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Abstract

Java 2 Security enhanced with the Java Authentication and Authorization Service (JAAS) provide sophisticated access control
features via a user-configurable authorization policy. Fine-grained access control, code-based as well as user-based autho-
rization, and implicit access rights allow the implementation of real-world policies, but of the cost of increased complexity.
In this paper we provide a formal specification of the Java 2 and JAAS access control model that helps remove ambiguities
of the informal definitions. It defines Java 2 access control in terms of an abstract machine, whose behavior is determined
by a small set of transition rules. We illustrate the power of Java 2 access control by showing how commonly encountered
authorization requirements can be implemented in Java 2.



1 Introduction

Since JDK 1.2, the Java Software Development Kit provides sophisticated access control features via a user-configurable
authorization policy and implemented by protection domains [4]. When a Java class is loaded, it is associated with a number
of permissions based on the signer’s identity and the loading location. Whenever a controlled resource is accessed, the
runtime verifies that all classes in the method call stack have sufficient permissions for accessing that resource. The recent
Java Authentication and Authorization Service (JAAS) augments JDK 1.2 with support to authenticate the principal who runs
the code and to enforce new access controls on who was authenticated [8].
The Java computing platform and the Java Beans component architecture make it feasible to build large-scale systems.
Commercial application developers will need sophisticated access control functionality that can deal with the security re-
quirements of such systems, for example in the enterprise world. Vendors that implement Java 2 Security and JAAS will
need an unambiguous specification to implement access control correctly. In particular, when vendors develop more efficient
implementations to improve performance, a formal specification is necessary to show its equivalence.
This paper provides a formal model of Java 2 access controls with JAAS that abstracts from possible implementations. It
defines the basic data structures and gives an operational semantics in terms of abstract transitions. The model enables
software engineers to define precisely the required security of their system, to develop efficient decision procedures, and to
show their correctness.
Stack inspection, an essential part of the Java 2 security architecture, was described and analyzed first by Wallach and Felten
[10]. They use a belief logic to define the security mechanisms as implemented in Netscape, which additionally allows
permissions to be enabled/disabled one by one. They also show that a new and more efficient form of stack inspection, called
“security-passing style”, is equivalent to the original stack inspection system.
In [7], Kassab and Greenwald develop a formal model of a beta version1 of JDK 1.2 security architecture. It is a state-based
model that uses access control matrices to model protection states. For each thread, there is a domain matrix representing
its protection state. Whenever a thread calls a new method, the corresponding domain is added to the domain matrix. The
domain (row) is calculated from the policy matrix taking the nesting of domains into account. To cope with privileged
code, they regard a domain matrix to behave like a stack. Their access control decision function recognizes corresponding
marks and terminates evaluation of the intersection of domains on the stack. However, permission implication and the JAAS
framework are not considered in their model.
This paper is organized as follows. In Section 2, we review the Java 2 access control model. Section 3 shows a formal
model of Java 2 access control combined with the JAAS framework. In Section 4, we analyze the expressiveness of Java 2
authorization. We present various policy implementations that take advantage of principal hierarchies as well as permission
hierarchies. Finally, Section 5 concludes the paper.

2 Java 2 Authorization

In Java 2, a set of policy files defines the authorization state that determines whether a given request has to be considered
authorized. Authorization is semi-static, as the authorization state is already specified before the Java system starts.2 Another
policy can be loaded later via therefresh method of the Policy object, but it is implementation-dependent how this is done.
In the way the policy files and thus the authorization state can be changed, Java follows the administration paradigm more
closely than the owner paradigm.
A Javasubjectrepresents a grouping of related information for a single entity, such as a person. Such information includes
the subject’s identities as well as its security-related attributes, for example passwords and cryptographic keys. Each identity
is represented as aprincipal within the subject. Examples of Java principals include names such as e-mail addresses or
employee numbers, groups such as departments, or public keys that provide a very scalable name representation. Principals
bind names to a Subject.
The specification of access controls is based on static properties of authorization units. Permissions, which are access rights
on resources, are granted to locations of code, set of signers of code, and set of principals. Note that permissions are granted
to classes, which are static Java code, and not to instances, which are instances of classes [4, p. 67]. Only permissions that

1Privileged code is based on thebeginPrivileged() andendPrivileged() methods, which where replaced by thedoPrivileged method in the final
release of Java 1.2.

2For optimization, a Java system might delay the instantiation of the policy file until the first permission check. However, this may lead to a different
behavior when the content of the policy file should change between the time the policy class is instantiated and the time the first security check is invoked
[4, p. 67].
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represent approvals can be given. There are implicit access rights, as an ordering on permissions and/or principals can be
defined. Signers as well as principals can be composed into compound entities by set intersection, i.e. permissions are only
granted if all elements are present.
Threads are the active entities of a Java system. They generate requests which are validated by the reference monitor in
accordance with a given access control policy. Authorized requests are mediated to the corresponding receiver object, whereas
unauthorized requests have to be rejected. Although a request is always issued by a thread, a thread does not of itself constitute
an authorization unit. Threads execute in a context that is determined by the set of protection domains given by the chain of
callers. Optionally, when using JAAS, a Subject that can contain several principals is associated with the thread.
The access control model of Java 2 has many similarities with those of CORBA, another well-established distributed object
computing technology [6]. Security-aware objects can exercise their own security policy by calling a user-configurable access
controller. CORBA rights as well as Java permissions are assumed to be (globally) defined and their semantics are precisely
described, but implemented within the objects. Both systems lack the support of (standardized) policy management tools.
Whereas Java 2 at least provides a default policy implementation, the normative part of CORBA does not mandate the way
policies are managed.
But there are also a number of differences. Although both systems use domains as a means to structure, they use different
ordering principles. In the CORBA security model, objects that have common security requirements are grouped in security
policy domains. In Java, protection domains are collections of principals with the same security requirements. CORBA pro-
vides transparent access control to security-unaware objects; all method invocations are mediated by invocation interceptors
to enforce access control. There is no concept of delegation in Java; only the immediate source of the object is considered.

3 Formal Model

A Java security policy is essentially an access control matrix that describes code according to its characteristics (where code
came from, who signed it, and who runs it) and the permission it is granted. The content of a matrix is deduced from the
policy file(s). The authorization state of a Java system is derived from the above policy together with the permission and
principal hierarchies.
We assume that the permission hierarchy as well as the principal hierarchy is partially ordered. Note that this assumption must
not be trivially true as the semantics of theimplies method of the classes that extend thePermission class or implement the
PrincipalComparator interface is implementation-dependent. For example, a permission class could define temporal or
other non-static constraints. In our specification, we abstract from the implementation ofimplies methods of the presumed
underlying Java system but expect that evaluation is purely applicative.
In the following, we make use of a number of mathematical terms and notations. In general,Sshall denote a set ands ranges
over elements ofS. The termP (S) denotes the power set ofS: P (S)≡ {X | X ⊆ S}. Variableŝ ranges over subsets ofSand
~s denotes sequences of elements ofS. A sequence over a setS is a function fromN to Swhose domain is an interval 1. . .n
for some natural numbern. The operator :: is used for adding one element to a sequence:

x :: 〈x1,x2,x3, . . . ,xn〉 ≡ 〈x,x1,x2,x3, . . . ,xn〉.

We regard sequences to be like sets but imposed with an order on its elements. In particular, set operations are defined over
sequences.

3.1 Protection Domains

A Java access control policy associates every code with a set of permissions. It thus determines sets of classes, called
permission domains, whose instances are granted the same set of permissions. Code is distinguished whether it comes from
a particular origin, signed with a specific set of public keys, and executed by a specific set of principals. The relation between
the origin and the set of public keys is called code source. Principals are names associated with subjects, the users of a
computing service.
A protection domain is defined by a location (the code base), a set of public keys (signer names), and a set of principals:

D = L×P (K)×P (S).

A location is expressed by a URL; if it is omitted ornull, it stands for “any location” and shall be denoted by the empty
stringε in the following. A signer is an alias for a public key and a certificate that was used to sign the code. If there are no
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signers then it stands for “any signer”. Principals are class names that are associated with a subject. If there are no principals
then it stands for “any principal”. Depending on the last characters of the URL, a location denotes either class files and/or
JAR files in a single directory or in all subdirectories:

• "/" matches all class files (not JAR files) in the specified directory;

• "/*" matches all files (both class and JAR files) in the specified directory;

• "/-" matches all files (both class and JAR files) in the specified directory and recursively all files in subdirectories
contained in that directory.

Let� be a URL prefix relation that obeys the above matching rules. For example, the URLhttp://www.puzzles.com/- is a
prefix of URLhttp://www.puzzles.com/BurrPuzzles/*. In fact, JDK 1.2 implements an even more rigorous comparison
algorithm [4, p. 43f] that takes the components of a location into account (protocol, host, ports, and anchor). To be a prefix of
another URL, that URL must have the same protocol and anchor, and, if specified, it must have the same ports. For example,
URL http://www.puzzles.com:9999/- is not a prefix of URLhttp://www.puzzles.com/BurrPuzzles/*. In general,
URL matching is purely syntactic and, for example, does not deal with proxies or redirects.
Principals are names associated with subjects. The setS of principals is sorted by the classes that implement principals.
Principal classes that implement (theimplies method of) thePrincipalComparator interface induce a partial order onS.
For example, a group principal may imply a particular subject if that subject belongs to the group. We uses⇒ s′ to denote
that principals implies principals′. This order can be generalized into a partial order on sets of principals:

ŝ⇒ ŝ′ iff ∀s′ ∈ ŝ′ : ∃s∈ ŝ : s⇒ s′.

A set of principals ˆs implies all principals of another set ˆs′ if for any principal of set ˆs′ there is a principal of set ˆs that implies
that principal. Note that this relation obviously holds if ˆs contains all principals of set ˆs′ (ŝ′ ⊆ ŝ).
Finally, we combine the partial orders on components of domains into a partial orderv on domains. We say that domain
〈l1, k̂1, ŝ1〉 contains domain〈l2, k̂2, ŝ2〉 if l1 is a prefix ofl2, k̂2 contains all keys of̂k1, andŝ2 implies all principals of̂s1:

〈l1, k̂1, ŝ1〉 v 〈l2, k̂2, ŝ2〉 iff l1� l2∧ k̂1⊆ k̂2∧ ŝ2⇒ ŝ1.

For example,〈l , k̂,{s1}〉 v 〈l , k̂,{s1,s2}〉 because the principal set{s1} of the left domain is a subset of the principal set
{s1,s2} of the right domain. Furthermore,〈l , k̂,{s1}〉 v 〈l , k̂,{s2}〉 if s2⇒ s1 holds.

3.2 Permissions

Let R be the sorted set ofresources. In particular, elements ofR model the resource types defined in the Java APIs, such as
files or network connections. LetT ⊆ P (R) denote the set oftargetsin a Java system. A target is a set of resources of the
same type. With each resource type, there is associated a (possibly empty) set ofactions. Permissionsusually comprise a
target and an action. We fix the set of permissions,P, to contain the special permissionAllPermission; let p range over
permissions.
Permissions are ordered, and this order is used to infer implicit access rights. However, this order relation is left entirely
up to each subclass of thePermission class. As Java 2 defines aPermission class hierarchy, there is in fact a family of
relations, one for each supported resource type. See, for example, the description for file permissions [4, p. 52ff] and for
socket permissions [4, p. 56ff]. Both permission classes even define a suborder on targets (path names and host names,
respectively) and on the corresponding actions. In general, one might say that a permissionp implies another permission
p′ (p⇒ p′) if both the target ofp contains the target ofp′ and the action ofp implies the action ofp′. For example,
the java.io.FilePermission class is implemented such that for the same resource a write permission implies a read
permission. Above definition also implicitly states that it should not be possible that a permission of one class implies a
permission of another class.
The semantics of permissions is thus modulo to the respective resource types. Besides the properties of the partial order on
the permission hierarchy, there is the following axiom:

∀p∈ P : AllPermission ⇒ p

By definition,AllPermission permission implies all permissions [4, p. 65].
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The family of implies relations on permissions must be further extended to permission collections and to sets of permission
collections (Permissions). Only the latter relation is explicitly defined:

p̂⇒ p iff ∃p′ ∈ p̂ : p′⇒ p.

A set of permissions ˆp implies a permissionp if there is a permissionp′ in p̂ that implies permissionp.

3.3 Policy

The Java runtime maintains a mapping from code (classes and objects) to their protection domains and then to their permis-
sions. Authorizations are granted to code sources (origins and signers) and principals.
The system security policy file, possibly (additively) combined with a user security policy file and JAAS policy file, sets
the security policy of a Java system. A policy file consists of a number of grant entries that are made up of a code source
and/or principals and the associated permissions. The set of grant entries in a policy maps each declared domain to its
permissions. All code that is considered part of the system core belongs to the system domain. The system domain is granted
all permissions.
A Java policyP = D→ P (P) maps domains to sets of permissions. As a policy file may contain grant entries with nested
domains, we require thatP satisfy the transitive closure on relationv on domains, i.e. each nested domaind contains the
union of all permissions inP(d′) for every domaind′ that containsd:

(p∈ P(d)∧dv d′)⊃ p∈ P(d′).

Note that all the definitions are additive, so permissions can only be granted, not revoked.
Thus, each protection domain entry inP holds all of its permissions defined by the current policy. Furthermore, each
protection domain encloses a set of classes whose instances are granted the same set of permissions. The above definition
ensures that classes from different sources belong to different domains even if they have the same permissions.
There are two predefined protection domains. All system code is assumed to run in a domain that possesses all permissions
(AllPermission ∈ P(system)). If there is no protection domain that matches a newly loaded class, then this class will be
mapped to a protection domain that defines a default policy, the original Java sandbox.

3.4 Threads

Threads are the active elements in Java that may execute code from different sources and may be associated with different
principals (protection domains), and are thus regarded as the correct context for access control [3]. A thread is a chain of
multiple method invocations, and its effective permissions are defined to be the intersection of the permissions of all methods
involved in the call sequence. This approach implements the least-privilege principle in that a domain cannot gain additional
permissions as a result of calling more “powerful” domains, whereas a more powerful domain must lose its power when
calling a less powerful domain [3].
The effective permissions of a thread depend on the protection domains it crossed. Thus, if the call chain of a thread contains
code associated with protection domainsd1, d2, andd3, the effective permissions of the thread (the most recent method)
are given byP(d1)∩P(d2)∩P(d3). Note that the order in which domains are crossed is not relevant for the access control
decision.
The current (execution) context is entirely represented by its current sequence of method invocations, where each method
is defined in a class that belongs to a protection domain [4, p. 92]. Or equivalently, a context is set up by the se-
quence of protection domains. Thus the context of a thread may change whenever it calls a new method or returns
from the current method. Additionally, there are special methods that explicitly affect the current context. For exam-
ple, methodjavax.security.auth.Subject.doAs assigns (additional) principals to current context, whereas method
java.security.AccessController.doPrivileged creates a new context that consists only of the protection domain of
the method to be executed next. Whenever execution returns from those special methods, the old context will be restored.

3.5 Security Context

Note that the order of domains is not relevant for the access control decision as long as there is no static method
doPrivileged in the call chain. By callingdoPrivileged, a piece of code tells the Java runtime system to ignore the
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permissions of its callers and that it itself is taking responsibility for exercising its permissions. However, the protection
domains of the code that is subsequently called by the “privileged” code are still considered in the access control decision.
The subject affiliated with the current access control context may have a number of associated principals that were success-
fully authenticated. The static methodSubject.doAs(Subject s, PrivilegedAction a) associates a subject with the
current access control context and then executes the action.
The security context of a thread consists of a set (sequence) of protection domains (call sequence), the inherited access control
context, and a set of associated principals:

C = P (D)×P (D)×P (S).

Let ~d range over sequencesP (D) of protection domains and let̂d range over setsP (D) of protection domains. LetC range
over sequences of security contexts, where only the security context added last will be used for permission checking.
Let D( f , ŝ) determine the protection domain of methodf under the set ˆs of current active principals. FunctionD is total,
i.e. if there is no grant entry in the policy file, functionD returns protection domainsandbox.
When a new thread is created, the initial call sequence is given by the protection domainD( f ) of the first methodf to be
executed. Access control context and associated principals are inherited from the parent thread.
Let ~d = 〈dn, . . . ,d2,d1〉 be the ‘current’ state of the call sequence in a security context of a thread, wheredn is the protection
domain of the most recent called method. When a stack frame makes a method callf , this creates a new stack frame and
updates the current security context:

〈~d, d̂, ŝ〉 :: C
call( f )
−−−−→ 〈D( f , ŝ) :: ~d, d̂, ŝ〉 :: C (1)

The updated security context of the thread is computed by adding the protection domainD( f , ŝ) of the called methodf using
the currently assigned principals ˆs to the call sequence.

Enabling Privileges. When a stack frame calls the special methoddoPrivileged(new PrivilegedAction() ...), this
creates a new stack framef for therun method of the inner class object.

〈d :: ~d, d̂, ŝ〉 :: C
doPrivileged( f )
−−−−−−−−−−−→ 〈〈D( f , ŝ)〉,{d}, ŝ〉 :: 〈d :: ~d, d̂, ŝ〉 :: C (2)

Method f is performed with all of the permissions possessed by the caller, as determined by its protection domaind. Note
that the fact that the protection domaind of the calling method becomes the new context of the thread prevents code from
acquiring more rights than they own themselves.
When a stack frame calls the special methoddoAs, this creates a new access control context based on the current access
control contextc that is assigned the Subject-based permissions

〈~d, d̂, ŝ〉 :: C
doAs(ŝ′, f )
−−−−−−−→ 〈〈D( f , ŝ′)〉, ~d∪ d̂, ŝ′〉 :: 〈~d, d̂, ŝ〉 :: C. (3)

If the current context contains at least one protection domain (code source) that does not get more permissions via the
assigned principals, the set of effective permissions does not increase. Subsequent method calls might only decrease this set
(intersection of the permissions of all protection domains; least privilege principle).
When a stack frame calls the special methoddoAsPrivileged, this also creates a new access control context but only based
on the protection domain of the called methodf under the assigned principals ˆs′.

〈d :: ~d, d̂, ŝ〉 :: C
doAsPrivileged(ŝ′, f )
−−−−−−−−−−−−−−−→ 〈〈D( f , ŝ′)〉,{d}, ŝ′〉 :: 〈d :: ~d, d̂, ŝ〉 :: C (4)

Returning from a method. When a stack framef returns control to its calling frame,D( f , ŝ) = d, we distinguish between
two cases:

〈d :: d′ :: ~d, d̂, ŝ〉 :: C
return
−−−−→ 〈d′ :: ~d, d̂, ŝ〉 :: C. (5)

If the call sequence consists of more than one protection domain, then we reconstruct the former context by removing the
protection domain of the returning stack frame.

〈〈d〉, d̂, ŝ〉 :: C
return
−−−−→ C. (6)
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If the call sequence is a singleton list, then we simply pop the current context from the sequence of security contexts of the
thread.

Definition 1. A Java 2 authorization system A is an abstract machine 〈Q,q0,∆,→〉, where

• Q is the set of states;

• q0 ∈Q is the initial state;

• ∆ = {call, return,doPrivileged,doAs,doAsPrivileged} is the set of labels;

• →⊆Q×∆×Q is the transition relation.

The operational semantics for the Java authorization system is given by the transition relation→ defined by the above inference
rules 1–6 over the state space Q = C and initial state q0 = 〈〈system〉,{system}, /0〉. []

In the following, the expressionq
δ
−→ q′ is a shorthand for〈q,δ,q′〉 ∈→. We also define the derived transition relation

σ=⇒

(σ ∈ ∆∗) of sequences of actions:q
〈〉
=⇒ q andq

δ :: σ===⇒ q′′ iff q
δ
−→q′ andq′

σ=⇒ q′′.

3.6 Access Control Decision

In Java, a requester is represented by a security context that is composed of protection domains, and, possibly, activated
principals. Therefore, requesters do not correspond with authorization subjects given in the policy. An access control rule
determines whether a requester must be allowed or denied access. This rule is implemented by thecheckPermission method
of classAccessController whose algorithm can be given as:

checkPermission(〈~d, d̂, ŝ〉, p) = true≡ (∀d ∈ ~d : P(d)⇒ p)∧ (∀d ∈ d̂ : P(d)⇒ p)

Access is granted only if the required permissionp can be derived from the execution sequence~d as well as from the security
contextd̂. Note that the set ˆs of principals in the given security context has already been taken into account whenever a new
frame was pushed on the stack. This access control checking can be performed in linear time w.r.t. the number of domains in
the execution sequence and in the security context.
Any Java authorization system is complete because allPermission andPrincipal classes used have to implement the
implies methods, provided they do not implement an infinite loop. Furthermore, if there is no matching protection domain
in the policy specification, the default protection domain that implements the Java sandbox is taken.
A few concluding remarks on the complexity of the described algorithm are in order. JDK 1.2 uses a lazy evaluation strategy
to implement the access control decision algorithm. Whenever permission checking is requested, the algorithm searches the
frames on the caller’s stack in sequence, from newest to oldest. The search terminates, forbidding access (and throwing an
exception), upon finding a stack frame that is forbidden by the policy engine from accessing the target. Otherwise, the search
terminates, granting access, when all stack frames are allowed to access the target, either reaching the end of the stack or a
frame whose code is marked privileged.
Stack inspection has high run-time costs. At worst, the cost is proportional to the current stack depth. The JDK 1.2 algorithm
iterates over the stack frames to determine the associated protection domains (depending on URL prefix, signers, and active
principals). For each protection domain, the algorithm again iterates over the contained permissions to find one that implies
the required permission. Thus, the performance of the access control decision algorithm will depend on the number of
protection domains, the number of permissions per protection domain, and the stack depth.
Looking at the data structures of our model, we can easily identify simplifications. For example, the first component of
the security context of a thread is a sequence of protection domains. The result of the access control decision, however,
is independent of the order and frequency of the protection domains. In the model, the call sequence is only used to keep
track of the evolution of the Java stack frame. An advanced data structure such as a multi-set might therefore lead to a more
efficient implementation. The model also allows us to identify where symbolic representations can be used as an efficient
implementation technique.
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Based on our definition of the Java authorization systemA we can now define what it means to implementA correctly.

Definition 2. An authorization system A
′ = 〈Q′,q′0,∆,→〉 correctly implements Java authorization A if

checkPermission(q0, p) = checkPermission′(q′0, p) and for any action sequence σ if q0
σ=⇒ q and q′0

σ=⇒ q′ then
checkPermission′(q, p) = checkPermission(q′, p). []

Note that our definition of correctness is independent of the structure of the states and of the algorithm of the corresponding
checkPermission′ function of the authorization systemA′.

4 Expressiveness of Java 2

Authorization is an independent semantic concept that should be separated from its implementation in system-specific mecha-
nisms. In this section, we analyze whether the Java 2 policy language is expressive enough to specify commonly encountered
authorization requirements.
Our formal model shows that the Java access control decision depends on a number of relations. Some of them have a fixed
meaning: URL prefix (�) and key inclusion (⊆) as well as the partial orders on resources and actions as implemented by
thePermission classes that belong to the core Java platform API, for examplejava.io.FilePermission. The others are
given by the system-specific implementation ofimplies methods of derivedPermission andPermissions classes as well
as of thePrincipal classes implementing thePrincipalComparator interface.
To analyze the expressiveness of the Java 2 access control model, this section presents Java policies that express three
distinct security policies: identity-based access control, multi-level security, and role-based access control (RBAC). Identity-
based access control uses the identity of principals and resources to define an explicit relationship representing access rights.
Multi-level security classifies principals and resources and uses a set of rules to infer the authorization state from these
classifications.
The specification of access rights in Java is identity-based as well as classification-based. Principals with similar security
properties are grouped into protection domains, and permissions are granted to protection domains, thus establishing an
indirect relationship between principals and rights. Java access control is not discretionary as it enforces a system-wide
access control policy, where the authorization state cannot be changed at the discretion of users.

4.1 Identity-based Access Control

In Java 2, permissions are granted to protection domains, and principals belong to protection domains. This indirection,
where permissions are not granted to principals directly, is by design [3]. On the one hand, it facilitates management of
authorization; on the other hand, it does not allow permissions to be enabled/disabled one by one as in the Netscape security
model [10].
Each grant entry in a policy file specifies a code base, code signers, and principals triplet. For example, the grant entry

grant CodeBase "http://guapo.com",
SignedBy "tony",
Principal NTPrincipal "kent" {

Permission java.io.FilePermission
"/user/kent", "read,write";

};

defines that code fromguapo.com, signed bytony, and running as principalkenthas the permission to read and write files in
the directory/user/kent. In our model, assuming that values (likekent) implicitly carry their type information (NTPrincipal),
the policy would have the following mapping:

P(〈http://guapo.com,{tony},{kent}〉) = {〈/user/kent, read〉,〈/user/kent,write〉}.

In [8], Lai et alpresent a usage scenario where a service authenticates a remote subject, and then performs work on behalf of
that subject. Using JAAS, the server runs in an access control context bound by the subject’s permissions. Having available
the work to be performed as ajava.security.PrivilegedAction, it uses theSubject.doAs method to associate the
Subject with the current access control context. Thus the server is able to convey some “stack information”, i.e. access
control context, between platforms.
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4.2 Multi-level Security

To implement a label-based access control policy, we introduce permissions of resource typeLabel. Let us assume three
security levels; letr1 stand for permission〈level1, read〉, and permissionsr2, r3, w1, w2, and w3 are built in the same
way. Permission typeLabel then consists of the individual permissions{r1, r2, r3,w1,w2,w3}. For example, permissionr3

expresses a higher security level thanr2.
Security labels are attached to subjects and targets. A label on subjects is called a security clearance. A label on targets is
called a security classification. We model security clearances by granting each subject label rights according to her clearance.
For example, if subjectalice has clearance 2 she gets permissionsr1, r2, w2, andw3, denoting that she can read all targets of
classification 2 or lower, and that she can write on all targets with the same classification or higher.

grant Principal LabelPrincipal "alice" {
Permission Label "level1", "read";
Permission Label "level2", "read,write";
Permission Label "level3", "write";

};

The above grant entry defines that code running as principalalice has clearance level 1 and thus the permission to read and
write targets with security level 1, and to write to targets with higher classification. In our model, the policy would have the
following mapping:

P(〈ε, /0,alice〉) =


〈level1, read〉
〈level2, read〉
〈level2,write〉
〈level3,write〉

 .
As access control granularity in Java is on the method level, we have to determine the classification level of each method.
For all multi-level security schemes it is assumed that each method has either read or write characteristics. Checks for these
levels are inserted in the methods. Assume the above subjectalicewants to invoke methodm1, which has classification level
1 and thus requires permissionr1. Access is allowed as the permissionr1 is granted to subjectalice. Assume further that
methodm2 requires permissionw1 and methodm3 requires permissionw3. Then the same subjectalice is allowed to invoke
methodm3 (write-up) but is not allowed to invoke methodm2 (no write-down, *-property).
Administration can be simplified if we introduce a permission hierarchy as follows:r3⇒ r2 andr2⇒ r1, and, by transitivity,
r3⇒ r1. Similarly, it shall hold thatw1⇒w2, w2⇒w3, andw1⇒w3. This means that an administrator would give a subject
with clearance level 2 the permissionsr2 andw2 instead of the permissionsr1, r2, w2, andw3. As classification and clearance
relations are static, there is no loss of flexibility by implementing the permission hierarchy in the corresponding permission
class.

4.3 Role-based Access Control

RBAC models associate permissions with roles and assigns users with appropriate roles. A major difference between groups
and roles is that roles can be “activated” and “deactivated” by users at their discretion, whereas group membership always
applies [5]. JAAS treats both groups and roles simply as named principals [8]. Thus there no distinction is made between
the two concepts. A role as well as a group membership can be enabled with theSubject.doAs method that dynamically
associates an authenticated subject with the current access control context.
The grant entries in the Java policy file implement the RBAC permission to role assignment relation. The user to role
assignment relation, however, is managed by user administrators outside of Java. Thesubject.doAs method dynamically
associates principals with the current AccessControlContext and thus defines a session during which a subset of roles is
simultaneously activated, of which the user is a member. The permissions available to the user are the union of permissions
of all roles activated in that session, i.e. the role principals given to theSubject.doAs method.
The next example shows how to formulate an access control policy where a role is combined with a group membership,
e.g. “Only somebody who is a manager and a member of project-X is allowed to change project X’s time schedule”.

grant Principal Role "manager",
Principal Group "project-X" {

Permission SchedulePermission "change";
};
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The above grant entry lists two principals and thus requires that a subject provided toSubject.doAs must have both princi-
pals associated with it to be granted the specified permissions.

P(〈ε, /0,{manager,project-X}〉) = {〈schedule,change〉}

Role and group hierarchies can be built with principals that implement thePrincipalComparator interface. For exam-
ple, viewpermission below is granted to any subject that class RoleComparator, implementing thePrincipalComparator
interface,implies:

grant Principal RoleComparator "member" {
Permission SchedulePermission "view";

};

If we assume that a manager role is senior to a member role,manager⇒member, then managers inherit all the permissions
granted to members. To put up this hierarchy, RoleComparator has to implement the PrincipalComparator interface, and its
implies method must return true if the provided subject has an associated “manager” role principal.
Compared with the approach taken by Giuri [2], where a role is implemented as a permission, principal roles solve the
problem of dynamically enabling roles but move the definition of the role hierarchy into the class that implements the
PrincipalComparator interface, and thus is not user-definable.
In addition to role hierarchies, constraints are another fundamental aspect of RBAC. For example, principal classes that
form a group/role hierarchy should implement an acyclic membership relation, i.e., if a principalpi is a member (directly
or indirectly) of another principalp j , with pi 6= p j , then p j cannot be a member ofpi . Above property must be properly
implemented in thePrincipal classes. RBAC models with constraints on the assignment of users to roles and of roles to
permissions support security principles such as separation of duty. Static separation of duty requires that certain roles cannot
be granted together to the same subject and can be implemented by the principal authenticator (the login module of JAAS).
Dynamic mutual exclusion of roles can only be checked by thedoAs method. In both cases, the entities that authenticate role
principals as well as activate role principals must be aware of (the constraints on) the role hierarchy.
Above discussion shows that the elementary features of RBAC can be implemented in Java 2. However, it requires extensions
to vital components of the Java 2 security architecture to implement dynamic mutual exclusion of roles.

5 Conclusion

At the core of Java authorization, protection domains characterize sets of principals to which the same set of permissions are
granted. These policies are user-definable but (implicitly) refer to a number of relations, such as resource, permission, or
principal hierarchies. Implemented in miscellaneous classes, be they within Java or application libraries, these relations are
not user-definable. Finally, user administrators manage the assignment of principals to users. However, such management
functionality is beyond the scope of Java.
In this paper we have presented a formal model of the above Java 2 access controls with JAAS. The model provides an abstract
machine in terms of a small number of transitions. It was designed as far as possible in an implementation-independent way,
to work out the underlying concepts. However, this is quite hard to achieve as the Java access control decision function is
defined as a low-level checking algorithm.
The provided formal description of the Java access control model serves the basis for the understanding of the fundamental
concepts. By mechanizing our model within a verification environment we could increase assurance that our definition of
Java 2 access control is indeed the model implemented by Sun’s distribution. It also opens the possibility to compare Java
access control model with other access control models and to prove properties about the model. Serving as a reference
specification, our model can be used to verify the correctness of implementations based on different data structures and
algorithms, Erlingsson and Schneider’s in-lined reference monitor for example [1].
We showed that Java 2 Authorization and JAAS can implement different access control policies, including multilevel oper-
ations. However, policies that dynamically adopt to changing conditions cannot be directly implemented in Java 2. As the
authorization state is derived from the policy file together with the permission and principal hierarchies, all static in nature,
there are no means to express that a subject can gain or lose some permissions, except for temporarily adding principals to
the current security context. A possible approach to implement history-based policies, like the Chinese Wall policy, would
be to record changes in the user registry and thus to implement parts of the access control policy within the authentication
service.
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The development of Java authorization will certainly continue over time, for example by introducing negative permissions.
Our model could serve as a sound base to study the implications on the logic as well as on complexity.
The default policy language supported by the standard JDK 1.2.2 platform does not enable users to define their own principal
or permission relations. As principal as well as permission classes are usually quite simple, a policy processing tool may
automatically generate these classes from higher-level descriptions. For example, the Authorization Specification Language
(ASL) [5] is a logical language in which above relationships together with integrity constraints such as incompatible group
memberships can be expressed. The presented formalization of the Java 2 access control model provides a basis to identify
the subset of ASL that could be implemented in Java 2.
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