
RZ 3219 (# 93265) 20/03/00
Computer Science/Mathematics .. pages

Research Report

James Riordan

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to
publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally
obtained copies of the article (e.g., payment of royalties).

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Access Control for PDAs

James Riordan

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

Traditional access control mechanisms focus on separating users from one another and are designed with the
assumption that there is a competent systems administrator or security manager controlling who may do what.
These mechanisms are inappropriate for personal digital assistants (PDAs) where there is a single user who
is probably not a professional systems or security administrator. This paper examines what access control
features are needed in a PDA and what assumptions are reasonable to make about its administration. It then
presents an access control system to provide these features subject to the administrative constraints.



1 Introduction

As the size, power, and cost of computing devices has
changed, so have the methods with which and the pur-
poses for which we interact with them. These methods
and purposes determine what sort of security policy is
appropriate for a particular device. At the advent of
a new form of computing, it makes sense to reconsider
what sort of security policy is appropriate.

Traditional larger machines support numerous
users and are managed by systems administrators.
The access contol mechanisms have focused on sep-
arating the users from one another based upon a secu-
rity policy determined by the systems administrators.
Some, primarily military, systems have allowed finer-
grained access control policies allowing the separation
of different aspects of an individual user, but the com-
plexity of these systems makes them prohibitively ex-
pensive to administer. As a result these system access
control mechanisms have not been widely adopted.

The access control mechanisms available in vari-
ous databases and in Java offer finer-grained control
of data and objects but do now solve the general prob-
lem of access control at the system level.

Most personal computers solved the problem of
security by declaring it a non-problem. This ap-
proach worked reasonably well for CPM, TRS/DOS,
and other operating systems which lived in a kinder,
gentler period of computer history. Subsequent PC op-
erating systems running on modern hardware, includ-
ing DOS, Windows, and MacOS, have been assaulted
by a barrage of viruses, Trojan horses, and other mali-
cious software (collectively malware). The release and
use of such malware is essentially a form of vandal-
ism in that there is generally little value gained by the
perpetrator beyond a certain idiotic entertainment.

As we begin to use systems for economically mean-
ingful transactions, there is far greater benefit and
hence incentive for the attacker. With the increased
motivation, it is reasonable to expect that such sys-
tems will be attacked by increasingly skilled and
knowledgeable adversaries. Thus the need for secu-
rity is increasing sharply.

Traditional commerce required appropriate levels
of security to develop and thrive (lest thieves would
have stolen everything). Similiarly e-commerce re-
quires appropriate levels of security. Expections to the
contrary are like thinking that banking would have de-
veloped in a world devoid of safes, guards, and alarms.

The form factor and usage characteristics of PDAs
makes them extremely desirable for use in many e-
commerce applications [RW, PPSW97, BF99]. Unfor-
tunately, current PDA operating systems1 do not of-
fer the necessary security for e-commerce applications.
The very fact that PDAs are powerful and general-

purpose computing devices renders them vulnerable
to attack. E-commerce systems based upon PDAs are
potentially vulnerable to an entire range of attacks
that do not pose danger for more primitive systems
(e.g., credit cards).

This paper presents some ideas about what appro-
priate access control mechanisms might look like.

2 Security Generalities

It is naturally the case that access control mechanisms
are about bringing into existence certain security-
related qualities. It is also important to understand
that secure only makes sense with respect to a spe-
cific collection of threats. When designing and build-
ing secure systems it is of the utmost importance to
understand these threats and to design the systems
accordingly. As such, we will here explicitly state the
relevant security assumptions, goals, and generalities.

2.1 Secure Systems

A system that can be brought to an insecure state
through normal user action is not secure. This is
particularly problematic when the user is also the ad-
ministrator. Given the choice between entertainment
and security, users will almost always choose enter-
tainment. It is, thus, necessary to construct a system
in which entertainment and security are not mutually
exclusive.

Even security-conscious users are hard pressed to
make security-related decisions. Users can probably
make reasonable decisions about “Cut a check to Bob
Air for 1,000,000� (Yes/No)?” but might not be able
to make reasonable decisions about “Install new font
(Yes/No)?” thereby signing a check for 1,000,000€

instead of 1,000,000�.

2.2 Unstructured complexity

Unstructured complexity is necessarily insecure.
There seems to be little that one can do to completely
eliminate errors as to eliminate vulnerabilities. Rather
it is necessary to isolate errors by isolating individ-
ual components, thus limiting the ability of an attack
to propagate through these vulnerabilities. Security
mechanisms must exist redundantly in layers so as to
minimize the number of points where a single error
results in vulnerability.

This dictates that high-security systems must be
built upon a small, uncomplicated foundation (e.g. a
microkernel) and that the access control mechanisms,
configuration, and policies must be very simple.

1nor, for that matter, do current PC desktop operating systems

1



2.3 Open

For a system to be useful, it must be open. Recog-
nizing the need for hand-held devices that are both
secure and general purpose, a variety of schemes have
been proposed that support two compartments, one
for secure and trusted applications and the other for
insecure and untrusted applications with the operat-
ing system to isolate the two.

Operating System

T
ru

sted

U
n
tru

sted

A user visable LED2 on the device indicates which
state the device is in.

The problem with such schemes is that real-world
trust relationships do not fit into two compartments:
a home banking application clearly needs to be in the
secure compartment but still should not have access
to the user’s personal correspondence keys.

One instead needs a system with multiple compart-
ments in which each is protected from the other by the
operating system.

Operating System

B
a
n
k
in

g

S
/
M

im
e

G
a
m

e

B
row

se

There are several difficulties here: the various com-
partments need to intercommunicate, the user needs
to know which compartment is active, and it is not
clear how to manage compartments.

Traditional access control mechanisms have been
hierarchical in the sense that absolute power is given to
the sytem administrator who subsequently delegates
limited power to users and subsystems. Hierarchical
structures have the problem that there may be serveral
groups who do not commonly trust any third party
sufficiently to administer the system. They are addi-
tionally expensive and error- prone to administer.

2.3.1 Open Source

Another sense of open in the collection of security con-
cerns and principles is Open Source [Com, Cox]. Open
design and implementation have long been security re-
quirements in the cryptographic community. Their
value for operating is becoming apparent for operat-
ing systems.

2.3.2 Code Signing

Security mechanisms are about who can do what; code
signing is about where a piece code probably origi-
nated. The two should not be confused.

The most common code-signing based security
mechanism is allowing application to be installed only
when the application has been signed with some key
known to the device. On single-function systems, such
as smartcards,3 the system itself provides isolation:
it is not likely that a malicious piece of code on one
card will attack code existing on a completely different
card. On multi-function systems, such as a PC or a
PDA, there are a number of serious problems related
to code signing:

� Trust is a complicated quantity that rarely fits
into the clean hierarchies required by this tech-
nique. In particular, it is unlikely that a sin-
gle signing organization will be trusted by all
parties. It is additionally extremely difficult to
make a reasonable judgment as to whether a
given source is trustworthy (or even what trust-
worthy means in a given context).

� Code signing is a social process rather than a
technical one. Social processes are much more
difficult to secure than technical ones. In addi-
tion to being open to normal technical attacks,
they are open to social attack and human error.

� There is an implicit belief that a well meaning
source will produce vulnerability free code (and
data). Evidence to the contrary is ample and
uniform.

� Code signing schemes require a global registry
and key hierarchy of all developers and security
policies for the developers. These don’t exist.

Systems in which code signing has been linked to
code verification, either automatically or by human
intervention, provide improved yet questionable secu-
rity. The code verification environment is not gener-
ally the same as the code execution environment. As
a result, code signing schemes tend to suffer from la-
belling and concurrency problems. This is especially
true when more than one developer is involved and
is completely intractable when the developers do not
trust one another.

In summary, this downloading- enabling mecha-
nism itself cannot offer the security needed for a PDA.

2light emitting diode
3Even multi-function smartcards have an owner who controls what is downloaded onto the card.

2



2.4 Painful security

Security mechanisms that are painful to use tend to
be bypassed. It is generally the case that the mech-
anisms used to bypass the mechanism are completely
insecure. There are numerous examples of this sort of
revenge effect in security: difficult-to-remember pass-
words are written on post-it notes, overly restrictive
firewalls are tunneled through, intrusive software mon-
itoring systems are lied to by the users whom they are
supposed to protect.

3 Access Control Needs

Various operating system abstractions have lead to dif-
ferent means of interacting with data. In the Unix
world everything is a file and tools are built to manip-
ulate arbitrary files. In the Windows and Macintosh
worlds, files are generally associated with applications,
and applications do not generally share files. Each ab-
straction has its own advantages. The latter model is
more appropriate for PDAs where different aspects of
an individual user of a PDA are roughly represented
by the different applications running.

These aspects need to be protected from one an-
other. The access rights needed by Alice to run a cal-
endar program are entirely different from those needed
by Alice to sign a digital check. Naturally, the access
control mechanisms should prevent the calendar ap-
plication from accessing Alice’s check-signing keys. At
the same time, applications need to intercommunicate.

3.1 Usage Scenario

A good example is provided by a scenario in which a
user wants to select and purchase an item. We will
develop our access control model by developing this
example.

The item will be selected using a browser, such
as WAP [Con], running on the PDA. A browser is a
general purpose and extremely sophisticated piece of
software that acts upon complex data supplied by un-
trusted users. Browser evolution is driven primarily
by the addition of new features and is still both active
and rapid. In short, it is unlikely that a browser that
satisfies consumer demand could be made sufficently
secure to safely authorize payments (e.g. to manipu-
late cryptographic keying material in a safe and mean-
ingful way).

It is possible, however, for the browser to generate
a request, which is handed to a simple, static, secure
compartment for display of terms and payment autho-
rization. We denote the signature on m under the key
k as k−1m.

B D

m-

k−1m�
k

browse
& sign
display

By separating the two we can create a hybrid archi-
tecture that permits the otherwise conflicting require-
ments: feature richness and general purpose abilities
for the browser and simplicity for security.

Indeed, the browser needn’t run on the PDA but
can be an external device communicating with the
PDA (i.e. a TINGUIN [PPSW96]). The browser
runs on the user’s (insecure) PC. When a signature
is needed, the document is passed to the secure PDA
for display, authorization, and signature generation.

Only the sign and display compartment needs ac-
cess to the signing key k. The security of the scheme
is dependent only upon the sign and display compart-
ment and its ability to display information to the user.

One could further split the display and sign func-
tionality

B D S

m-

k−1m�

m

k−1m

-

�
k

browse display sign

to allow the use of a secure token such as a smart card.
In this architecture, the security depends only on

the sign and display compartments, the display
compartment’s ability to display information to the
user, and the sign compartments ability to accept
requests from display (other trusted compartments).
Only sign needs access to the signing key k.

3.2 Analysis

Whereas the security of each compartment clearly de-
pends upon the nature of that particular compart-
ment, there are low-level security concerns common
to all [GS91]. These concerns are well understood al-
though still quite difficult to address. It is a tenet of
this paper that browser security is dubious if not im-
possible; we thus address only the particular needs of
the display and sign compartments.

Proper interlinking of compartments is also essen-
tial and, indeed, will form the basis of the architecture.

3.2.1 Display

The display compartment’s ability to display data to
the user has two primary requirements: that the com-
partment can obtain a resource lock on the display and
that the data itself have a single, well-defined mean-
ing.

3



The ability to lock the display is needed to diminish
the threat of Trojan horses. The granting of exclusive
locks on system resources allows malicious code to ei-
ther soft or hard lock the system, thereby staging a
denial-of-service attack. Assuming that we can force
all system locks to be soft locks, this threat is not of in-
terest. It is thus the case that the primary issue is that
the system must be able to lock a sufficient number of
resources. These resources include the display, touch
screen, various other I/O devices, memory pages, etc..

Semantic invariance of the data is somewhat more
problematic. The data must have a simple format as
the signature applies only to the document as a num-
ber and not to a semantic entity. It thus cannot al-
low conditionals, include files, dynamic generation of
fields, changeable style sheets, etc.). Complicated for-
mats, such as MS Word or PostScript, can be made to
display differently when viewed under different condi-
tions. This makes it unclear as to whether a signa-
ture on a Word document or a PostScript file has any
meaning.

One must further guarantee that the system re-
sources, including libraries and fonts, remain fixed.
Although this could lead to inflexibility for the system,
generality can be maintained by compartmenting sys-
tem functionality. Subsystems requiring security use
only simple stable resources, whereas subsystems re-
quiring higher functionality can use more complex and
dynamic (separate) features.

3.2.2 Sign

The sign compartment must be able to protect and
manage its key k and to ensure that a request to sign
a document came from browse. Protecting and man-
aging these data means that they should only be ac-
cessible to other compartments though sign’s external
interfaces.

This implies certain low-level properties of the sys-
tem: the system cannot allow raw access to mem-
ory, the integrity of messages (IPC) must be main-
tained, and access to system resources does not re-
quire complete privileges (as with Unix’s suid-root
mechanism).

It also requires a naming system so that there is
a well defined difference between compartments. The
naming issue is the essence of the problem.

3.2.3 Application Identification

Generally, application identification is provided by the
names in a configured and maintained registry (e.g.
Unix places naming information in /etc/password
and /etc/group files, in the kernel itself, and in the
file system).

The security of the system depends upon the reg-
istry and hence upon its configuration and mainte-

nance. This poses a problem on PDAs, which are
not typically maintained by trained system adminis-
trators. It is thus the case that the security of the
device cannot require that the owner make good deci-
sions from a security standpoint.

We nonetheless, as a fundamental security con-
struct, need to enable applications, equivalently dif-
ferent user roles, to identify one another.

4 Primitives

We have seen that naming is the fundamental issue in
access control. We use cryptographic hashes to gener-
ate unique and unforgeable names.

With each executable E we associate the name
H(E) where the executable is regarded as a byte
stream E = {b0b1b2 . . .}. This provides us an au-
tomatic, if seemingly inflexible, registry. When the
executable is run, it is run with the label H(E). Per-
sistent data created by E is accessible only to E and
also bears the label H(E).

The operating system ajoins to all requestsmmade
by an application A to an application B the hash
H(A), thereby identifying the requestor to B.

B D S

H(B),m
-

�
H(D), k−1m

H(D),m
-

�
H(S), k−1m

H(D), k

browse display sign

The sign application honors requests from the appli-
cation whose checksum is H(D), which is to say the
application D. Thus, if display has been written cor-
rectly, sign generates signatures only for documents
that have been authorized by the user.

4.1 Objects and File Systems

Naturally, there is the need for various applications
to share data. We adopt the viewpoint of persistent
objects to do so.

The following illustrates a file system object with
access control using the hash:

A F B

H(A), r(n1)
-

�
H(F ), d1 H(F ), ∅

-

�
H(B), r(n1)

File System

H(A)

n1 : d1

n2 : d2. . .

4



Object F receives two read requests r(n1). The first
comes from A, which appears in F ’s access control list
and is granted (d1 is returned). The second comes
from B, which does not appear in F ’s access control
list and is denied (∅ is returned). Different access con-
trol lists could be kept for read and write privileges.

More complex objects F with rich method sets can
use the same type of contsruction to implement de-
sired access control policies in generality.

Whereas this is a static setup which does not allow
us to update the collection of trusted executables, it
is easy to create a more dynamic setup.

4.2 Access Update

We can update the configuration of the system using
digital siguatures:

C

s

s = k−1H(B)

F

k

B

H(C), s
-

H(F ), d1
-

�
H(B), r(n1)

File System

?
H(B)

H(A),H(B)

n1 : d1

n2 : d2. . .

Here, a helper application C is used to deliver
k−1H(B) to F , which verifies the validity of the signa-
ture and adds H(B) to its access control list. Access
requests from B will now be granted by F . The con-
struction depends upon the fact that the bearer of a
digital signature does not need to be trusted so long
as the signature is valid.

One can use this trick to set up arbitrarily compli-
cated trust relationships using a helper applications:

A

k

?

H(B)

B

k

?

H(A)

Mutual trust -�

C
k−1H(A)

k−1H(B)

H(C), k−1H(B)
�

H(C), k−1H(A)
-

The helper application C delivers k−1H(A) and
k−1H(B) to each of A and B. This allows A and
B to set up a mutual trust relationship.

Note that this is not the same as traditional code
signing, which requires an intractable hierarchy of
keys, certificates, developer registration, and so forth.
The system does not use code signing to determine sys-
tem privileges but rather uses signatures as credentials
in a developer software coterie.

An example of where this might be useful is if a
bank has several payment schemes that wish to share
a common key. The individual components can be
updated independently.

4.3 Passwords

There are two serious problems with using passwords
to protect several applications on a single device: the
first is that it forces the user to remember several pass-
words and the second is that such schemes are gener-
ally vulnerable to Trojan horse attacks. Our architec-
ture allows a simple solution to both problems.

The problem of using a single LED to distinguish
between secure and insecure, as discussed in Section
2.3, can be solved by having a single LED to indicate
the secure password entry mode. The password entry
program reads in a password p for the excutable E
and passes on the value H(H(E), p). A Trojan horse
application E′ will have a different checksum than
E means that it will be given a derivative password
H(H(E), p) 6= H(H(E′), p)

This eliminates the problem of Trojan horses and
allows a single password to be shared by several dif-
ferent applications in a perfectly secure manner (irre-
producible, unsniffable, unspoofable, etc.).

4.4 Standard Functions

In order to maintain full PDA functionality, standard
interfaces must be provided by each application. A
good example of such an interface is that of the func-
tion find; the feature is sufficiently useful as to be
necessary. At the same time the feature should not
be abusable, for example, to steal keys (e.g. to find
“password”).

To provide this functionality, a find method must
be provided by each application (either by searching or
returning the data to search). Those wishing to keep
all data private need only return an empty result. In
order to maintain a consistent API, these basic meth-
ods would likely be supplied in the form of a standard
library.

4.5 Higher-Level Functions

Certain higher-level functionality, such as a secure dis-
play program (discussed in Section 3.2.1), is not prop-
erly an access control issue but is necessary for the
creation of a secure system. We discuss this function-
ality insofar as it has special access control needs.

Source of randomness that collects entropy from
the system in usage similar to the device /dev/random
in the Linux [Ts’] kernel.

In many settings it will be useful for the device to
have its own key pair used to identify the device, not

5



the user, and to assist in the installation of applica-
tions. This is to help solve the boot strapping problem
of public key infrastructures.

Secure backup and restore may also prove prob-
lematic.

5 Implementation

To complete the technical section of this paper, we
give an overview of the design of a payment system
that uses digital signatures employing these access
control mechanisms. We design this system to be used
through WAP without depending upon the security of
WAP itself. We assume that a bank implements the
system.

5.1 Global Setup

The initial setup for the bank is not too intrusive. We
stress that the bank need not contact the creators of
the device.

1. The bank generates a public key/private key pair
to sign individual user’s keys. We denote this
key pair (mk/mk−1). This will often be the
bank’s master key or some derivative thereof.

2. The bank generates a public key/private key
pair to identify membership in the banks suite
of applications. We denote this key pair as
(ak/ak−1).

3. The bank writes a signing program S that con-
tains the public keys ak and mk.

4. The bank writes a display program D. The dis-
play program accepts as a simple description of
that which is to be signed (e.g., payee, amount,
date, and description). The display program
then requests a lock on the physical display de-
vice. Once obtained, the program displays the
necessary information to the user. If the user
agrees, the program releases the lock and passes
the terms to the signing program S

5. The bank computes ka−1H(D) and places this
in a registration program C (as described in Sec-
tion 4.2).

5.2 Individual Setup

The particulars of how key hierarchies are established
is beyond the scope of this paper. We will assume
that the bank wishes to generate and distribute keys,
for the users as that is the most difficult scenario. We
enumerate the list, as the order in which the tasks are
carried out is important.

1. For each user U , the bank generates a key pair
(uk/uk−1) and an application CU carrying the
signed key pair mk−1(uk/uk−1).

2. The bank gives user U the applications D, S, C,
and CU .4 Note that only CU depends upon U
and is the only component requiring secrecy.

3. The user installs this applications and the sys-
tem automatically sets up four new security do-
mains corresponding to the names H(D), H(S),
H(C), and H(CU).

4. The user executes application CU which sends
S the message mk−1(uk/uk−1). S verifies that
uk/uk−1 is a valid user key using the key mk.
CU then calls C and deletes itself. The applica-
tion C sends S the message ka−1H(D). Then S
uses ka to verify that D is a trusted application.
Hence forth S trusts D.

When an application such as the WAP browser needs
to generate a signature, it passes the text to D for dis-
play and approval. If the user approves, the request
is passed on to S which will actually sign it. S knows
that the request reflects the user’s desires because it
comes from the trusted application D. The signature
is eventually returned to the initial application.

If the bank wishes to generate a new application B,
say for home banking, trusted by S then it need only
generate a helper application C ′ carrying ka−1H(B).

5.3 Smartcard

If the bank wishes to use a smartcard to protect the
private portion of the user’s key pair, then the user
steps can be replaced as follows:

1. For each user U , the bank generates a key pair
(uk/uk−1) and puts it on the smartcard (possi-
bly signing it mk−1(uk/uk−1) with the bank’s
master key).

2. The bank gives user U the applications D, and
C.

3. The user installs this application and the system
automatically sets up four new security domains
corresponding to the names H(D), H(S), and
H(C).

4. The user executes application C, which sends the
smartcard the message ka−1H(D). The smart-
card uses ka to verify that D is a trusted appli-
cation and hence forth trusts D.

In this scheme when the application D makes a re-
quest m to the smart card, the request is delivered
along with H(D) as though it were simply another
application.

4The bank may wish to split the secret in some way.

6



6 Conclusions

We have analyzed the security requirements of per-
sonal digital assistants, introduced a new mechanism
for creating security labels, and shown how this mech-
anism can be used to create secure application suites.

The introduced constructions have the salient feature
that no security administrator is needed. We feel that
this is a necessary property for end user security. Fur-
ther work will focus on using more sophisticated cryp-
tographic primitives to allow attitional functionality.

References

[BF99] Dirk Balfanz and Edward W. Felten. Hand-held computers can be better smart cards. In 8th
USENIX Security Symposium, August 1999. To appear.

[Com] Internet Community. Open source frequently asked questions. Web page.
http://www.opensource.org/faq.html.

[Con] WAP Consortium. Wap forum web site. http://www.wapforum.org/.

[Cox] Alan Cox. The risks of closed source computing. OS Opinion web site.
http://www.osopinion.com/Opinions/AlanCox/AlanCox1.html.

[GS91] S. Garfinkel and G. Spafford. Practical UNIX Security. O’Reilly & Associates, Inc., 1991.

[PPSW96] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waidner. Mobile user devices and security
modules: Design for trustworthiness. Research Report RZ 2784 (#89262), IBM Research, February
1996. accepted for: IEEE Computer.

[PPSW97] Andreas Pfitzmann, Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Trusting mobile
user devices and security modules. Communications of the IEEE, 30(2):61–68, February 1997.

[RW] James Riordan and Michael Waidner. SURE secure user representation. Project Proposal.

[Ts’] Theodore Ts’o. /usr/src/linux/drivers/char/random.c. Linux source code. available from
ftp://ftp.kernel.org.

7


