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Abstract - This paper is concerned with aspects of complexity related to the multitude of information avail-
able today. We introduce the Self-Organizing Fractal Semantic Network, a model to handle complexity by
taking into account aspects of knowledge and thinking as well as self-organization. Its basic building blocks
and processes are described in detail, and Classification and Segmentation are identified as the fundamental
processes for driving a self-organizing network on a local scale. An example is given to illustrate the basic
concept, and further research directions are highlighted.
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INFORMATION AND SELF-ORGANIZING NETWORKS

In today’s globally networked world people are facing dramatically increasing complexity. Part of this
complexity is due to the rapidly growing amount of information that is becoming available online. Because
knowing more usually leads to better decisions than knowing less (even if the “less” seems clearer and more
definite), complex problems require a complex analysis [1], i.e. being aware of the multitude of relevant in-
formation available for the decision process, and being able to select the right pieces of information from
this multitude. Despite the fact that dealing with complexity is one of the strengths of the human mind, be-
cause of the current inflation of information there is a growing need for tools that intelligently assist people
in handling complexity.

Current research and state-of-the-art tools for handling complexity are concentrated around topics such as
searching and indexing, data mining, classification and clustering, summarization and information extrac-
tion, and case-based reasoning, among others. The underlying mathematical models come from disciplines
such as statistics, logic, and optimization theory. Depending on the complexity these methods achieve their
tasks with varying degree of success. In particular, search on the extremely complex Internet is still rather
unsatisfactory in many cases due to both low precision and low recall. This is not too surprising, as most
tools do not exploit the possibly most important aspect of the human mind when dealing with complexity,
the network-like structure of knowledge and thinking.

Network-based approaches [2] such as Neural Networks [3] and Semantic Networks [4,5] do concentrate
on this aspect. The theory of Neural Networks even attempts to re-invent the evolution of the brain (in a
rather short period of time). From a scientific point-of-view this is certainly an exciting approach. However,
we believe that Semantic Networks provide a more powerful approach for the development of tools that can
deal with the exploding complexity of today’s world, as they jump into this evolution on a higher semantic
level. In this case the evolving network does not have to re-invent human knowledge and thinking to the
extent that these can be built right into the network.

While the network-like structure of knowledge and thinking is one important aspect when dealing with
complexity, complexity theory (as originally developed in the biological sciences as a means of under-
standing how organic entities and communities form) also focuses on the aspect of self-organization. The
problem of self-organization itself is extremely complex because the number of causal factors and the de-
gree of interdependence between them is too great to permit the use of mechanistic prescriptive models to
solve it. Instead, self-organization of a complex system is driven on a small (local) scale by a collection of
(typically) relatively simple processes, the causal factors. The global outcome very much depends on these
local processes and the initial state of the system. Despite the fact that individual local processes are deter-
ministic the global outcome usually cannot be predicted because the system exhibits chaotic behavior due to
its non-linearity caused by the interdependence of its local processes [6].

When combining the ideas and theories about self-organization with the ideas and theories about knowl-
edge and thinking, that is, when dealing with a Self-Organizing Semantic Network, one can model complex
problems such as cognition and learning, which relate to the internal state of an entity, as well as the be-
havior of such entities in communities or collectives, which relate to the external state of the entities. How-
ever, in modeling this external state one really deals with Self-Organizing Semantic Networks on two dif-
ferent scales, the internal Self-Organizing Semantic Network of the community or collective, and the inter-
nal Self-Organizing Semantic Networks of the entities that make up the collective. This idea can be ex-
tended quite naturally to more than two scales. In fact, since most Semantic Networks typically have a hier-
archical structure, all Self-Organizing Semantic Networks actually consist of a number of smaller Self-
Organizing Semantic Networks across different scales.

If one wants to locally drive the self-organization of the network with a few simple processes that are the
same on all scales (such as in cellular automata [7]), then the network must look the same everywhere, so
that these processes can be applied at every location in the network. In other words, the Self-Organizing
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Semantic Network must be self-similar across all scales by being constructed out of a few fundamental
building blocks and construction principles. Mathematical objects that are self-similar across hierarchical
scales are called fractals, which is why we call the model described in this paper a Self-Organizing Fractal
Semantic Network.

DEFINITION OF A SELF-ORGANIZING FRACTAL SEMANTIC NETWORK

We begin with the basic definitions of semantic and hierarchical networks.

Definition 1: A Semantic Network is a directed or non-directed graph with the additional property that its
nodes and links carry semantic information. Nodes and links of a Semantic Network are called Semantic
Units. The semantic information provides a particular meaning for a Semantic Unit. Frequently, semantic
information is encoded in natural language, i.e. specific names or processes are used to label Semantic
Units.

Definition 2: A hierarchical network is a directed or non-directed graph with the additional property that
some of its links carry scaling information. This means that one of the nodes connected to a scaling link is
at a higher level of hierarchy than the other node.

It should be noted that this definition does not yield an absolute value for the level of hierarchy, i.e. it does
not assign to every node an integer that corresponds to its level of hierarchy. Instead it gives a relative defi-
nition for the level of hierarchy. While this approach is more general, it can cause conflicts because one can
have cycles (loops) of hierarchical links. This conflict exists only on a global scale and can be resolved if
one considers only local neighborhoods of the whole network at any one time. Local neighborhoods are in-
troduced by the notion of a topology.

Definition 3: A topological network is a directed or non-directed graph with the additional property that
for every node and every link one or several local neighborhoods are defined. The local neighborhoods of a
node or a link are sets consisting of this node or link and other nodes or links of the network.

In many cases topological networks are obtained by assigning a weight (a value between 0 and 1) to every
link of the network. The negative logarithm of this weight then yields a metric or distance function on the
network. The local neighborhoods are defined with the help of some threshold mechanism applied to this
metric. Every metric determines a topology, but the converse is not true; therefore, the above definition is
more general than the method of assigning weights.

In the special case of Semantic Networks it is often required that a Semantic Unit be used both as a node
and as a link. For example, a Semantic Unit labeled friendship can be viewed both as a node (“friendship is
in particular a relation”, here it is a node connected hierarchically to the node relation) and as a link
(“friendship between two people”, here it is a link between the two nodes representing the two people). This
gives rise to the following definition.

Definition 4: A higher-order network is a directed or non-directed graph in which links can at the same
time be nodes. This means that a link can connect two nodes, one node and one link, or two links.

In the next definition we capture what we mean by a fractal network. We will not give an exact mathe-
matical definition (for ideas on how to do this see [8,9]) but rather a working definition, which will suffice
for the scope of this paper. In particular, our formulation will allow us more easily to define the Self-
Organizing Fractal Semantic Network and to understand the example given in the last section. But this defi-
nition will not allow us to explore in more detail the fractal structure of the network. In particular, we will
not be able to give a definition for the fractal dimension, which, according to separate studies, seems to be
related to the more subjective quantity of complexity. This topic will be covered in a forthcoming paper.
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Definition 5: A fractal network is a hierarchical network with the additional property that all of its nodes
and links are derived from a small set of basic building blocks. In this sense a fractal network exhibits a
self-similar structure because it looks the same everywhere on all levels of hierarchy.

The following definition deals with the processes that perform the self-organization of the network.

Definition 6: A (locally) self-organizing network is a directed or non-directed graph with the additional
property that at least some of its nodes and links are connected to one or several (local) processes out of a
set of processes. A process is an algorithm that performs a transformation of the network, while a local
process is an algorithm that performs a transformation of the network only in the local neighborhood of the
node or link it is connected to. The (local) processes are triggered by the state of the node or link they are
connected to, which in turn is a function of the entire network.

For practical purposes the state of a node or link is often only a function of its local neighborhood. For ex-
ample, when dealing with Semantic Networks a Semantic Unit is often connected to attributes, and the val-
ues of these attributes determine the state of the Semantic Unit.

It is conceivable that the processes themselves form a hierarchical network. This is a topic under current in-
vestigation. The fundamental processes will be covered in Sections 4 and 5.

After making all of the above definitions we are now in the position to define a Self-Organizing Fractal
Semantic Network, our fundamental model that we use to study complexity problems.

Definition 7: A (Locally) Self-Organizing Fractal Semantic Network is a hierarchical, topological,
higher-order, fractal, (locally) self-organizing Semantic Network.

The following diagram shows a Self-Organizing Fractal Semantic Network. Nodes are depicted as
spheres, links as cylinders, and processes as Janus heads (see next section for details). The hierarchical
structure is clearly visible from the fact that nodes contain internal networks. Note too that some links are
nodes, as their cylinders have spheres in their center that connect them to other nodes or links.

Figure 1: A sample Self-Organizing
Fractal Semantic Network
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THE BASIC BUILDING BLOCKS

In the following sections we will define a set of basic building blocks and basic processes, which will be
used to construct Self-Organizing Fractal Semantic Networks. We will also look at mechanisms or functions
that determine the states of Semantic Units.

As specified in Definition 1, nodes and links of the network are called Semantic Units. All Semantic Units
are subdivided into concepts and instances as is usual [10]. We further subdivide nodes into Information
Units, Attribute Units, and Process Units or Janus Units. In our model we use the metaphor of a Janus [11]
(pl. Jani) for a process. In Roman mythology, Janus is a two-faced god looking in opposite directions, i.e.
taking into account a multitude of perspectives. This is exactly what a process in a fractal network does, if
one interprets the two directions as the internal, lower-scale and the external, higher-scale parts of the net-
work with respect to the Semantic Unit that the process is connected to. Information Units are general ele-
ments that can represent concepts or instances, and they are identified by specific names. Attribute Units are
identified by specific names and values, which can be set, retrieved, or computed.

All links of the network are either scaling or non-scaling. Standard inheritance principles [10] are defined
across all scaling links, making use of the network’s topology or neighborhood concept. Links are further
subdivided into Comparison Units, Interaction Units, Description Units, and Controller Units. Non-scaling
Comparison Units allow us to describe the degree of similarity or dissimilarity of two Semantic Units, while
scaling Comparison Units allow us to describe how close one Semantic Unit comes to being an instance of
another Semantic Unit, or how close one Semantic Unit comes to being a special case of another Semantic
Unit. Non-scaling Interaction Units allow us to describe the type of interaction of two Semantic Units, while
scaling Interaction Units allow us to describe the role one Semantic Unit plays as part of another Semantic
Unit. Description Units connect Semantic Units to their Attribute Units, which describe the Semantic Units
in more detail. Finally, Controller Units connect Semantic Units to their Janus Units, which in turn control
and act upon the Semantic Units’ local neighborhoods.

The following diagram shows how the basic building blocks are used to construct a network. Note that
each building block labeled “Semantic Unit” can be replaced with any basic building block. Information
Units do not appear in this diagram, as there is no restriction on their use. In practice most of the building
blocks labeled “Semantic Unit” are Information Units.
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Figure 2: The basic building blocks

In the Self-Organizing Fractal Semantic Network each Semantic Unit has a specific meaning, which it re-
ceives indirectly through its multitude of links to other Semantic Units. Thus, in our model meaning is de-
fined (and is definable) not in an absolute way, but only in a relative way, in accordance with Minsky’s
philosophy [12].

The state of a Semantic Unit is a (possibly complex) function of all Semantic Units of its local neighbor-
hood. A simple example for the state of a Semantic Unit is the state of usefulness of the Information Unit
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representing a soccer ball. The soccer ball’s local neighborhood with respect to the state of its usefulness
may consist of the Attribute Unit size and the Attribute Unit pressure, together with their respective values.
The state of the soccer ball’s usefulness can then be computed from the current values of its two Attribute
Units, preferably in terms of fuzzy set theory.

A more complex example is the mood state of a human being. Here clearly the Attribute Units describing
the human being, such as height and weight, among others, are not sufficient to describe his mood state.
Psychologists know that the whole context within which the human being lives affects his mood state. There
are many theories about what factors should and should not be taken into account when determining this
context, and what kind of influence each of these factors has on the mood state. In our model it is precisely
this context that makes up a human being’s local neighborhood with respect to his mood state, and it is pre-
cisely the kind of influence each of these factors has that determines the mood state function.

THE BASIC PROCESSES

This section will cover the basic processes that perform the self-organization task of the network on a lo-
cal scale. To motivate the choices for the basic processes in our Self-Organizing Fractal Semantic Network,
we continue with our examples from the last section.

It is important to note that there are Janus Units that influence the usefulness of the soccer ball, or the
mood state of the human being. Semantic Units that are in the local neighborhood of the soccer ball or the
human being typically control and trigger these Janus Units. If the soccer ball becomes useless because it
goes flat (caused by a Janus Unit), it may get thrown away (caused by another Janus Unit) and thus removed
from the network, and a new soccer ball may be purchased (caused by yet another Janus Unit) and thus a
new Information Unit representing the new soccer ball is created. As for the human being, he may identify
himself as the typical representative of a certain group, and may consequently join this group to improve his
mood state, or he may found a new interest group and invite others to join it. To this extent he may even ac-
quire new skills or knowledge.

These examples illustrate the basic processes required in our model. We have Janus Units that are able to
create new Semantic Units, to modify or destroy existing Semantic Units (and even themselves), to create
links between Semantic Units, to classify or identify Semantic Units as other Semantic Units, and to create
new groups or segments in the network. Other Janus Units must be able to set, retrieve, or compute values
of Attribute Units and to determine the states of Semantic Units. Finally, there are Janus Units that are able
to perform a learning task in the form of knowledge acquisition or restructuring.

As can be seen from the Janus Units described above, the processes carried out by Janus Units can range
from generic to specific, meaning that they use generic properties of the basic building blocks that make up
the self-similar structure of the network, or very specific properties of the local neighborhood of a certain
Semantic Unit, respectively. Therefore, some Janus Units can be connected to any Semantic Unit, while
others require the presence of particular Semantic Units in the local neighborhood of the Semantic Unit they
are connected to. Clearly the Janus Units that simply create, modify, or destroy Semantic Units (including
the ones that create links, as this is a special case of creating Semantic Units) perform very generic tasks.
Therefore, they can be connected to any Semantic Unit. However, they are usually not triggered directly but
rather invoked as parts of more complex processes such as Classification or Segmentation.

The Janus Units that perform the evaluation of Attribute Units’ values typically have a set of mathematical
tools at hand from areas such as fuzzy set theory, statistics, geometry, topology, and algebra, among others.
Therefore, these Janus Units are more specific as they can be applied to only Attribute Units whose values
satisfy certain type constraints. Finally, the Janus Units that determine the states of Semantic Units are even
more specific, as their processes might only be applicable to one or a small group of Semantic Units.
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In the next section we will discuss the processes of Classification and Segmentation in more detail, as they
are the fundamental drivers of the self-organization of the network.

CLASSIFICATION AND SEGMENTATION

The process of Classification stands for the common task of comparing one Semantic Unit to others. The
goal here is to find comparable Semantic Units in the sense that they are alike, can perform similar tasks,
have similar goals, are more general or more specific, are constituents or groups, or are in similar states,
among other things. Psychology tells us that this is a very important task as human beings are constantly in
search of their identities by comparing themselves to and (even more importantly) differentiating them-
selves from others. In our model the process of Classification is performed through extensive local neigh-
borhood analyses. This means that the degree of similarity of two Semantic Units is determined by the de-
gree of similarity of their local neighborhoods with respect to the above comparison factors. As with deter-
mining the status of a Semantic Unit, when comparing Semantic Units it is not enough to simply take into
account the values of the Attribute Units of these Semantic Units. Instead, the topology of the network, i.e.
the entire local neighborhood structures of the Semantic Units, must be considered. Therefore, the process
of Classification deals with the more general task of finding similar structures and not just similar values of
Attribute Units. Because of the self-similar structure of the network, this Classification process can be im-
plemented in a generic way, thus allowing the Janus Unit representing the Classification process to be used
throughout the entire network.

While Classification focuses on finding similar structures among Semantic Units, Segmentation focuses
on grouping Semantic Units according to similarities found during Classification. There are two main types
of groupings that our model deals with, corresponding to the two types of scaling links we defined, the
scaling Comparison Units and the scaling Interaction Units. These two types of groupings correspond to
again well-known results from psychological studies, people’s desire to categorize and organize information
and knowledge and people’s desire to form working groups to better achieve a common goal [13,14]. While
the categorization and organization of knowledge predominantly uses comparing and contrasting mecha-
nisms, working groups are formed according to skills and common goals. Here it is often the case that diver-
sity is more important than similarity, because working groups are often more successful if they consist of
group members with the right mix and variety of skills.

From a process point-of-view, the results of Classification processes determine and trigger Segmentation
processes. In particular, the Classification results determine which new links from Semantic Units to other
Semantic Units representing categories or groups should be created, and trigger the appropriate Segmenta-
tion processes that create these links. The Classification results also determine which new categories or
groups should be created or formed if a number of Semantic Units have been classified as being similar or
having a common goal and thus should be united/joined/combined/integrated in such new categories or
groups. The triggered Segmentation processes then create these new categories or groups and also create all
links to members of these categories or groups. Again, because of the self-similar structure of the network,
this Segmentation process can be implemented in a generic way, thus allowing the Janus Unit representing
the Segmentation process to be used throughout the entire network.

Finally the creation of new Semantic Units during the Segmentation process triggers a new Classification
process, this time based on the new network structure and topology. This sequence of Classification and
Segmentation, which continuously determines and changes the neighborhood structure and thus influences
the states of the Semantic Units, is the main driver of the self-organization of the network.
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AN EXAMPLE

In this section we illustrate how a Self-Organizing Fractal Semantic Network can be used to model a com-
plex economical and ecological society. Our model is derived from a real-world situation in a rural area in
southern Germany and is based on the following assumptions:

1. A number of farmers are running small agricultural firms. These firms are influenced by standard eco-
logical and economical factors.

2. Agricultural goods are traded on a market following standard market rules.
3. There is a dominant (almost monopolistic) market player, a consortium that purchases almost all agri-

cultural products and tries to dictate prices. The consortium performs certain refinement processes such
as making dairy products from milk or running a slaughterhouse.

4. Farmers have an internal knowledge about producing and selling agricultural goods. Some of the farm-
ers also have a good understanding of the economic situation in marketplaces.

5. The farmers as well as the consortium are connected to the marketplace. Each has a limited influence on
the marketplace, depending on their relative size and importance.

6. There are consumers of varying size, such as supermarket chains, butchers, stores, and individuals,
which purchase the refined agricultural products.

7. The goals of the farmers are to maximize their revenue and at the same time to minimize their workload.
Their states are determined by the degree of success or failure to achieve their goals.

8. The goals of the consortium are to maximize its revenue by minimizing the prices for agricultural prod-
ucts, while at the same time ensuring sufficient supply of goods.

When the network evolved out of a given initial state, because of the dominance of the consortium the
prices for agricultural goods dropped significantly, causing the farmers’ revenues to decrease substantially,
despite a similar or even higher workload. As a consequence the farmers’ states changed from satisfactory
to unsatisfactory, triggering their Classification Jani, which attempted a re-classification of the farmers
within the network, based on the new state of the network.

The result of the Classification process was that most farmers were in a similar state of dissatisfaction, so
that in the subsequent Segmentation process a new working group was created within which the farmers or-
ganized themselves and shared their knowledge. It was then this newly created working group that took over
the connection to the marketplace from its individual members. Because of its greater importance, according
to the implemented economic rules it could balance the pressure on the prices exercised by the consortium.
The prices went up again, giving the individual farmers a higher revenue and thus greater satisfaction.

One could imagine how this scenario might continue, given that the players have enough information and
knowledge at hand to adapt their strategies to the evolution of the network. However, the assumptions made
were too simplistic to expect this model to reach a final stable state. Studies based on more refined models
are currently under investigation.

CONCLUSIONS

We have shown that aspects of complexity can be modeled with Self-Organizing Fractal Semantic Net-
works, where generic processes drive the self-organization of the network on a local scale. Necessary re-
quirements of this model are the existence of a topology or neighborhood structure and the self-similarity of
the network on all scales of hierarchy. The two processes of Classification and Segmentation are funda-
mental in driving the self-organization of the network, and it appears that cognition and learning can be de-
rived from them. However, more research is necessary to precisely determine the nature of this relation.

Despite the fact that we have given some guidelines on how to extend the concept of fractals from geome-
try to topological hierarchical networks (Definition 5), the question of how to do this in strict mathematical
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terms is still open. If an answer could be obtained, then it would be interesting to study how the fractal di-
mension in this network is related to the subjective term of complexity, because this may shed some light on
driving mechanisms for learning.

Finally we would like to mention that we have applied the concept of a Self-Organizing Fractal Semantic
Network to the problems of Natural Language Understanding and Image Recognition. In these cases texts or
images were transformed into initial Input Networks. Structuring and connecting these Input Networks to
World Knowledge Networks with the help of the Classification and Segmentation methods described above
then accomplished the task of understanding these texts or images.
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