terms of an e�ective force gradient[6, 7]

Ce�
i = � 2

�a1

1Z
�1

Fint(z0 + a1u)
up

1� u2
du +

F0 cos�

a1
; (2)

where we have used the substitution cos(!t) = u. Note that the in-phase component of the
driving force, F0 cos�, acts as an additional spring constant, which in turn gives rise to an
additional shift of the oscillation frequency.

A complementary relation that connects the driving force to the damping coeÆcient is
obtained from an energy balance argument. In the steady state, the net work executed by the
driving force in the course of one oscillation cycle must be equal to the energy dissipation due
to the viscous interaction, yielding

F0 sin� =
2a1!

�

1Z
�1

�(z0 + a1u)
p
1� u2 du : (3)

The out-of-phase component of the driving force, F0 sin�, is hence proportional to a velocity
weighted average of the damping coeÆcient that is probed by the tip.

For an arbitrary phase angle � 6= �90Æ the dissipative interaction couples to the frequency
shift via the F0 cos� term in Eq. (2). Thus the oscillator frequency is in general di�erent
from the eigenfrequency of the resonator[8]. In order to decouple the resonance frequency
from the dissipative interaction a phase angle of � = �90Æ must be selected. This issue is
crucial for quantitative dynamic force sensing. Henceforth we assume that driving force and
resonator response are mutually 90Æ out of phase and we can thus unequivocally identify a
frequency shift with conservative interactions and a driving force with dissipative interactions,
respectively. Note that the phase angle corresponding to the proper operating point can
deviate substantially from the nominal 90Æ value in a real experiment due to additional phase
shifts in the apparatus. The proper operating point can be easily identi�ed, however, as it
coincides with a minimum of the driving force amplitude F0 required to sustain a constant
oscillation amplitude a1.

As discussed in Refs. [7] and [9] the conservative interaction force law Fint(x) can be deter-
mined from a measurement of the e�ective force gradient Ce�

i (z0) as a function of the o�set
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parameter z0, termed force gradient curve, which involves the inversion of the integral operator
Eq. (2). A similar methodology can be invoked for extracting the damping coeÆcient function
�(x) from a measurement of the driving force curve F0(z0). To this end we rewrite Eq. (3) to
express u = x=a1 in terms of the physical tip-sample distance x

F0(z0) = A(�) = 2!

�

z0+a1Z
z0�a1

�(x)

s
1�

�
x� z0
a1

�2

dx : (4)

The above convolution integral cannot be inverted in closed form. Very often, however, the
range of interaction is short compared to the vibration amplitude. In this case, one can
approximate the kernel by the leading square-root term at closest sample approach, z = z0�a1,
and one can extend the integration to in�nity,

F0(z) = B(�) = 23=2!

a1=21 �

1Z
z

�(x)
p
x� z dx : (5)

Invoking Laplace transforms [10] one readily �nds the inverse of the approximate operator B

�(x) = B�1(F0) =
a
1=2
1

21=2!

1Z
x

d2

dz2
F0(z)p
z � x

dz : (6)

The damping coeÆcient obtained by means of the large amplitude inversion operator B�1
does not, in general, exactly reproduce the measured driving force curve upon substitution
into Eq. (4). However, using the iterative scheme described in Ref. [9] the solution can be
systematically improved until satisfactory consistency is obtained.

Inversion of Eq. (4) is trivial for exponentially decaying driving force curves, F0(z) =
F0 exp(��z), which are eigenfunctions of the convolution operator A:

�(x) =
1

�
F0 exp(��x) ; (7)

where the eigenvalue is given by

� =
2!

�

2a1Z
0

exp(��y)
s
1�

�
y � a1
a1

�2

dy
�a1!1=

21=2!

(�a1�3)1=2
: (8)

For inverse power laws, F0(z) = F0=z
p, on the other hand, the damping coeÆcient decays

more rapidly than the corresponding driving force curve because of the derivative operation
in B�1. In the large amplitude limit, a1 � z, one �nds

�(x) =
p(p+ 1)Npa

1=2
1

21=2!

F0

xp+3=2
; (9)

where Np =
R
1

0 y�1=2(1+y)�(p+2)dy is a normalization constant of the order of one (N1 ' 1:132,
N2 ' 0:935, N3 ' 0:813, N4 ' 0:727).

Very often, experimentally measured driving force curves cannot be represented by a simple
exponential or power law. In such cases it is most convenient to recover the corresponding
damping coeÆcient by means of direct inversion. For example, we consider interaction force
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curves, see Fig. 2 of Ref. [3]. The data were measured on a Si(111) substrate using a Si
cantilever tip. The conservative interaction force shown in Fig. 3(d) derived from the frequency
shift curve Fig. 2(a) has been discussed previously[7]. The driving force curve F0(z), Fig. 3(a),
is obtained from the power loss curve P (z), Fig. 2(b), using the transformation F0 = 2P=(!a1),
where ! = 2��153 kHz is the oscillator frequency and a1 = 9:5 nm is the oscillation amplitude
(note that a constant o�set of P0 = 6� 10�14 W, which accounts for the intrinsic damping of
the force sensor, has been subtracted).

Figure 2: (a) Frequency shift and (b) power loss measured on a Si(111) substrate using a Si
cantilever tip (adapted from Ref. [3], used with permission).

Figure 3: (a) Amplitude of the driving force versus distance of closest sample approach as
derived from the power loss curve, Fig. 2(b). (b) Damping constant versus tip-sample distance
corresponding to the driving force curve (a). (c) Dissipative force versus tip-sample distance
as experienced by the tip in an oscillation approaching the sample by z = 1 nm at the
closest point. (d) Conservative interaction force versus tip-sample distance as derived from
the frequency shift curve Fig. 2(a).
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The experimental power-loss curve shows irregularities in the range of the adhesion maxi-
mum 0 � z � 1 nm, which indicates that some genuine irreversibilities associated with strong
adhesive forces take place in this regime. As explained in the introduction, such hysteretic
interactions cannot be represented by a viscous damping constant �(x). Hence, we restrict
our analysis to the regime z � 1 nm in which the power-loss curve is a continuously decaying
smooth function. In fact, it follows from Eq. (6) that the damping coeÆcient is in essence pro-

portional to the square root of a length scale,
q
(dF0=dz)=(d2F0=dz2),[11] times the curvature

of the driving force curve d2F0=dz
2 . Hence, the curvature must be a strictly positive number,

otherwise unphysical negative values for the damping coeÆcient are obtained. This condition
imposes, at least in the large amplitude limit, a stringent criterion that allows one to identify
regimes in which the dissipative mechanism de�nitely cannot be described exclusively in terms
of a viscous damping force.

The damping constant as a function of tip-sample distance was calculated using Eqs. (4) and
(6) and the iterative scheme of Ref. [9]. Three iterations were suÆcient to obtain overall con-
sistency on the percent level, whereby all essential features were captured by the lowest-order
approximate solution B�1(F0) on a ten-percent level already. The most prominent feature of
the damping constant curve is the dramatic increase by almost two orders of magnitude in
the tip-sample distance interval between 1 and 2 nm. Note that the driving force increases
much less rapidly, namely only by a factor of 3, in this regime. The strong enhancement
of the damping constant is due to the derivative operation in Eq. (6) and is thus a general
phenomenon of the inversion.

Given the damping constant function �(x) one can readily calculate the dissipative force
that is acting on the tip during the oscillatory motion

Fdiss(z + a1(u+ 1)) = �(z + a1(u+ 1))
p
1� u2 ; (10)

where �1 � u = cos!t � 1 denotes the orbital parameter. The dissipative force corresponding
to z = 1 nm is shown in Fig. 3(c). Consistent with the sharp increase of the damping constant
at short tip-sample distance, the dissipative force peaks at close sample proximity. The peak
amplitude of 300 pN is one order of magnitude larger than the corresponding average driving
force. It thus looks as if the tip hits against a viscous wall. Nevertheless, the adhesive force,
which is of the order of 2.5 nN at z = 1 nm (see Fig. 3(d)), still dominates the overall tip-
sample interaction. Moreover, inspection of the force curve in Fig. 3(d) suggests that the tip
apex is still several tenths of a nanometer away from the sample surface at this point. Thus,
the dissipation must be induced by long-range interactions.

Electrical dissipation due to tip-induced motion of space charges provides a likely expla-
nation for the damping. In particular it has been argued that in semiconductors, damping
constants of the order of 10�9:::10�8 Nsm�1 are to be expected in a typical atomic force mi-
croscopy geometry with samples having a resistivity of the order of 0.1 
m[12]. Alternatively,
it has recently been shown that a damping coeÆcient can be associated with uctuating ran-
dom charges and currents which are responsible for the Van der Waals interaction[13]. The
theory predicts that the damping coeÆcient is proportional to 1=x4 for good conductors. In-
deed, the extracted damping coeÆcient follows an inverse power law at short distances with an
exponent of the order of 3 to 4. However, as sample and tip are semiconductors, the situation
is substantially more complex than for metallic bodies, viz. surface states and band bending
give rise to space charge e�ects, which must be taken into account as well. Nevertheless, the
use of re�ned analysis methods as described in this Letter provides detailed information on
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the interaction mechanisms which, in turn, will form the basis for comprehensive theoretical
investigations in the future.

It is a pleasure to acknowledge stimulating discussions with Graham Cross, Franz Giessibl,
and Peter Bl�ochl.
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