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Abstract

The execution of multiple, mutually distrusting applications or multiple instances of the
same application for different users in a Java Virtual Machine (JVM) requires a form of
multi-processing which protects the integrity of the JVM as well as the integrity of
individual applications. 
Existing solutions protect processes by loading application classes in dedicated process
class loaders and by allowing sharing of only the core Java classes between processes.
These techniques are costly in terms of memory consumption, startup time and
inter-domain communication. 
This paper describes a new approach which overcomes these limitations. It proposes a byte
code transformation which allows the safe sharing of application classes between processes
even in the presence of static fields. The feasibility of our approach is verified in a
quantitative performance evaluation.

1 Introduction

In the Internet, there is a trend to execute foreign and therefore untrusted code.  Examples can be found
at different levels: 

é Extensible Web servers with support for Java Servlets [Sun99a] allow execution of user-supplied
code, e.g. to provide customized information processing functions.

é Web browsers can run one or more, remotely loaded Java Applets [Sun99b] at the same time.
é Mobile agents [CGH+95] solve complex tasks in distributed systems such as network management

[YGY91], [FKK99].
é Active networks [TSS+97] aim for faster introduction of new networking protocols by defining a

programming interface for network nodes.
é JavaOS [Sun97] is an operating system with limited multi-process support targeting network

computers.

All of the above approaches are based on Java, taking advantage of the features built into the language
and the Java Virtual Machine (JVM). However, running multiple, mutually distrusting applications or
multiple instances of the same application for different users in a JVM requires a form of multi-processing
which protects the integrity of the JVM and the integrity of individual applications. Multi-processing
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support is further needed to perform resource management, i.e., to prevent a single application from
exhausting the available memory, network bandwidth or storage. There are no default facilities in
off-the-shelf JVMs that support these capabilities.

One way to circumvent the lack of multi-processing support in Java is to start a separate JVM for each
application and to rely on the underlying operating system for those services. However, this comes at a cost.
A JVM consumes significant amounts of memory [SCO99], the JVM startup time adds to the application
startup time, and the communication between applications causes process context switches in the underlying
operating system. Furthermore, there are small devices such as the Palm Pilot where the operating system
does not support multi-processing.

Single-address-space systems [BSP+95], [EKO95], [Nels91], [WiGu92] use software mechanisms to
provide protection. A type-safe language guarantees that references to objects cannot be forged, e.g., one
cannot get hold of an object by casting an integer value into an object reference. In Java, type-safety is
enforced through byte code verification, explicit casting, and type-checking. 

Several projects [BaGo97], [TuLe98], [HCC+98] use Java’s type safety to provide protection for Java
processes. They all suffer from the same Java characteristic: static fields, also called class variables
[GJS96], have global variable semantics in Java and are accessible to all processes sharing the class in
which the static field is declared. Therefore, static fields can be used to retrieve references to objects of
other processes and thus to bypass process boundaries. To solve this problem, the mentioned projects
propose the creation of separate class name spaces for processes. The consequences are increased memory
consumption and longer startup times, both due to separate class loading and just-in-time compilation.
Further, the inter-process communication (IPC) mechanisms suffer from an overhead introduced by the use
of Java’s serialization mechanism for arguments and return values.

This paper proposes an extension to the existing approaches which limits the scope of static fields in
Java to the process-level without requiring the definition of separate class name spaces. The proposed
solution relies on a transformation defined on the Java byte code. It reduces per-process memory
requirements, speeds up process startup and provides faster IPC.

The rest of the paper is structured as follows: Section 2 gives an overview of the existing approaches for
protection and section 3 discusses implications for IPC. The next section introduces our new approach to
protection. Section 5 discusses implementation details and Section 6 conducts a quantitative performance
evaluation of the new approach. The last section summarizes and concludes the paper.

2 Protection

In this section we first define some terminology for multi-processing within the JVM and then discuss
existing approaches to protection.

2.1 Definitions

A Java process can be defined as a set of threads which is kept together by a structure called the thread
group (java.lang.ThreadGroup). 

The class name space of a process is defined by the class loader that loaded the initial application class,
i.e. the class containing the applications main() method. A class loader’s class name space contains
classes loaded by itself and all or a subset of the classes loaded by its parent class loader. For example, the
class name space of an application class loader could contain application classes plus the classes of the core
Java libraries loaded by the JVM’s system class loader.

A thread can only access objects which are in the object closure of the threads executing in the same
thread group. The process boundary is defined by this object closure, also called the process object closure.
A process’ object closure encompasses all objects created during the execution of one of the process’
threads and still referenced from the execution stack., i.e., referenced by a method local variable.
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Recursively, it contains all objects referenced by objects of the object closure. It contains further all objects
which are referenced from static fields of classes in the process’ class name space.

For the purpose of protection, we can distinguish between static fields which are safe and such which are
unsafe. Safe static fields are fields which cannot be used to leak references nor to modify the state of a
process. Constant fields (declared with modifier final) of basic types, e.g., int, float, char, and final
classes, e.g., Long, Double, String are such safe static fields. An example for an safe static field is the
static field Integer.MAX_VALUE.

Unsafe static fields are all non-constant fields and constant fields of more complex classes like
Hashtable which are not hidden by encapsulation, i.e., static fields which are accessible from classes
outside their own package or are accessible through static methods (also called class methods). For
example, the static field System.out which refers to the standard output stream is unsafe because a
process could close this stream thereby closing the stream for all other processes as well. 

Classes containing unsafe static fields are called unsafe classes. We further call classes unsafe, if they
contain methods which have side effects that have an impact on other processes. For example, the class
Runtime is unsafe because of its exit() method which terminates the JVM, implicitly terminating all
processes running in this JVM.

2.2 The shared class loader approach

The shared class loader approach (SCL approach) to protection refers to an architecture where different
processes share the same class loader and thus have the same class name space.

If the class name space or part of it is shared between multiple processes, the intersection of process
object closures contains those objects which are referenced from static fields of shared classes and
recursively objects contained in the intersection. Objects of the intersection can be manipulated by both
processes. This can violate the integrity of a process. 

Figure 1 illustrates the case where two processes share the same class loader. The application class A and
thus its static field A.a (of type java.lang.Object) are accessible from both processes. Therefore, the
field can be used  to leak object references. 

Shared System ClassLoader

Standard
JDK classes

Standard
JDK classes

Core
JDK classes

Process 1 Process 2

class A

static Object a

X

y

Object ref

(1) A.a = x

(2) y.ref = A.ref

Figure 1: The SCL approach: static field of shared class leaks object reference.

For example, assume Process 2 assigns one of its objects, object x, to the static field A.a (step 1 in
Figure 1). If now Process 1 assigns the value of A.a to its instance field y.ref (step 2  in the same figure)
Process 1 effectively holds a reference to an object of the object closure of process 2. This would allow
Process 1 to manipulate objects of process 2 which potentially breaks the process’ integrity.

Holding object references that cross process boundaries causes also other problems: Which process
should be accounted for the memory consumed by Object x? Assume only Process 2 as the owner is
accountable for it. If Process 2 runs out of memory it might want to free some memory by setting all
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references to Object x to null and have it garbage collected. However, Object x will not be garbage
collected as long as Object y keeps referring to it. This way Process 1 can block memory it will not be
accountable for. Note that object x can not be garbage collect even when Process 2 is terminated.
Accounting both processes for the object would require to update the process’ accounting information for
every assignment operation.

2.3 The dedicated class loader approach

The dedicated class loader approach (DCL approach) as proposed by [BaGo97], [TuLe98], [HCC+98]
solves the problem of static fields by dedicating a separate process class loader to each process. 

In this approach, the process class loader loads all classes that implement an application and relies on the
system class loader only for core Java classes. This reduces the intersection of process object closures to
objects which are referenced by static fields of core JDK classes (packages java.*). 

Figure 2 illustrates the DCL approach. Here, the application class A is loaded in the process class loader.
Separate copies of class A, and thus of the static field A.a, exist for each process. The scope of static fields
of application classes is so limited to the process. Hence, the semantics of static fields are changed from a
JVM-global variable to a process-global variable. Core JVM classes containing unsafe static fields are
replaced in the process class loader with safe versions.

Shared System ClassLoader

Standard
JDK classes

Standard
JDK classes

Core
JDK classes

Process 1

ProcessClassLoader

class A

static Object a

Process 2

ProcessClassLoader

class A

static Object a
class A

static Object a

Figure 2: The DCL approach: Application classes are separately loaded by each process.

In summary, we can tell that the DCL approach can guarantee the integrity of processes. However, the
cost is an increased memory consumption compared to the SCL approach because application classes are
loaded for each process separately. If many processes are running the same application simultaneously, the
usage of memory becomes significant. The SCL approach is also expected to allow faster startup of
additional processes with the same application because here CPU cycles for loading, resolving and
eventually just-in-time compiling of classes can be saved.

3 Inter-Process Communication

This section discusses the implication of the SCL and DCL approaches to IPC. The simplest and fastest
way to communicate with another process in Java would be through direct method invocation on a server
object of the corresponding process. However, this requires a reference to the server object which crosses
the process boundary and which in turn is a potential threat to the integrity of a process. 

Object references can safely be shared among processes by means of revocable capabilities. A capability
encapsulates a references to a server object (see Figure 3). IPC is only possible with objects for which a
capability is exported by the owner process.

A capability implements all or a subset of the interfaces of the referenced server object. It can thus
provide the same functionality to clients in other processes as the referenced server object provides to
process-internal clients. By exporting a capability that implements only a subset of the interfaces the
functionality provided to external clients can be limited.
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Figure 3: Schema for IPC via revocable capabilities.

By keeping track of exported capabilities, it is possible to efficiently analyze inter-process dependencies.
On process termination all exported capabilities are revoked, i.e. the reference is set to null. This guarantees
that no external references exist and the process memory as well as other resource represented by the
process’ objects can be released.

Method invocations on capabilities have semantics which differ from those of normal objects. Because
the invocation crosses the process boundary, a capability has to make sure not to leak direct object
references, neither from the client, the caller, nor from the server, the callee. Therefore, the capability
passes arguments to IPC method invocations by copy. The same is true for return values and exceptions.
The copy is actually a deep copy meaning objects referenced by an argument object and thus the object
closure of an argument object are copied.

Capabilities experience a special treatment and are passed by shallow copy. This means that the
capability object is copied but not the server object it is referring to. The rules are applied recursively such
that capabilities contained in the closure of a normal object are also passed by shallow copy. The semantics
correspond to those defined by the Java remote method invocation (RMI) [Sun98]. IPC thus can be seen as
a local RMI within the same JVM.

The default mechanism for copying arguments between processes uses Java’s object serialization. The
argument is serialized in a byte array which is then sent over to the other process where it is deserialized
thereby creating a copy of the original argument. For objects whose classes are shared between processes, a
fast copy mechanism can be implemented in native code which avoids the intermediate byte array
representation by directly copying instance fields.

For the DCL approach, the fast copy mechanism is limited to the core JDK classes because only those
are shared between processes. [HCC+98] allows explicit sharing of argument classes to enable fast copying.
However, those classes must not contain static fields nor must they refer to classes containing static fields.
Hence, this significantly limits the expressiveness of fast copy IPC in the DCL approach. The SCL
approach does not suffer from this limitation because here all classes are shared.

4 The Safe Shared Class Loader (SSCL) Approach

In Section 2, we have seen two approaches which provide protection in a multi-process JVM. The SCL
approach is unsafe because static fields of application classes become JVM-global variables. Those fields
can be used to bypass process boundaries and thus violate process isolation.

The DCL approach loads application classes in separate per-process class loaders. This creates separate
copies of the application classes and thus separate copies of the static fields. In the DCL approach, the
semantics of static fields are those of process-global variables. However, the repeated class loading in the
DCL approach introduces a significant overhead as discussed in Section 2.3. 
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Our new approach tries to combine the benefits of the previous two approaches. We aim to keep separate
copies of the static fields while at same time sharing classes between applications. It can be seen as a safe
version of the SCL approach. Thus we refer to it as the safe SCL approach (SSCL approach).

The idea is to split each of the original application classes into two classes: The nsp-class (class A in
Figure 4), as the non-static part, contains the instance fields and all methods while the sp-class (class
A_staticPart in the same figure), as the static part, contains the static fields of the original class. The
static fields of the original class are transformed into instance fields in the sp-class. During runtime, exactly
one instance of the sp-class is created for each process. Thus, the semantics of the static fields of the
original class become those of process-global variables. Because nsp-classes and sp-classes do not contain
static fields they can be shared securely (see Figure 4).

Process 1

Shared System ClassLoader

class A class A_staticPart

staticHashtable

Standard
JDK classes

Standard
JDK classes

Standard
JDK classes

Process 2

Instance of 
A_statocPart

Object a

Process Static Part

... ...

Instance of 
A_statocPart

Object a

Instance of 
A_statocPart

Object a

Figure 4: Process-global variables

Each static field in the original class is replaced in the nsp-class with two (static) access methods, one
for read and one for write access to the former static field which now is an instance field of the
corresponding sp-class. An access method first retrieves the instance of the sp-class assigned with the
current process and then reads or writes the instance variable for which it acts as an replacement.

The functionality of the class initializer method of the original class is displaced into the constructor,
i.e., the instance initializer method, of the sp-class. This is necessary because the transformed static fields
need to be initialized for each process separately.

The splitting of the original application classes causes broken references in static field accesses not only
in the sp-class but also in other classes that accessed static fields of the original class. Therefore, static field
accesses in all application classes are replaced by method invocations of the corresponding access methods
(see Section 5 for implementation details).

If we compare Figures 1, 2 and 4, we can observe that the combination of the (unsafe) SCL and the DCL
approaches is achieved. The application classes are shared in the system class loader and the static fields of
the original classes ended up as process-global variables with separate copies in each process. 

As mentioned in Section 3, fast copy IPC is limited in the DCL approach to argument types of the core
JDK classes because only those are shared between processes. This limitation does not apply to the SSCL
approach where all classes are shared. In the SSCL approach, the fast copy mechanism can be used for
arbitrary argument types.

The transformations of the SSCL approach are applied to byte code of Java class files. Thus, access to
application source code is not required to deploy this approach. The transformation has been implemented
using the JavaClass framework for byte code engineering [Dahm99] which allows transformations
described above directly on Java class files.
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5 Implemention of an SSCL

After explaining the concepts of the SSCL approach in the previous section, we provide in this section
some implementation details. We first describe the transformation of normal classes, then we show the
differences for transforming interface classes and finally discuss some special cases and limitations. 

5.1 Transformation of classes

Figure 5 shows the transformation applied to classes. We can observe that static fields of the original
class (A.a and A.b) show up as instance fields in the sp-class (A__staticPart.a and
A__staticPart.b). 

The hash table A__staticPart.ht is used to retrieve the instance of the sp-class that corresponds to
the current process. It is the only static field in any application class. It can not be used to bypass the
process boundary because it is accessible only from within the sp-class (A__staticPart) in which it is
declared (access modifier private). The sp-classes are generated by the class transformation which
prevents user manipulations. The constructor (not shown in the figure) registers all instances of the sp-class
with the hash table. This ensures that there will be exactly one instance per process. The hash table provides
thus the mapping from processes to their corresponding process-global variables.

In the original class, the initialization of the static fields is done in the class initializer method
A.<clinit>(). The transformation moves this functionality to the constructor method of the sp-class
A__staticPart.<init>(). This is necessary because the transformed static fields need to be
initialized once per process in contrast to the one time initialization during class loading. The constructor of
the sp-class is declared with the private access flag to prevent abuse. It is executed if the method
A__staticPart.get() cannot find an instance for the current process in the hash table. This
guarantees that the transformed static fields are correctly initialized before their first use.

In the nsp-class, for each static field two access methods are added, e.g., the methods A.__get__a()
and A.__set__a() replace the static field A.a. These methods are used to access the displaced fields.
The access modifiers assigned to the static fields in the original class, e.g. public for A.a and private
for A.b, are assigned to the corresponding access methods. For static fields that were declared to be
constant (access modifier final), the __set__*() method is left out. This guarantees the original
semantics.

Figure 6: Transformation of accesses to
static fields

Figure 5: Class transformation

public class B {
  ...
  void x() {
    A.a = "xxx";
    System.out.println("A.a = " + A.a);
  }
  ...
}

Transformation

public class B {
  ..
  void x() {
    A.__set__a("xxx");
    System.out.println("A.a = " + A.__get__a());
  }
  ...
}

original class

nsp-class
(non-static part)

sp-class
(static part)

public class A {
  public static Object a;
  private static Object b;
  ...
}

Transformation

public class A {
  public  static Object __get__a() {
    return A_staticPart.get().a;
  }
  public  static void __set__a(Object o) {...}
  private static Object __get__b() {...}
  private static void __set__b(Object o) {...}
  ...
}

final class A__staticPart {
  private static Hashtable ht;
  Object a;
  Object b;
  ...
  static A__staticPart get() {
    return ht.get(Process.current());
  }
}

An example of an implementation of the access method A.__get__a() is shown in Figure 5. It uses
the method A__staticPart.get() to retrieve the corresponding instance of the sp-class and then
selects and returns the field A__staticPart.a for which the method is a replacement. The
implementation of the method A.__set__a() differs only in the sense that it makes an assignment and
returns a void.
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The removal of the static fields needs to be reflected in all classes that access the static fields. Figure 6
shows the necessary transformations on an example method, method B.x(). The write access of the static
field is replaced with an invocation of the access method A.__set__a() and the read access is replaced
with an invocation of the access method A.__get__a(). 

In the byte code this translates to replacing the byte code operations GETSTATIC and PUTSTATIC with
an INVOKESTATIC byte code operation of the corresponding access method. Table 1 summarizes the
transformations applied to the original class.

INVOKESTATIC __set__a()- PUTSTATIC A.a
iINVOKESTATIC __get__a()- GETSTATIC A.a

n/amethod invocation access to static field within a method
constructor <init>()n/aclass initialization method <clinit>()
- final, transient, volatile- n/a- final, transient, volatile
- n/a- public, protected, private- public, protected, private
field access modifiermethod access modifiers field access modifiers 

instance field astatic methods __get__a() and
__set__a()

static field a
class name A__staticPartclass name Aclass name A

Sp-classNsp-classOriginal class
After TransformationBefore Transformation

Table 1: Rules for transforming classes

5.2 Transformation of interfaces

Slightly different transformations are needed for interfaces. Interface fields are implicitly declared
public, static and final, i.e., one can not reassign new values to them. For basic types, e.g.,  int,
double etc., this means the values are constant and thus do not affect the isolation property. However, we
have to assume that in general more complex field types are used, for example a Vector (field I.v in
Figure 7). Such a static field could be used to exchange references across process boundaries. Thus
interface fields, which are always static fields, also have to be moved into an sp-class. Note, for interfaces
the nsp-class is also an interface, called nsp-interface, but the sp-class is a normal class.

Figure 8: Transformation of accesses to
static fields of interfaces

Figure 7: Transformation of interfaces

public class C {
  ..
  void y() {
    System.out.println("I.i = " + I.i);
    System.out.println("I.v = " + I.v);
  }
  ...
}

Transformation

public class C {
  ..
  void y() {
    System.out.println("I.i = " 
                       + I__staticPart.__get__i());
    System.out.println("I.v = " 
                       + I__staticPart.__get__v());
  }
  ...
}

original
interface class

nsp-interface class
(non-static part)

sp-class
(static part)

public interface I {
  public static final int i = 42;
  private static final Vector v = new Vector();
  ...
  public void m();
}

Transformation

final class I__staticPart {
  private static Hashtable ht;
  int i = 42;
  Vector v = new Vector();
  ...
  public static Object __get__i() {
    return I_staticPart.get().i;
  }
  private static Object __get__v() {...}
  ...
  static I__staticPart get() {
    return ht.get(Process.current());
  }
}

public interface I {
  ...
  public void m();
}

The problem that appears here is that interfaces can contain only method declarations but no method
implementations. Therefore, we need to move the access methods into the sp-class (compare Figure 7)
rather than into the nsp-interface. We do not bypass field access controls, because all interface fields are
declared public, as mentioned before. 
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Figure 8 exemplifies the transformations applied to accesses to static fields of interfaces. In contrast to
Figure 6, the access methods are invoked at the sp-class, e.g. I__staticPart.__get__i(). Table 2
summarizes the transformations that are specific to interface classes.

instance field c plus
static method __get__c()

static field c
class name B__staticPartinterface name Binterface name B

Sp-classNsp-interfaceOriginal Interface
After TransformationBefore Transformation

Table 2: Additional rules for transforming interfaces

5.3 Special cases and limitations

Applications relying on the dynamic discovery of static fields will not find the static fields because of
the transformation. One would need to modify the standard Java classes java.lang.Class,
java.lang.reflect.Field and java.lang.reflect.Method to return wrappers for the
displaced fields. Since this is only of benefit to a narrow class of applications, and does not carry new
challenges other than implementation effort, we do not address this issue now.

The sp-classes and all of its instance fields are declared with default access which means package wide
access. This actually weakens the access control for static fields which before were declared with the
private access modifier. If the java.lang.reflect package would be adapted to take into account
our transformation, the reflection could be disabled for sp-classes which resolves also this problem.

At the beginning of this section, we mentioned that the implementation of the class initialization method
<clinit>() has been transformed into the constructor or instance initialization of the sp-class. In cases
where the class initialization method has also side effects on static fields of other classes it might be that the
class initialization does not happen in the usual order or not at all. To prevent this, we make sure that all
classes whose <clinit>() are more complex than just initializing static fields with constant values are
executed on process startup in the same order as it would happen for the original classes .

6 Performance Evaluation

The goal of the proposed transformations is to reduce per-process memory consumption, process startup
time, and the cost for inter-process communication while maintaining the isolation property of a process. In
a first approximation, one can observe that the improvements are implemented on the expense of an
indirection in the access to process-global variables, the former static fields. In order to evaluate the
proposed solution quantitatively, this section conducts a performance evaluation.

For the performance evaluation, we chose three sample applications which provide us with realistic Java
workloads:

é Jigsaw [W3C98] is an open source Web server entirely written in Java. It allows initiation of
different protocol handler modules, e.g. for HTTP, FTP or remote server administration. For the
measurements, we configured it to start only with the HTTP protocol handler module. 

é Jess [Frie97] stands for Java Expert System Shell and is a rule engine and scripting environment.
During the test, it solved the “Monkeys and Bananas” problem from the examples provided with the
distribution. 

é CaffeineMark [Pend99] is a widely used Java benchmark. We used the embedded version which
consist of a a set of low level benchmarks that allow to compare the performance of JVM
implementations.

The performance evaluation is subdivided in two sections. The first section, measures the low level
operations access to static fields and IPC. In the following section, our sample applications are run to
provide a quantitative estimate of the improvements that can be expected using the proposed solution.
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The measurements are conducted on an Intel Pentium II machine (400 MHz, 128 Mbyte) running Linux,
kernel version 2.2.5. The open source JVM Kaffe version 1.0 beta 4 [Tran99] is used.

6.1 Performance of low level operations

In the first experiment, we measured the access to static fields. We expect a significant slowdown for the
SSCL approach because the single machine instruction to which the GETSTATIC operation can be
compiled in the DCL approach versus a 6 method invocations, 2 type casts and a thread lookup operation
which are necessary to retrieve the current process and the corresponding process instance of the sp-class in
the SSCL approach.

1400.0- via access method (SSCL)
55.0- of different class (DCL)

2.5- of same class (DCL)
Access to static field

137.0Type cast
84.0Thread lookup

175.0Instance method invocation
168.0Static method invocation

time [ns]Operation

Table 3: Cost of low level operations 

Table 3 shows the cost for relevant low level operations. We observed that Kaffe’s just-in-time compiler
particularly optimizes accesses to static fields of the same class (2.5 ns versus 55 ns for access to static field
of a different class). The cost of the access methods used in the SSCL approach is at about 1400 ns
independent of the class to which the static field belongs. This corresponds to penalty factors for access to
static fields of 560 (same class) and 25 (different class).

However, we argue that static field accesses are infrequent and thus do not significantly reduce the
overall performance of an application. Table 4 compares for our sample applications the time spent in
access methods (SSCL approach) with the overall execution time. We determined overheads of less than 1
percent for all application which can be neglected.

As an optimization, the instance of the sp-class containing the former static field could be buffered in a
local method variable on the stack. This would provide a shortcut which can be expected to perform as good
as the direct access to a static field. However, as Table 4 shows, we did not find an application where this
performance penalty is significant and thus postponed the implementation.

0.03%7.585,41724,000Caffeine
0.22%26.7119,07912,000Jess
0.04%0.755352,000Jigsaw

overheadTime [ms]Numberruntime [msec]Application
IntroducedAccess method invocationsApplication

Table 4: Cost of access method invocation (SSCL) compared to overall application execution time.

The second experiment determines the cost of IPC. Here, we compare two versions of local RMI: one
using Java’s object serialization which is the default case for the DCL approach and a fast copy mechanism
which is used in the SSCL approach. As the name suggests, we expect better performance for the fast copy
mechanism because it directly copies objects instead of using a intermediate byte code representation.

In Table 5, we can observe speedup factors of about one to two orders of magnitude when the fast copy
mechanism is used. The speedup factor increases with the increasing argument size. Similar speedup factors
where also published in [HCC98].
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0.3146.490.3042.5010,000
0.084.730.176.501,000
0.060.690.162.40100
0.060.280.152.1010
0.060.230.152.001

fast copyserializedfast copyserializedSize[byte]
StringByte ArrayArgument

Table 5: Cost of IPC (times [ms])

6.2 Scaleability and performance of sample application

The goal of this section is to provide a quantitative estimate of the improvement in terms of memory
consumption and startup time that can be achieved using the SSCL approach. 

Table 6 lists the sample application that were used. Jigsaw [W3C98] is an open source Web server
entirely written in Java. It allows initiation of different protocol handler modules, e.g. for HTTP, FTP or
remote server administration. For the measurements, we configured it to start only with the HTTP protocol
handler module. Jess, the Java Expert System Shell, is a rule engine and scripting environment [Frie97].
During the test, it solved the “Monkeys and Bananas” problem from the examples provided with the
distribution. The third application in the table is the embedded version of the widely used CaffeineMark
Java benchmark [Pend99]. It consist of a a set of low level benchmarks that allow to compare the
performance of JVM implementations.

22,0301416,899141413,715Caffeine
2119,985179400,880109179350,825Jess
4470,540142527,534304142450,449Jigsaw

NumberSize [byte]NumberSize [byte]fieldsNumberSize [byte]Application
Sp-classesNsp-classesStaticOriginal classes

After TransformationBefore Transformation

Table 6: Sample applications

The numbers in Table 6 represent only the classes that were actually loaded for the configured
functionality of each application. The increased class size comes mainly form the access methods,
__get__x() and __set_x(), that need to be added for every static field x in the original classes as
described in Section 5. The overhead for the class size is between 20% and 40%. This means if the classes
are shared between at least two processes memory savings can be realized.

Looking at the size of class files however is a static analysis and provides only a first indication. This is
because the memory consumed by the application code needs to be related to the applications overall
memory needs which include also the memory for data objects the application is working with.

The goal of the first experiment in this section is to quantify the overall memory consumption. We
expect to confirm the results of the static analysis above which should be reflected in the experiment  by a
higher number of simultaneous supported processes of the same application for the SSCL approach.

The experiment is conducted as follows: We run the JVM with a fixed memory limit specified as the
JVM heap size. Then, a set of processes were sequentially started, all executing the same sample
application, until one process ran out of memory indicated by an exception. The startup of a new process is
delayed until one can be sure that all existing processes are completely loaded and were executing long
enough to have allocated their required share of memory. Application executions that finished were
restarted within the same process. This prevents the garbage collector from freeing a process’ memory. The
same experiment was conducted with both approaches, DCL and SSCL. 

The result of the experiment represents the maximum number of processes of a given application that
can be simultaneously supported for a given JVM memory limit. Figures 9, 11 and 13 show the results for
the sample applications. We can observe improvements for the SSCL approach of about 50% for Jigsaw and
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Caffeine, and an improvement of 400% for Jess. Jess benefits more from the SSCL approach because the
ratio of memory required for data versus code is less than for Jigsaw or Caffeine.

Figure 14: Execution time for n-th Caffeine processFigure 13: Max. number of simultanous Caffeine processes
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Figure 12: Execution time for n-th Jess processFigure 11: Max. number of simultanous Jess processes. 
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Figure 10: Startup time for n-th Jigsaw processFigure 9: Max. number of simultanous Jigsaw processes. 
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In the second experiment, we want to quantify the implications of the different approaches for the startup
or execution time. The theoretical analysis suggests advantages for the DCL approach if only one process is
started because the number and size of application classes to be loaded is smaller. If more than one process
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is started, the SSCL approach should perform better because classes need to be loaded only once in contrast
to n times for the DCL approach.

The experiment was conducted in a similar way as the previous. A new process was started only after the
previous process had finished execution. Finished processes were not restarted but a reference was kept to
prevent garbage collection of classes. The limit for the JVM heap size was set to 128 Mbyte. 

Figures 10, 12 and 14 confirm the theoretical analysis. For the SSCL approach, the execution time of the
first process is about 2 seconds higher for Jigsaw and Jess. The difference is less significant for Caffeine
which can be attributed to the smaller footprint of the application (10 times fewer classes).

The linear increase in startup times with the conventional class loader in Figures 10, 12 and 14 seems
mildly peculiar, because these graphs do not depict aggregated times (a flat curve was expected). Although
we have confirmed this behavior with several popular JVM implementations (JDK 1.1.7 for Linux based on
Sun SDK, JDK 1.1.8 for IBM AIX, Kaffe for Linux) we cannot pinpoint the exact reason, which must relate
to some common denominator in how these implementations handle data structures. Even without this
additional  boost (which may disappear in other conventional implementations), the SSCL approach
consistently outdoes its conventional counterpart for n > 1, because its curves falls below the others’ after
incurring specific overheads each once for n = 1.

The amount of  improvement that is available by introducing the SSCL approach grows both with the
footprint of applications (Figures 9, 11, and 13) and with the numbers of separate processes that a JVM
needs to support (Figures 10, 12, and 14). We have shown that our approach leads to significant
improvements with a set of popular and unmodified Java workloads.

7 Summary and Conclusion

In this paper we presented a new approach for multi-processing in Java. This new approach allows for
safe class sharing between protection domains. In a quantitative performance evaluation we showed that our
approach can help to reduce per-process memory consumption, process startup time, and delay for
inter-process communication. 

We can see benefits of the new approach to applications on both sides of the client-server programming
model. Server-side applications can run for different users with different privileges and nevertheless share
the application code. On the client side, different applications can run simultaneously in the same JVM
without interfering with each other. The proposed savings can be realized if different applications use the
same library, e.g. a graphics or algorithmic package.

As a side result of the performance evaluation, we discovered that class loading performance of different
JVM implementations decreases with an increasing number of classes already loaded. This suggests that
there is space for optimization of currently deployed class loading mechanism. At the same time, it provides
an additional argument for the new approach which reduces the number of loaded classes significantly when
the same application is run multiple times in parallel. 

A limitation of the current implementation is that the byte code transformation is not transparent when
the reflection API is applied to static fields. However, we provided indications for modifications to the
reflection API implementation to resolve this issue
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