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Birgit P�tzmann, Michael Waidner
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Abstract

We consider compositional properties of reactive systems that are secure in a cryptographic sense. We
follow the well-known simulatability approach, i.e., the speci�cation is an ideal system and a real system
should in some sense simulate it. We recently presented the �rst detailed general de�nition of this
concept for reactive systems that allows abstraction and enables proofs of eÆcient real-life systems like
secure channels or certi�ed mail.

We prove two important properties of this de�nition, preservation of integrity and secure composition:
First, a secure real system satis�es all integrity requirements (e.g., safety requirements expressed in
temporal logic) that are satis�ed by the ideal system. Secondly, if a composed system is designed using
an ideal subsystem, it will remain secure if a secure real subsystem is used instead. Such a property was
so far only known for non-reactive simulatability.

Both properties are important for putting formal veri�cation methods for systems using cryptography
on a sound basis.



1 Introduction

Security proofs for systems involving cryptography are getting increasing attention in theory and practice,
and they are used for increasingly large systems. While for some time most of the e�ort concentrated on
primitives like encryption and signature schemes, or authentication and key exchange, currently work is
under way on medium-sized systems like secure channels, payment systems, and anonymity systems. In
the future, one might want to prove even larger systems like entire electronic-commerce architectures or
distributed operating systems that use cryptography.

Both the cryptographic and the formal-methods community are working on such proofs, and the
techniques are quite disjoint. One of our goals is to link them to get the best overall results: proofs that
allow abstraction and the use of formal methods, but retain a sound cryptographic semantics.

1.1 Abstracted Models

In the formal-methods community, one tries to use established speci�cation techniques to specify re-
quirements and actual protocols unambiguously and with a clear semantics. Moreover, most work aims
at proofs that are at least automatically veri�able. To make this possible, cryptographic operations
are almost always treated as an in�nite term algebra where only prede�ned equations hold (in other
terminology, the initial model of an abstract data type) as introduced in [9]. For instance, there is a
pair of operators EX and DX for asymmetric en- and decryption with a key pair of a participant X .
Two encryptions of a message m from a basic message space M do not yield another message from M ,
but the term EX (EX(m)). The equation DX(EX (t)) = t for all terms t is de�ned, and the proofs rely
on the abstraction that no equations hold unless they can be derived syntactically from the given ones.
Early work using this approach for tool-supported proofs was rather speci�c, e.g., [22, 20]; nowadays
most work is based on standard languages and general-purpose veri�cation tools, as initiated, e.g., in
[27, 18, 1].

A problem with these models is the lack of a link between the chosen abstractions and the real
cryptographic primitives as de�ned and sometimes proven in cryptography. The main issue is not even
that one will somehow need to weaken the statements to polynomial-time adversaries and allow error
probabilities; the problem is that the cryptographic de�nitions say nothing about all equations. For
instance, the accepted cryptographic de�nition of secure asymmetric encryption only requires that an
adversary in a strong type of attack cannot �nd out anything about the message (see [5, 8]), but nothing
about possible relations on the ciphertexts. One can construct examples, at least arti�cial ones, where
proofs made with the abstractions go wrong with encryption schemes provably secure in the cryptographic
sense [26].

1.2 Faithful Abstraction

The problem can be approached from both sides|cryptography can try to o�er stronger primitives
closer to the typical abstractions, or formal methods can be applied based on weaker abstractions that
are easier to ful�l by actual cryptography. (Our examples in [24, 25] belong to the second approach.)
Both approaches presuppose that one de�nes what it means that some abstraction is ful�lled in a
cryptographic sense. Both also need proofs that working with the abstractions leads to meaningful
results in the real cryptographic sense, i.e., the abstractions should be faithful. This is illustrated in
Figure 1. We will show how the theorems proven in this paper help in this program.
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Figure 1: Goals of faithful abstraction. Bold arrows should be de�ned once and for all, normal arrows
once per protocol. It should be proven that dashed arrows follow automatically.
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1.3 What does Cryptography Gain from Abstractions?

Cryptographers may ask why one should bother with abstractions: why not continue to make all proofs
on the lower layer of Figure 1, i.e., as reduction proofs if asymmetric cryptography is involved? Indeed,
abstractions and formal methods neither increase the expressiveness nor make the overall results more
rigorous. However, one can hope that the speci�cations get nicer, the proofs shorter, and tool support
easier. (The large number of papers using unfaithful abstractions indicates how alluring these arguments
are.) Indeed rigorous cryptographic de�nitions are long (always involving details of the attack, error
probabilities etc.), and many had to be strengthened later. Similarly, most proofs are currently only
sketches, and some have contained gaps. This will get worse with larger systems; just imagine proving
an entire electronic-commerce framework by a reduction only because it uses signatures in some places.

1.4 Related Literature

There are some approaches at expressing actual cryptographic de�nitions in formal languages. This is
almost orthogonal to our goal of providing abstractions with a cryptographic semantics. As also none of
them captures the entire de�nitions yet, we do not duplicate the overview from [26].

The main abstraction approach in cryptography is simulatability: One speci�es an ideal system that
has all the desired properties by construction, but typically makes the unrealistic assumption that there
is one machine trusted by all parties (\trusted host"). A real system is de�ned to be as secure as an
ideal system if anything an adversary can achieve can also be achieved by an adversary attacking the
ideal system.

This approach was primarily worked out for function evaluation, i.e., all parties make one input at
the beginning and get one output at the end [28, 12, 3, 21, 6]. For this case, [6] contains a composition
theorem. Our Section 4 can be seen as an extension of this to reactive systems.

There are two main approaches at extending simulatability to reactive systems, i.e., systems where
users make inputs and obtain outputs many times. The �rst, constructive, approach describes the
ideal system as a global state-transition machine and requires the global state to be shared among all
participants in the real system [14, 11]. This is not feasible or desirable in scenarios like secure channels
or payment systems, where many participants carry out many 2- or 3-party subprotocol runs at di�erent
times.

The second, descriptive, approach only considers the \outside" behaviour of the system. Several brief
sketches have been around for some time (among them ours, hence all are omitted here). Three more
detailed de�nitions have been made [16, 17, 15, 24]. For none of them, theorems about composition or
the preservation of integrity properties have been given yet, hence the current paper is novel in any case.
The main advantage of [16, 17] is a formal language, �-calculus, as machine model. However, it lacks
abstraction: the speci�cations in both papers essentially comprise the actual protocols and are speci�c
to certain cryptographic primitives used. Hence tool support would also not be possible yet because even
the speci�cations involve ad-hoc notation for generating random primes etc. (Combining some of their
language techniques with our abstraction techniques looks promising.) In [15], a somewhat restricted
class of systems is considered (straight-line programs and information-theoretic security) because their
main goal was general constructions. Particular aspects of [24] (also in comparison with other sketches)
are a precise timing model that exposes timing vulnerabilities, a precise treatment of the interaction of
users and adversaries, and independence of the trust model. The simulatability approach has also been
applied to speci�c reactive problems [10, 4, 7, 25], but this has not much bearing on composition as
studied here.

A formal abstraction speci�cally for symmetric encryption with cryptographic semantics has been
described in [2]1, but without considering its use within a system. An approach to provide integrity
properties with a cryptographic semantics was �rst made in [23], but not as rigorously as here and
without a relation to simulatability de�nitions.

1.5 Organization of this Paper

In this paper, we investigate compositional properties of systems that are secure in the sense of simu-
latability. We repeat the model we use in Section 2. In Section 3 we de�ne what it means for a system to

1They show that if two expressions of a certain class are equivalent in a formal calculus for an adversary, and are
interpreted using a symmetric encryption scheme with some special security properties, then the resulting two random
variables are computationally indistinguishable.
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provide almost arbitrary integrity properties in a cryptographic sense. We then prove that (a) proofs of
such properties made for the ideal system also hold for the real system and (b) logic derivations among
integrity properties are valid for the real system in the cryptographic sense. In Section 4 we de�ne the
composition of systems in our model. We then prove that the speci�cation of one system can be used in
the design of another system while preserving statements about the security of the overall systems.

All the derivations mentioned can be abstract, unless the higher layer in a composition uses cryptog-
raphy itself. In particular, the integrity properties in (a) are accessible to model checkers, those in (b)
to theorem provers.

2 Summary of the De�nitions

In this section, we repeat the de�nitions from [24] in slightly abbreviated form. They are for a syn-
chronous network model, and the simulatability also includes the timing. Hence security exposures via
timing channels are captured. To avoid that timing di�erences within a round leak, implementations of
synchronous machines have to ensure that input reading and outputting are both clocked.

The machine model is probabilistic state-transition machines, similar to probabilistic I/O automata
as sketched in [19]. For clarity, one particular notation and semantics is �xed.

De�nition 2.1 (Machines and Ports) A name is a string over a �xed alphabet �.
A port p is a pair (namep; dirp) of a name and a Boolean value called direction; we write namep?

and namep! for in- and output ports, respectively. We write pc for the complement of a port p, i.e.,
namep!

c = namep? and vice versa. For a set P of ports, let In(P) := fp 2 P jdirp = ?g denote the input
ports and similarly Out(P ) the output ports.

A machine M for a synchronous system is a tuple

M = (PortsM; ÆM; IniM;FM)

of a �nite set of ports, a probabilistic state-transition function, and sets of initial and �nal states. The
states are strings s from ��. The inputs are tuples I = (Ip)p2In(PortsM) of one input Ip 2 �� per input
port, and the outputs analogous tuples O. ÆM maps each such pair (s; I) to a �nite distribution over
pairs (s0; O). For a set M of machines, let ports(M ) :=

S
M2M PortsM.

\Machine M1 has machine M2 as a (blackbox) submachine" means that it has the state-transition
function as a blackbox. Hence M1 can \clock" M2, i.e., decide when to cause state transitions. 3

For computational aspects, each machine is regarded as implemented by a probabilistic interactive
Turing machine [13], and each port by a communication tape. The complexity of a machine is measured
in terms of the length of the initial state, represented as initial worktape content (often a security
parameter).

Below, we distinguish correct machines, adversaries and users in particular in how they are clocked,
because one cannot assume adversaries to adhere to synchronization rules. As some proofs need di�erent
clocking schemes, general collections of machines and their runs with a clocking scheme are de�ned.

De�nition 2.2 (Machine Collections, Runs and Views) A collection C is a �nite set of machines
with pairwise disjoint sets of ports. Each set of complementary ports c = fp; pcg � ports(C ) is called a
connection and the set of these connections the connection graph G(C ). By free(C ) we denote the free
ports, i.e., p 2 ports(C ) but pc 62 ports(C ). A collection is closed if free(C ) = ;.

A clocking scheme is a mapping � (also written as a tuple) from a set f1; : : : ; ng to the powerset of C ,
i.e., it assigns each number a subset of the machines. Given C and � and a tuple ini 2 Ini := �

M2C
IniM

of initial states, runs (or \executions" or \traces") are de�ned: Each global round i has n subrounds.
In Subround [i:j], all machines M 2 �(j) switch simultaneously, i.e., each state-transition function ÆM
is applied to M's current inputs and state and yields a new state and output (probabilistically). The
output at a port p! is available as input at p? until the machine with port p? is clocked next. If several
inputs arrive until that time, they are concatenated. This gives a family of random variables

runC = (runC ;ini )ini2Ini :

More precisely, each run is a function mapping each triple (M; i; j) 2 C � N �f1; : : : ; ng to a quadruple
(s; I; s0; O) of the old state, inputs, new state, and outputs of machine M in subround [i:j], with a symbol
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� if M not clocked in this subround. For a number l 2 N of rounds, l-round pre�xes runC ;ini ;l of runs are
de�ned in the obvious way. For a function l : Ini ! N, this gives a family runC ;l = (runC ;ini;l(ini))ini2Ini .

The view of a subsetM of a closed collection C in a run r is the restriction of r toM �N�f1; : : : ; ng.2

This gives a family of random variables

viewC (M ) = (viewC ;ini (M ))ini2Ini ;

and similarly for l-round pre�xes.
For a run r and a set P of ports, let rdP denote its restriction to these ports. This notation is carried

over to the random variables. 3

Now we de�ne speci�c collections for security purposes, �rst the system part and then the environ-
ment, i.e., users and adversaries. Typically, a cryptographic system is described by an intended structure,
and the actual structures are derived using a trust model : the adversary replaces some machines and
taps or completely controls some channels. A concrete derivation is de�ned in [24]. However, as a wide
range of trust models is possible, it is useful to keep the remaining de�nitions independent of them by
a general system de�nition.

De�nition 2.3 (Structures and Systems) A structure is a pair struc = (M ;S ) where M is a collec-
tion of machines called correct machines, and S � free(M ) is called speci�ed ports. Let �S := free(M ) nS
and forb(M ;S ) := ports(M ) [ �S c.

A system Sys is a set of structures. 3

The separation of the free ports into speci�ed ports and others is an important feature of this
particular reactive simulatability de�nition. The speci�ed ports are those where a certain service is
guaranteed. Typical examples of inputs at speci�ed ports are \send message m to id" for a message
transmission system or \pay amount x to id" for a payment system. The ports in �S are additionally
available for the adversary. The ports in forb(M ;S ) will therefore be forbidden or at least unusual for
an honest user to have. In the simulatability de�nition below, only the events at speci�ed ports have
to be simulated one by one. This allows abstract speci�cation of systems with tolerable imperfections.
For instance, if the traÆc pattern is not hidden (as in almost all cryptographic protocols for eÆciency
reasons), one can abstractly specify this by giving the adversary one busy-bit per message in transit in
the ideal system. Even better, he should only get one busy-bit per subprotocol run (e.g., a payment)
and the internal message pattern of the subprotocol should not tell him more. Detailed examples and
more motivation are given in [24, 25].

The following de�nition contains another important aspect: Both honest users and an adversary are
modeled as stateful machines H and A apart from the system. First, honest users should not be modeled
as part of the machines in M because they are arbitrary, while the machines have prescribed programs.
Secondly, they should not be replaced by a quanti�er over input sequences, because they may have
arbitrary strategies which message to input next to the system after obtaining certain outputs. They
may even be inuenced in these choices by the adversary, e.g., in chosen-message attacks on a signature
scheme; thus H and A may communicate. At least in the computational case, arbitrary strategies (i.e.,
adaptive attacks) are not known to be replaceable by arbitrary input sequences. Thirdly, honest users
are not a natural part of the adversary because they are supposed to be protected from the adversary. In
particular, they may have secrets and we want to de�ne that the adversary learns nothing about those
except what he learns \legitimately" from the system (this depends on the speci�cation) or what the
user tells him directly.

De�nition 2.4 (Con�guration) A con�guration conf of a system Sys is a tuple (M ;S ;H;A) where
(M ;S ) 2 Sys is a structure and C =M [ fH;Ag a closed collection.

The set of con�gurations is written Conf(Sys), and those with polynomial-time user and adversary
Confpoly(Sys). \poly" is omitted if it is clear from the context.

Runs and views of a con�guration are given by De�nition 2.4 with the clocking scheme (M [
fHg; fAg; fHg; fAg), except that we end a run if H and A have reached �nite state. Typically, the
initial states of all machines are only a security parameter k (in unary representation). Then one con-
siders the families of runs and views restricted to the subset Ini 0 = f(1k)M2C jk 2 Ng of Ini , and writes
runconf and view conf (M ) for runC and viewC (M ) restricted to Ini 0, and similar for l-round pre�xes.
Furthermore, Ini 0 is identi�ed with N; hence one can write runconf ;k etc. 3

2For the view of a polynomial-time Turing machine in interaction with unrestricted machines, inputs are only considered
as far as the machine read them.
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Clocking the adversary between the correct machines is the well-known model of \rushing adver-
saries". The given clocking of users is as powerful as clocking them in an arbitrary unsynchronized way
[24].

In the simulatability de�nition, one only wants to compare each structure of Sys1 with certain corre-
sponding structures in Sys2. An almost arbitrary mapping f is allowed as speci�cation of \correspond-
ing", only certain conventions on the naming of ports are necessary. An instantiation is usually derived
from the trust model, and usually only structures with the same set of speci�ed ports are corresponding.

De�nition 2.5 (Valid Mapping, Suitable Con�guration) A function f from a system Sys1 to the
powerset of a system Sys2 is called a valid mapping if

pc 2 free(M1)) p 62 forb(M2;S2) ^ pc 2 S2 ) p 62 forb(M1;S1):

for all structures with (M2;S2) 2 f(M1;S1).
Given Sys2 and f , the set Conff (Sys1) � Conf(Sys1) of suitable con�gurations contains all those

con�gurations (M1;S1;H;A1) where H has no ports from forb(M2;S2) for any (M2;S2) 2 f(M1;S1). 3

The restriction to suitable con�gurations Conff (Sys1) serves two purposes in simulatability: First it
excludes users that are incompatible with (M2;S2) simply because of name clashes. Secondly, it excludes
that H connects to unspeci�ed free ports of (M2;S2). This is necessary for the abstract speci�cation of
tolerable imperfections. Recall the example of an ideal system that gives the adversary one busy-bit per
subprotocol run. Clearly there is no such bit in the real system; we only need it to capture that whatever
the adversary learns in the real system is not more than this bit. As we will require indistinguishability
of the views of H, these unspeci�ed ports must only be used by the adversary.

As the de�nition of computational indistinguishability (originally from [29]) is essential for the sim-
ulatability de�nition, we also present it here.

De�nition 2.6 (Indistinguishability) Two families (vark)k2N and (var0k)k2N of random variables (or
probability distributions) are called

a) perfectly indistinguishable (\=") if for each k, the two distributions are identical;

b) statistically indistinguishable (\�SMALL") for a class SMALL of functions from N to R�0 if the
distributions are discrete and their statistical distances

�(vark; var
0
k) =

1

2

X

d2Dk

jP (vark = d)� P (var0k = d)j 2 SMALL

(as a function of k). SMALL should be closed under addition, and with a function g also contain
any function g0 � g. Typical classes are EXPSMALL containing all functions bounded by Q(k)�2�k

for a polynomial Q, and the (larger) class NEGL as in Part c).

c) computationally indistinguishable (\�poly") if for any algorithm Dist (the distinguisher) that is
probabilistic polynomial-time in its �rst input,

jP (Dist(1k; vark) = 1)� P (Dist(1k; var0k) = 1)j �
1

poly(k)
:

(Intuitively, Dist, given the security parameter and an element chosen according to either vark or
var0k, tries to guess which distribution the element came from.) The notation g(k) � 1=poly(k),
equivalently g 2 NEGL, means that for all positive polynomials Q, 9k08k � k0 : g(k) � 1=Q(k).

We write � if we want to treat all cases together. 3

The following de�nition captures that whatever an adversary can achieve in the real system against
certain honest users, another adversary can achieve against the same honest users in the ideal system.
Adding an adversary output in the comparison does not make the de�nition stricter, nor do auxiliary
inputs [24].
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De�nition 2.7 (Simulatability) Let systems Sys1 and Sys2 with a valid mapping f be given.

a) We say Sys1 �
f;perf
sec Sys2 (perfectly at least as secure as for f) if for any suitable con�guration

conf 1 = (M1;S1;H;A1) 2 Conff (Sys1), there exists a con�guration conf 2 = (M2;S2;H;A2) 2
Conf(Sys2) with (M2;S2) 2 f(M1;S1) (and the same H) such that

viewconf 1(H) = view conf 2(H):

b) We say Sys1 �
f;SMALL
sec Sys2 (statistically at least as secure as) for a class SMALL if the same as

in a) holds with statistical indistinguishability of all families view conf 1;l
(H) and view conf 2;l

(H) of
l-round pre�xes of the views for polynomials l.

c) We say Sys1 �
f;poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with

con�gurations from Conf
f
poly(Sys1) and Confpoly(Sys2) and computational indistinguishability of the

families of views.

In all cases, we call conf 2 an indistinguishable con�guration for conf 1. Where the di�erence between
the types of security is irrelevant, we simply write �f

sec, and we omit the indices f and sec if they are
clear from the context. 3

De�nition 2.8 (Blackbox and Universal Simulatability) Universal simulatability means that A2

in De�nition 2.7 does not depend on H (only on M1, S1, and A1). Blackbox simulatability means that
additionally, A2 (given M1, S1) is a �xed simulator Sim with A1 as a blackbox submachine. 3

We need the following lemmas (the �rst is well-known and easily proved, the other two are from [24]).

Lemma 2.1 (Indistinguishability) Indistinguishability of two families of random variables implies
indistinguishability of any function � of them (in particular restrictions). For the computational case, �
must be polynomial-time computable.

A step in the proof that we also need separately is that the statistical distance �(�(vark); �(var
0
k))

between a function of two random variables is at most �(vark; var
0
k). 2

Lemma 2.2 (Combination of Machines) The open and hiding combinations, Do and Dh, of a subset
D � C of a collection are machines with all the original machines as submachines. While PortsDo

=
ports(D), in Dh internal connections are hidden, i.e., PortsDh

= free(D). Both are clocked whenever
a machine from D is. The transition function is de�ned by switching the submachines in the same
subrounds where they would be clocked externally, and in Dh also the internal connections.

In the resulting collection C � = C n D [ fDxg, where x 2 fo; hg, the restriction of the runs to any
tuple of original machines or ports is the same as in C .

If only Dx is clocked in a continuous range of subrounds, one can derive a machine D0x clocked only
once in these subrounds (internally it calls the transition functions of its submachines in the right order)
such that the restriction of the runs to any tuple of original machines or ports is still unchanged except
for this subround renaming. 2

Lemma 2.3 (Transitivity) If Sys1 �
f1 Sys2 and Sys2 �

f2 Sys3, then Sys1 �
f3 Sys3, unless f3 is not

a valid mapping. Here f3 := f2 Æ f1 is de�ned in a natural way: f3(M1;S1) is the union of the sets
f2(M2;S2) with (M2;S2) 2 f1(M1;S1). This holds for perfect, statistical and computational security. It
also holds for universal and blackbox simulatability. 2

3 Integrity Requirements

In this section, we show how the relation \at least as secure as" relates to explicit properties required of
a system, e.g., safety requirements expressed in temporal logic.

In a modular design approach, one regards the trusted host, i.e., the ideal system used as the spec-
i�cation in simulatability, as a re�nement of these properties. Hence one veri�es these properties for
the trusted host. This may be done by formal and even automatic model checking if the trusted host
is simple enough. (The trusted hosts in our two larger examples in [24, 25] are indeed without prob-
abilistic and computational aspects or cryptographic operations.) Now we want to show that the real
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system also ful�lls these requirements in a certain cryptographic sense, i.e., even if parts of the system
are under control of an adversary, but possibly only for polynomial-time adversaries and negligible error
probabilities. This approach corresponds to the right half of Figure 1: the integrity properties serve
as abstract goals, the ideal system as an abstract protocol, and the real system ful�ls generally de�ned
concrete versions of these goals.

Clearly this can only hold for requirements formulated in terms of in- and outputs of the trusted
host at the speci�ed ports, because the simulatability de�nition only means that the real and the ideal
system interact with their users in an indistinguishable way.

As a rather general version of integrity requirements, independent of the concrete formal language,
we consider those that have a linear-time semantics, i.e., that correspond to a set of allowed traces of in-
and outputs. We allow di�erent requirements for di�erent sets of speci�ed ports, because requirements of
various parties in cryptography are often made for di�erent trust assumptions (typically, every party is
assumed to trust only their own computer). To make the translation between the two systems meaningful,
we only consider mappings f that keep S constant.

De�nition 3.1 (Integrity Requirements) An integrity requirement Req for a system Sys is a func-
tion that assigns a set of traces at the ports in S to each set S with (M ;S ) 2 Sys. More precisely, such
a trace contains one value vp 2 �� for each port p 2 S and round i, corresponding to the in- or output
of the correct machine in Subround [i:1]. For the computational and statistical case, the traces must be
�nite. We say that Sys ful�lls Req

a) perfectly (written Sys j=perf Req) if for any con�guration conf = (M ;S ;H;A) 2 Conf(Sys), the
restrictions rdS of all runs of this con�guration to the speci�ed ports lie in Req(S ). In formulas,
[(runconf ;kdS )] � Req(S ) for all k, where [�] denotes the carrier set of a probability distribution.

b) statistically for a class SMALL (Sys j=SMALL Req) if for any con�guration conf = (M ;S ;H;A) 2
Conf(Sys), the probability that Req(S ) is not ful�lled is small, i.e., for all polynomials l (and as a
function of k),

P (runconf ;k;l(k)dS 62 Req(S )) 2 SMALL:

c) computationally (Sys j=poly Req) if for any con�guration conf = (M ;S ;H;A) 2 Confpoly(Sys), the
probability that Req(S ) is not ful�lled is negligible, i.e.,

P (runconf ;kdS 62 Req(S )) 2 NEGL:

Note that a) is normal ful�llment. We write \j=" if we want to treat all three cases together. 3

Theorem 3.1 (Conservation of Integrity Properties) Let a system Sys2 be given that ful�lls an
integrity requirement Req, and let Sys1 �

f Sys2 for a valid mapping f with S1 = S2 whenever (M2;S2) 2
f(M1;S1). Then also Sys1 j= Req .

This holds in the perfect and statistical sense, and in the computational sense if membership in the
set Req(S ) is decidable in polynomial time for all S . 2

Proof. We �rst show that Req is de�ned on Sys1 under the preconditions: Simulatability implies that
for each (M1;S1) 2 Sys1, there exists (M2;S2) 2 f(M1;S1). Then S1 = S2 by the precondition, and thus
Req(S1) is de�ned. The idea for the rest of the proof is that if Sys1 did not ful�ll the requirement while
Sys2 does, this would o�er a possibility to distinguish the systems.

Assume that a con�guration conf 1 = (M1;S1;H;A1) 2 Conf(Sys1) contradicts the theorem. Let Hh

be the hiding combination of H and A1.
3 By Lemma 2.2, this does not change the probability of the runs

restricted to S1. As all other machines are in M1 and clocked only in Subround 1, we can even clock Hh

in Subround 3 only and the runs change only by subround renaming. In particular, the traces at the
ports in S1 as considered in the theorem remain the same. We now add an adversary Anull without ports
(and doing nothing) to obtain a con�guration conf h;1 = (M1;S1;Hh;Anull) 2 Conf(Sys1). We then have
runconf

h;1
dS1= runconf 1dS1 , and thus conf h;1 also contradicts the theorem.

Moreover, conf h;1 is a suitable con�guration, i.e., Hh has no ports from forb(M2;S2) for any (M2;S2) 2
f(M1;S1) because PortsHh

= free(M1)
c (as the collection is closed and Hh has no self-connections by

construction) and Condition 1 on valid mappings.

3Note that we have not required that any user H connects to all ports from S1, but we need all these ports to be in a
user view for exploiting simulatability.
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Hence there exists an indistinguishable con�guration conf h;2 = (M2;S2;Hh;Ah;2) 2 Conf(Sys2), i.e.,
view conf

h;1
(Hh) � view conf

h;2
(Hh). By the precondition, the requirement is ful�lled for this con�guration

(perfectly, statistically, or computationally). Furthermore, the view of Hh in both con�gurations contains
the trace at S := S1 = S2, i.e., the trace is a function dS of the view.

In the perfect case, the distribution of the views is identical. This immediately contradicts the
assumption that [(runconf

h;1;k
dS )] 6� Req(S ) while [(runconf

h;2;k
dS )] � Req(S ).

In the statistical case, let any polynomial l be given. The statistical distance �(view conf
h;1;k;l(k)

(Hh);

view conf
h;2;k;l(k)

(Hh)) is a function g(k) 2 SMALL. We apply Lemma 2.1 to the characteristic func-

tion 1vdS 62Req(S) on such views v. This gives jP (runconf
h;1;k;l(k)

dS 62 Req(S )) � P (runconf
h;2;k;l(k)

dS 62

Req(S ))j � g(k). As SMALL is closed under addition and under making functions smaller, this gives
the desired contradiction.

In the computational case, we de�ne a distinguisher Dist: Given a view of machine Hh, it extracts
the run restricted to S and veri�es if the result lies in Req(S ). If yes, it outputs 0, otherwise 1. This
distinguisher is polynomial-time (in the security parameter k) because the view of Hh is of polynomial
length, and membership in Req(S ) was required to be polynomial-time decidable. Its advantage in
distinguishing is jP (Dist(1k; view conf

h;1;k
) = 1) � P (Dist(1k; viewconf

h;2;k
) = 1)j = jP (runconf

h;1;k
dS 62

Req(S )) � P (runconf
h;2;k

dS 62 Req(S ))j. If this di�erence were negligible, then so would the �rst term be
because the second term is and NEGL is closed under addition. Again this is the desired contradiction.

We now show that, if integrity requirements are formulated in a logic (e.g., temporal logic, or �rst-
order logic with round numbers), abstract derivations in the logic are valid in the cryptographic sense. As
our de�nitions are not based on a speci�c logic, but on the linear-time semantics, the following theorem
represents this (see below).

Theorem 3.2 (Using Logics for Integrity Properties)

a) If Sys j= Req1 and Req1 � Req2, then also Sys j= Req2.

b) If Sys j= Req1 and Sys j= Req2, then also Sys j= Req1 \Req2.

Here \�" and \`\" are interpreted pointwise, i.e., for each S . This holds in the perfect and statistical
sense, and in the computational sense if for a) membership in Req2(S ) is decidable in polynomial time
for all S . 2

Proof. Part a) is trivially ful�lled in all three cases. Part b) is trivial in the perfect case. For the
statistical case and any conf = (M ;S ;H;A) 2 Conf(Sys),

P (runconf ;k;l(k)dS 62 (Req1(S ) \Req2(S ))

� P (runconf ;k;l(k)dS 62 Req1(S )) + P (runconf ;k;l(k)dS 62 Req2(S ))

2 SMALL

because both summands are in SMALL, which is closed under addition. The computational case holds
analogously because NEGL is closed under addition.

For applying this theorem to concrete logics, the main rule to consider is usually modus ponens, i.e., if
one has derived that a and a ! b are valid in a given model, then b is also valid in this model. If Reqa
etc. denote the semantics of the formulas, i.e., the trace sets they represent, we have to show that

(Sys j= Reqa ^ Sys j= Reqa!b)) Sys j= Reqb:

This follows directly from the theorem with Reqa \ Reqa!b = Reqa^b � Reqb.

4 Composition

In this section, we show that the relation \at least as secure as" is consistent with the composition of
systems. The basic idea is the following: Assume that we have proven that a system Sys0 is as secure as
another system Sys 00 (typically an ideal system used as a speci�cation). Now we would like to use Sys0
as a secure replacement for Sys 00, i.e., as an implementation of the speci�cation Sys 00.
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Usually, replacing Sys 00 means that we have another system Sys1 that uses Sys
0
0; we call this compo-

sition Sys�. Inside Sys� we want to use Sys0 instead, which gives a composition Sys#. Hence Sys# is
typically a completely real system, while Sys� is partly ideal. Intuitively we expect Sys# to be at least
as secure as Sys�. The situation is shown in the left and middle part of Figure 2.

Sys0

≥f#Sys1
Sys#

Sys'0

Sys1
Sys*

≥f1 Sys'

≥f0

≥f

Figure 2: Composition theorem and its use in a modular proof: The left and middle part show the
statement of Theorem 4.1, the right part Corollary 4.1.

In terms of Figure 1, once we have proven Sys0, it serves as a concrete primitive and Sys 00 as the
abstract primitive. The abstract protocol is Sys1 or, considered together with the abstract primitive,
Sys�. The concrete protocol is again Sys1 or, together with the concrete primitive, Sys

#. In Theorem 4.1,
we show that the arrow \abstraction" in the middle of Figure 1 is correct. (Here \�" is the concrete
version of \abstraction".) Thus we can continue the modular design with Sys� as an abstract primitive
for larger systems. Corollary 4.1 adds the right part of the �gure for the case where the abstract goals
are given by a speci�cation Sys 0, i.e., \ful�ls" is then also \�", and the abstract and concrete goals are
the same.

We �rst have to de�ne composition. We do it immediately for n systems Sys1; : : : ;Sysn. We do not
provide a composition operator that takes the individual systems and produces one speci�c composition.
The reason is that one typically does not want to compose every structure of one system with every
structure of the others, but only with certain matching ones. E.g., if the individual machines of M1 are
implemented on the same physical devices as those of M0, as usual with a layered distributed system,
we might only want to compose structures corresponding to the same trust model. However, this is not
the only conceivable situation. Hence we allow many di�erent compositions.

De�nition 4.1 (Composition) The composition of structures and of systems is de�ned as follows:

1. We call structures (M1;S1); : : : ; (Mn;Sn) composable if ports(Mi)\ ports(Mj) = ; for all i 6= j. We
then de�ne their composition as

(M1;S1)jj : : : jj(Mn;Sn) := (M ;S )

with M =M1 [ : : : [Mn and S = (S1 [ : : : [ Sn) \ free(M ). Clearly, (M ;S ) is again a structure.

2. We call a system Sys a composition of systems Sys1; : : : ;Sysn and write

Sys 2 Sys1 � � � � � Sysn

if each structure (M ;S ) 2 Sys has a unique representation (M ;S ) = (M1;S1)jj : : : jj(Mn;Sn) with
composable structures (Mi;Si) 2 Sys i for i = 1; : : : ; n.

3. Under the conditions of 2., we call (Mi;Si) the restriction of (M ;S ) to Sys i and write (Mi;Si) =
(M ;S )dSysi .

3

Remark 4.1. As compositions are again systems and structures, all further de�nitions (con�gurations,
runs etc.) apply to them.

Remark 4.2. Restriction is de�ned relative to all n systems, i.e., uniqueness is only guaranteed if one
knows them all. In most cases, however, it is unique even if one only knows (M ;S ) and Sys i, e.g., if the
n systems have disjoint sets of machines and each set Mi occurs in at most one structure of Sys i. Æ
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The following theorem shows that modular proofs as sketched in the introduction to this section are
indeed possible. Recall that the situation is shown in the left and middle part of Figure 2. The main
issue in formulating the theorem is to characterize Sys#, i.e., to formulate what it means that Sys0
replaces Sys 00.

Theorem 4.1 (Security of Two-System Composition) Let systems Sys0, Sys
0
0, Sys1 and a valid

mapping f0 be given with
Sys0 �

f0 Sys 00:

Let compositions Sys# 2 Sys0�Sys1 and Sys
� 2 Sys 00�Sys1 be given that ful�l the following structural

conditions:

1. For each structure (M#;S#) 2 Sys# with restrictions (Mi;Si) = (M#;S#)dSysi , all compositions
(M 0

0;S
0
0)jj(M1;S1) with (M 0

0;S
0
0) 2 f0(M0;S0) exist and lie in Sys�.

Let f# denote the function that maps each (M#;S#) to the set of these compositions.

2. If (M1;S1) 2 Sys1 then ports(M1) \ forb(M 0
0;S

0
0) = ;.

Then we have
Sys# �f# Sys�:

This holds for perfect, statistical and computational security, and also for the universal and blackbox
de�nitions. 2

Remark 4.3. Condition (2) implies that the machines in M1 can be considered part of the user for
any structure (M 0

0;S
0
0). We could weaken the condition by only comparing structures (M1;S1) =

(M#;S#)dSys1 with structures (M 0
0;S

0
0) 2 f0((M

#;S#)dSys0). The simpler but stronger condition is
intuitively w.l.o.g.: The only ports that really need to have the same names in di�erent systems are the
speci�ed ones. All others can be given a speci�c pre�x for each system. Æ

Proof. (Of Theorem 4.1.) Let a con�guration conf # = (M#;S#;H;A#) 2 Conff
#

(Sys#) be given and
(Mi;Si) := (M#;S#)dSysi for i = 0; 1. We have to show that there is an indistinguishable con�guration
conf � 2 Conf(Sys�). The outline of the proof is as follows; it is illustrated in Figure 3.

A0

= A#

M0

A*
≈ A'0

M'0

M1 A#

M0

H0
Define
H0, A0

Sys0 ≥f0 Sys'0

Define
M*, A*

M1
H0

H

M#

M*

conf  #

conf*

conf 0

conf' 0

M1

H

M1

A'0

M'0

H

H

S'0

S*

Figure 3: Con�gurations in the composition theorem. Dashed machines are internal submachines. (The
connections drawn inside H0 are not dashed because the combination is open.)

1. We combine H andM1 into a user H0 to obtain a con�guration conf 0 = (M0;S0;H;A0) 2 Conf(Sys0)
where the view of H as a submachine of H0 is the same as that in conf #.
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2. We show that conf 0 2 Conff0(Sys0). Then by the precondition Sys0 �
f0 Sys 00, there is a con�gu-

ration conf 00 = (M 0
0;S

0
0;H0;A

0
0) 2 Conf(Sys 00) with (M 0

0;S
0
0) 2 f0(M0;S0) where the view of H0 is

indistinguishable from that in conf 0.

3. We decompose H0 into H and M1 again and derive a con�guration conf � = (M �;S�;H;A�) 2
Conf(Sys�) where the view of H equals that of H as a submachine of H0 in conf 00.

4. We conclude that conf � is an indistinguishable con�guration for conf #.

We now present the four steps in detail.

Step 1: The precise de�nition of conf 0 = (M0;S0;H;A0) is that (M0;S0) = (M#;S#)dSys0 , that H0 is
the open combination of M1 [ fHg as in Lemma 2.2, and A0 := A#. This is a valid con�guration from
Conf(Sys0):

� (M0;S0) = (M#;S#)dSys0 is a valid structure by the de�nition of a composition.

� Closed collection: The overall set of ports is the same as in conf #. Hence the machines still have
pairwise disjoint port sets, and all ports still have complements in the set.

Hence Lemma 2.2 implies view conf 0(H) = view conf#(H).

Step 2: We now show that conf 0 2 Conff0(Sys0), i.e., H0 has no ports from forb(M 0
0;S

0
0) = ports(M 0

0)[�S
0
0
c

for any structure (M 0
0;S

0
0) 2 f0(M0;S0).

Assume that it had such a port p. By construction of H0, p is also a port of M1 or H. The �rst case
is excluded in Precondition 2 of the theorem. Thus p 2 PortsH. We use that conf # is suitable, i.e., H
has no ports from forb(M �;S�) = ports(M �) [ �S�c for any (M �;S�) 2 f#(M#;S#). By Precondition
(1) of the Theorem, (M 0

0;S
0
0)jj(M1;S1) exists and lies in f#(M#;S#), hence we use this as (M �;S�).

Then M 0
0 � M � implies p 62 ports(M 0

0). Thus only pc 2 �S 00 remains, and we want to show that it
contradicts pc 62 �S�. We �rst show pc 2 free(M �): We have pc 2 �S 00 � ports(M 0

0), and thus p 62 ports(M 0
0),

and we have shown above that p 62 ports(M1). Secondly, disjointness of the part names of M 0
0 and M1

implies pc 62 S1. Hence p
c 2 free(M �) n (S 00 [ S1) = �S�. This is the desired contradiction.

Hence conf 0 is indeed a suitable con�guration. Thus Sys0 �f0 Sys 00 implies that there is a con-
�guration conf 00 = (M 0

0;S
0
0;H0;A

0
0) 2 Conf(Sys 00) with (M 0

0;S
0
0) 2 f0(M0;S0) and viewconf 0

0
(H0) �

view conf 0
(H0). This implies view conf 0

0
(H) � view conf 0

(H) because the view of a submachine is a function
of the larger view (Lemmas 2.1 and 2.2).

Step 3: We de�ne conf � = (M �;S�;H;A�) by reversing the combination of H and M1 into H0: The
structure is (M �;S�) := (M 0

0;S
0
0)jj(M1;S1), the user the original H, and A� := A00. We show that

conf � 2 Conf(Sys�).

� Structure: (M �;S�) 2 Sys� follows immediately from Precondition 1 of the theorem.

� Closed collection: The ports of H and the machines in M1 are disjoint because so they were in
conf #, and those of all other pairs of machines because so they were in conf 00.

4 As the set of ports
is the same as in conf 00, they also still all have complements in the set.

We can now see conf 00 as derived from conf � by taking the open combination of M1 [ fHg. Hence
Lemma 2.2 applies, and we obtain view conf �(H) = view conf 0

0
(H).

Step 4: We have shown that conf � 2 Conf(Sys�). We also have (M �;S�) 2 f#(M#;S#) by the
construction of f#. The results about views in Steps 1 to 3 and transitivity (Lemma 2.3) imply that
view conf �(H) � view conf#(H). Hence conf

� is indeed an indistinguishable con�guration for conf #.

Universal and blackbox: For the universal case, note that A0 = A# does not depend on H. Then A00 only
depends on (M0;S0) and A0, and thus also A� = A00. For the blackbox case, A00 additionally consists of
a simulator Sim with A0 = A# as a blackbox, and thus so does A�.

The following corollary �nishes the formalization and proof of the situation shown in Figure 2: We
now assume that there is also a speci�cation Sys 0 for the system Sys�, as shown in the left part of the
�gure.

4Recall that PortsH0 = ports(M1 [ fHg); here we exploit that we did not hide internal connections in the combination.
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Corollary 4.1 Consider �ve systems satisfying the preconditions of Theorem 4.1, and a sixth one, Sys 0,
with Sys� �f1 Sys 0. Then

Sys# �f Sys 0

where f := f1 Æ f# as in the transitivity lemma, except if f is not a valid mapping. 2

The restriction that f must be a valid mapping is not serious (as for transitivity generally); it means
that the naming conventions must be ful�lled for the two systems Sys# and Sys 0 that we �nally want
to compare.

Proof. Theorem 4.1 implies that Sys# �f# Sys�. Then we immediately obtain Sys# �f Sys 0 using
transitivity (Lemma 2.3).

Remark 4.4. An alternative to the corollary would be to consider two speci�cations Sys 00 and Sys 01
for the two real systems Sys0 and Sys1, and to show that Sys# 2 Sys0 � Sys1 is as secure as some
Sys 0 2 Sys 00�Sys 01. For this, our composition theorem could be applied to internally structured systems
Sys 0. However, typically a speci�cation should not prescribe that the implementation must have two
subsystems; e.g., in specifying a payment system it should be irrelevant whether the implementation
uses secret channels as a subsystem. Hence the overall speci�cation Sys 0 will typically be monolithic as
in Figure 2. Æ

5 Outlook

We have proven two important properties of a simulatability de�nition for reactive cryptographic systems,
composability and preservation of integrity properties. There are many possible next steps. One is to
apply the composition theorem to concrete systems, e.g., systems using secure channels based on the
speci�cation used in [24]. For actual tool support, the speci�cations should be translated from our I/O
automata to a concrete formal language, i.e., a restricted syntax. Preservation of privacy properties
is also desirable; a general class (besides simulatability) is harder to de�ne, but we have sketches that
simple properties like non-interference are preserved.
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