
RZ 3252 (# 932987) 07/03/2000
Computer Science/Mathematics 9 pages

Research Report

The IcorpMaker: A Dynamic Framework for Application-Service
Providers

Sean Rooney

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for
publication. It has been issued as a Research Report for early dissemination of its contents. In view of the trans-
fer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to
peer communications and specific requests. After outside publication, requests should be filled only by reprints
or legally obtained copies (e.g., payment of royalties.

Research
Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

The IcorpMaker: A Dynamic Framework for Application-Service
Providers

Sean Rooney
IBM Research, Zurich Research, 8803 Rüschlikon, Switzerland

email: sro@zurich.ibm.com

Abstract
Application Service Providers (ASP) simultaneously host the commercial activities of many clients.
The expectation is that the number of clients that a large ASP will support will increase by several
orders of magnitude as the market for service hosting expands. Being able to automate the process of
adding new clients and dynamically modifying the resource allocation of existing ones has obvious
advantages. However, before this can be achieved a set of significant technical problems needs to be
addressed in relation to the dynamic resource allocation across the ASP’s infrastructure. In such a
demanding environment ASPs cannot know the nature and constraints of all their clients’ commercial
activities. On the other-hand, clients should not be expected to know much about the infrastructure
upon which their activity is being hosted.

A framework the ICorpMaker is described which allows much of the intelligence for re-
source allocation within an ASP’s infrastructure to be delegated to the clients themselves, without
requiring clients to know precise details about that infrastructure. This allows client control software
to increase or decrease a client’s current resource allocation in response to client specific information.

1

1 INTRODUCTION

In an environment in which several different entities
are competing for resources, a given entity can be
sure of getting enough resources at a specific time if
either resources are so plentiful as to exceed maxi-
mum possible demand or that entity can reserve re-
sources usage in advance. The former is simpler, but
more wasteful, where waste is defined as the amount
of unused resources over a given period.

A company leasing infrastructure to third parties
in order to support some commercial activity is often
termed an Application Service Provider (ASP). ASPs
must decide if it is sufficient to simply make resources
plentiful in order to address the contention problem or
whether some reservation mechanism is required.
There is no general reply to this question as it depends
both on how much resources cost and how much
clients are willing to pay; however, clearly an ASP
that can offer the same service to a client at a lower
cost (due to the fact that the ASP suffers less waste
and therefore requires less infrastructure) has a com-
petitive advantage.

Our assumption is that ASPs will choose to par-
tition the infrastructure between clients in order to
give them resource guarantees. We further assume
that the number of clients a large ASP will be re-
quired to support is such that the process of introduc-
ing new clients must be almost entirely automated.
This leads us to conclude that, in the long run, ASP’s
infrastructure must allow clients to specify what re-
sources they want and allow them to change their
allocation over time dynamically.

One approach would be to require clients to
specify exactly how much low-level resource they
require, e.g. bandwidth, router buffer, server CPU
cycles, etc. In order to determine the correct alloca-
tion for a desired system behavior, clients would need
to have an extremely detailed knowledge of both the
nature of the ASP equipment and the topology of their
network; in general such information is not available
to clients and making it so would render the infra-
structure difficult to evolve. Moreover, even if one
knows the precise capacities of all the equipment and
the different technologies used to support QoS guar-
antees, it is still not easy to predict the end-to-end
behavior of an application knowing only the low-level
resources allocated to it on that equipment. Another
approach is to label some predefined resource alloca-
tions, e.g., gold, silver, bronze, and allow clients to
choose the required level of service. However, neither
the client nor the ASP has any way of knowing
whether the chosen level of service is adequate for the
client’s needs or whether it will remain so as those
needs vary over time. As the number of clients that an
ASP supports grows the likelihood that all or most of

them will be satisfied with a small fixed set of prepre-
pared allocations diminishes.

An allocation does not have to be initially cor-
rect if it can be adjusted in a controlled way such that
it enables client applications to behave as required.
This allows an adequate resource allocation at a satis-
factory cost to be found at the start of the applications
execution and for this resource allocation to be modi-
fied over time as a function of changing circum-
stances. However, only clients know what words such
as ‘required’, ‘adequate’, ‘appropriate’ and ‘changing
circumstances’ mean when applied to their applica-
tions. An analogy can be drawn with a thermostat
controlling the temperature of a house, the client does
not have to know in advance what temperature they
want the house to be, only that when it is too cold it
can be made warmer and vice versa.

This paper proposes a new approach for allo-
cating resources within an ASP’s infrastructure based
on delegating much of the intelligence for resource
allocation from the ASP to the clients. Clients can
then take into account their client-specific knowledge
in order to obtain the required level of service without
requiring them to have a detailed knowledge of the
nature of the physical infrastructure. Achieving this
type of delegation requires a means of dynamically
and safely creating and modifying resource alloca-
tions on both networks and servers; the enabling
ICorpMaker framework therefore encompasses
them both.

First the issues involved in resource allocation
within an ASP’s infrastructure are considered. Then
the ICorpMaker is explained through a description
of a working implementation.

2 RESOURCE ALLOCATION

In this paper, content owners purchasing infrastruc-
ture from an ASP are termed clients, while the popu-
lation that then avails itself of that hosted content are
called users. An ASP hosting services on behalf of
clients typically owns a set of servers and network.
The network (or networks) interconnects the servers
both with each other and with the entry points through
which customers access those servers. Server and
network resource allocation must be coordinated in
order to give clients meaningful guarantees, for ex-
ample, increasing the bandwidth available to users
connected to a server may not improve the efficiency
with which they obtain information from that server, if
it were already overloaded.

This section describes the nature of resource al-
location within an ASP’s network and servers. It
outlines the mechanism that allows this allocation to
be coordinated and then describes how the control of
this mechanism can be delegated to clients such that

2

they make use of client-specific knowledge in order to
optimize their resource usage.

2.1 Network Resource Allocation

Although at any given time the network may be under
used, the times when diverse clients need resources
are likely to be tightly correlated. For example, differ-
ent clients offering an internet-based stock trading
service are all likely to experience increased activity
at about the same time. The traffic carried over the
ASPs network is therefore likely to be very bursty and
some resource allocation/charging mechanism must
be used to determine which traffic is carried and
which dropped when the required capacity exceeds
the actual one.

Network resource allocation can be achieved at
different levels of granularity, for example an ATM
virtual connection permits a single flow to be
allocated a very precise resource guarantee, while
within the IP Differentiated Service architecture [1] a
coarser guarantee is given for an aggregated set of
users.

Figure 1 Virtual network.

Clients purchase network resources from ASPs
in order to obtain guarantees for the traffic carried to
and from multiple access points in the ASP network
to multiple servers. The network resource allocation
can be thought of as a virtual network. Figure 1 shows
a schema of a virtual network, supported over an ASP
infrastructure, which interconnects three physical
servers with two edge routers and some users directly
connected to the ASP’s network. The virtual network
appears to the client as a dedicated physical network.
Many frameworks have been proposed for supporting
virtual networks [2–4].

The virtual network abstraction is independent
of the technology used to actually support it, e.g., a
guaranteed connection rate of 10 Megabytes between
A, B and C is independent of whether, this is achieved
using an ATM virtual circuit, IEEE 802.1q Ethernet
VLAN [5] or an MPLS tunnel [6]. Just as an IP net-

work is supported over multiple different layer-2
networks, so should a virtual network be supportable
over multiple different resource allocation mecha-
nisms. This fact is obscured in the literature because
the goal the privileging of certain user traffic by
segregating it from other traffic is tightly bound to
the means of achieving it, e.g., the differentiation of
traffic at routers based on the bits in the type of serv-
ice field of the IP packet.

A virtual network (VN) can be created with
minimum assumptions about the underlying technol-
ogy through a distinct control plane, in which control
messages are carried between network elements and
in which the mapping between the abstract notion of
the VN and the actual underlying technology is carried
out. This single abstraction allows the very different
semantics of QoS present in, for example, ATM,
Ethernet [5] and differentiated service [1] to be han-
dled within a single coherent framework. Section 3
explains how the VN abstraction is supported within
the ICorpMaker.

2.2 Server Resource Allocation

ASPs run applications on behalf of third parties.
These can either be standard applications, e.g., an
http daemon distributing client supplied content, or a
client supplied application, for example, a new dis-
tributed game server. A server’s resources are parti-
tioned so that malicious clients may not deny service
to other clients of the same server by consuming a
surfeit of those resources.

Common operating systems such as Window’s
NT and the various flavors of Unix are designed with
the principle that tasks can only be started by trusted
users and that they are in general well behaved. Al-
lowing foreign users to start arbitrary tasks on the
server means that this assumption no longer holds and
additional mechanisms must be found. Three ap-
proaches can be distinguished:
• extending existing operating systems [7];
• building new operating systems appropriate for

running foreign code [8];
• running multiple instances of operating systems

on the same physical server [9].
Our assumption is that a sufficiently large ASP

will have a mix of different types of servers with
potentially different means of ensuring the secure
resource-constrained execution of third-party code;
either a mix of different types of servers will be cho-
sen for use in different circumstances, or an initially
uniform infrastructure will become heterogeneous as
parts of the system are enhanced while other legacy
parts are retained.

The situation is then analogous with that of the
network described in Section 2.1: the different means
of achieving server partitioning also needs to be en-

3

capsulated in a unifying abstraction independent of
the precise mechanisms being used. The obvious term
for such an abstraction is a virtual server, however
this term is already widely used in the literature with a
variety of different meanings. As it is our intention to
make use of the existing solutions of server partition-
ing within the framework, to avoid confusion a new
term is introduced: an Instant Server (IS). An IS is
defined as a set of Instant Server Chunks (ISC),
where each ISC is some partition of a physical server.
If a server possesses no partitioning mechanism then
the entire server is one single invariant ISC.

Within the framework client’s applications are
run on one or more ISC. The client’s ISCs and the
access points of the ASP network are interconnected
by a client-owned VN. IS Proxies are run at the ac-
cess points in order to determine which ISC should
support a given end-user request. Figure 2 shows a
schema of an instant server supported by an ASP’s
infrastructure, in which three ISCs are interconnected
with each other and with two IS Proxies over a VN.

It is convenient to couple the notion of a client’s
server partitions and the network partition that inter-
connects them into a single concept: the Instant Cor-
poration or ICorp for short. The framework called
the ICorpMaker supports the dynamic creation of
ICorps on behalf of clients across an ASP’s physical
infrastructure.

Figure 2 Instant server.

At the start of operation, clients are allocated an
ICorp containing one or more ISC and a VN,
which connect them to the edges of the ASP’s net-
work. The client does not know how the ASP supports
the resource allocation, where within the ASP’s infra-
structure it has been allocated resources, or even how
much resource it has been allocated. Yet a client may
still adjust the resource allocation as a function of its
needs; the next section explains how.

2.3 Client-Delegated Control in the ICorpMaker

The coupling of server and network partitions into a
single abstraction and creating an infrastructure that
permits the creation of such entities, does not in itself
solve the problem of how clients can specify their
precise resource needs to the ASP. It is difficult for
an ASP to refine something as vague as client satis-
faction onto the concrete notion of buffer space allo-
cated on switches, scheduling priorities on servers,
etc., as it requires a very detailed knowledge of the
client’s activity and constraints.

Clients themselves are perfectly placed to know
both their activity, their priorities and the required
level of satisfaction. It makes sense therefore to dele-
gate the activity of defining the resources the clients
needs from the ASP to the clients themselves. Al-
though the exact nature of the resources allocated to a
client is hidden from it, a client knows when it does
not have enough resources because the client’s appli-
cations simply do not perform in a satisfactory way.
Conversely a client can recognize that potentially it
has a surplus of resources when its applications are
idle.

Within the ICorpMaker, the ASP puts at the
client disposal through a simple API, the means to
increase or decrease the client’s resource allocation.
The decision as to how often and under what condi-
tions to perform these operations is up to the client.
This allows the client to take into account client-
specific knowledge about the nature of the application
in order to optimize resource allocation. For example,
clients may expand their resource allocation if the
service they are offering is more popular than they
initially supposed and that revenue would be lost if
the capacity were not increased.

Human clients can login into their physical
server partitions, manually check the usage patterns
and modify their resource allocation accordingly.
More interestingly, as the infrastructure allows the
safe execution of client application code within the
context of an ISC, it can also safely run client control
software. In order to make the process more dynamic,
the necessary intelligence can be added to the soft-
ware of the ISC itself. The ability to adjust the parti-
tion size is delegated to a dedicated separate process
monitoring the set of tasks running on the same server
partition; how often and under what circumstances it
attempts to perform an adjustment is decided by the
client. Commercial software, e.g. transaction proc-
essing, often maintain performance statistics. This
information can be used by a monitoring task capable
of taking advantage of the elastic nature of the envi-
ronment. Figure 3 shows a schema of how control is
delegated to clients within the ICorpMaker.

4

Figure 3 Client-delegated control.

Clients would expand their resource allocation
to the maximum allowed one, unless there is some
good reason for them not to. A pricing system is
needed such that the cost to clients is some function of
the resources they consume. Moreover, each time a
client ‘turns up’ or ‘turns down’ the resource usage,
they must be informed of the new charge. This paper
does not consider pricing models, but assumes that
reasonable models, encouraging the required behavior
can be readily implemented within the ICorp-
Maker; [10] is one candidate charging model.

Clients who do not wish to dynamically change
their ICorp need not, and may either simply manu-
ally perform the adjustments from time-to-time, or
trust the ASP to do so. However, assuming such a
system became widely accepted with a well defined
interface, then one might expect software houses to
write either dedicated software (for specific important
clients) or general purpose software (that satisfy a
large class of clients), which optimize their resource
usage. Clients know which software is best as it is that
which produces the smallest bill while performing the
same service.

ASPs do not have to define complex service
level agreements with clients nor offer the means for
clients to observe that those agreements are being
respected. Within the limits of the underlying physical
structure clients can always grow their resource allo-
cation until their applications behave satisfactorily.
The only monitoring the clients perform is on their
own applications whose expected behavior they
should understand. In times of severe contention for
resources, ASPs can use charging as a means of forc-
ing their clients to back off.

This section has described how a flexible archi-
tecture in which the control of resource allocation can
be delegated from ASPs to clients, would allow cli-
ents to take into advantage client-specific knowledge
in order to optimize their resource usage. The next

section describes how the ICorpMaker achieves
this through a description of its architecture and
implementation.

3 ICorpMaker ARCHITECTURE

3.1 Supporting ICorps over Multiple Technologies

Each configurable element within the ICorpMaker
is managed by a software controller (ICorpCon-
troller) running on or near the element. The set of
controllers constitutes the ICorp control plane
within which ICorp enabled elements exchange
control messages, for example in order to initiate the
creation of an ICorp.

ICorps are supported over multiple different
network and server technologies. Networks elements
must distinguish between different ICorp traffics in
order to forward it with the appropriate resource allo-
cation to the appropriate servers. ICorp packets need
to be labeled in some way in order that the network
elements make the appropriate forwarding decisions.
A packet label can be something
• implicit, e.g., an IP source address,
• explicit, e.g., an MPLS label [6],
• present only at the IP layer or also usable by

layer-2 devices such as Ethernet and ATM,
• that is significant for the network as whole, e.g., a

VLAN identifier, or
• has only local significance, e.g., an ATM VCI.

Explicit labels can be used exclusively for the purpose
of identifying the ICorp to which traffic belongs, but
require changing formats of well established data
units (or creating new encapsulation for them) with all
the inherent problems.

The ICorpMaker uses implicit labeling; no
changes are required in the format of data units and
no modification of the forwarding function of the
nodes is required. The Internet protocol suite is
sometimes described in terms of an hour glass shape:
many different protocols exist above and below the IP
layer, but are unified at the IP layer. Although in
theory layer-2 protocols should be oblivious to IP
addressing, in practice they are often IP-aware. For
example an Ethernet switch may limit a broadcast to a
VLAN containing only hosts within a given IP subnet.
It achieves this by maintaining a MAC address/IP
address mapping obtained by sniffing ARP requests
and replies. Policy can be used to enhance the IP
address/Physical Address resolution, for example, a
given set of IP addresses are resolved to both an
Ethernet MAC address and a specific VLAN priority
tag.

Within the ASP’s network the ICorp is sup-
ported by one or more dynamically created private IP

5

subnetworks [11], a private IP network address is one
which is meaningful only within a given domain and
is never exchanged across domain boundaries. Net-
work Address Translators can perform the conversion
from public to private IP addresses (and vice versa) at
network boundaries. Each Instant Server Chunk
(ISC) within the ICorp is allocated a dedicated
private IP address. Network elements identify the
packets of an ICorp based on their source and desti-
nation address, other additional information may be
taken into account, e.g., IPv4 TOS bits, if the network
element is capable of making use of it.

Figure 4 Example of adaptors.

During the creation of the private IP subnets the
high level description of the network resources re-
quired by the client are mapped on to the appropriate
underlying technology. Figure 4 shows an example of
two adaptors for ATM and Ethernet switches. The
initial allocation can be one chosen from a small set
of predefined allocations, but, as Section 3.4 demon-
strates, this can be refined by clients during the life-
time of the ICorp. Both layer-2 and layer-3 devices
can offer support in regard to supporting network
resource partitioning. For example an IP router might
support diff-serv priority based queuing on bits in the
IP header, an IEEE 802.1q [5] enabled Ethernet
switch priority switching based on frame tags, and an
ATM switch continuous bit rate [12] cell forwarding
based on the virtual circuit identifier. In order to be as
general as possible the infrastructure supporting the
virtual networks should be able to handle different
technologies.

The principle adopted is that the underlying
node should try to do as much as it can to support the
virtual network, but its exact behavior is a function of
the technology and the precise capabilities of the
element. This is called the low-expectations principle.
It is only by adopting such a weak semantic that a
wide variety of technology can be coordinated within
the same framework. The ICorp control plane guar-
antees connectivity for the traffic of the ICorp, but

gives no precise guarantee as to how the associated
policies are enforced. The behavior of the ICorp
control plane may be thought of as a type of ‘best-
effort policy support’. In some cases the element will
not be able to do anything at all. For example, legacy
IP routers do not support anything in the way of serv-
ice differentiation even in such cases, however, it is
still useful to know the policy that the node is ex-
pected to support, regardless of whether it is enforce-
able.

3.2 Patterns of Communication in ICorp Creation

Clients communicate with a gatekeeper entity
through a simple Web interface in order to specify
their needs. The initial resource allocation is simply
chosen from a small set of predefined values and
clients can refine this over the lifetime of the ICorp.
The gatekeeper uses the client description and its
knowledge of the current state of the ASP's infra-
structure to create an ICorpContract containing a
description of the resources that the ICorp needs.
Part of this description is the set of end-
points servers and access routers that need to
participate in the ICorp.

The protocol used for carrying ICorp control
messages within the ASP infrastructure is RSVP [13]
extended in ways to make it more adequate for the
dynamic creation of ICorp. To avoid confusion, this
variant of RSVP is termed RSVP-ICorp.

An RSVP-ICorp daemon is run as part of the
ICorpController. In order to allow RSVP-
ICorp messages to be propagated to both layer-2
network nodes and routers, the forwarding function of
the daemon is a function of the nature of the device it
controls. Routers use their routing tables in order to
identify the next router to forward a message to reach
a given host. They use physical topology information
to determine which is the next layer-2 hop to take
them to that router, the message is then forwarded to
that layer-2 entity with the next router as subtarget.

The RSVP-ICorp daemon of layer-2 entities
uses physical topology information to find the next
hop to reach the subtarget rather than the end-point,
e.g. an Ethernet switch determines the next Ethernet
switch to cross to get to an IP router. The view of the
physical network that an ICorpController has is
restricted to the boundaries of the set of layer-2 tech-
nologies to which it is attached. For implementation
purposes a simple Ethernet discovery system has been
created based on each Ethernet ICorpController
registering its port/MAC association with a central
entity and that entity correlating the information to
obtain the view of the entire Ethernet. This method
could easily be replaced by appropriate layer-2 dis-
covery mechanisms if available in the environment.

6

Figure 5 VN creation using RSVP messages.

If a layer-2 network element is not discovered
then it is transparent to the control path and no RSVP-
ICorp message is forwarded to it. Data for the
ICorp can still cross that network element, but no
guarantee can be enforced on it. This is simply an-
other application of the low-expectations principle
mentioned in Section 3.1. Figure 5 shows the pattern
of communication for creating a VN between two
end-points H1, H2, interconnected at the IP layer by a
router R1 and at layer 2 across three switches S1, S2
and S3. The gatekeeper chooses one of the end-
points as the emitter of RSVP-ICorp path messages,
these messages are propagated to all the others end-
points. The ICorpContract is included in the
RSVP-ICorp path message.

The RSVP-ICorp forward path messages re-
serve resources on the network elements and the res-
ervation messages actually commit them in the net-
work element. An ICorpController that receives
an RSVP-ICorp path message, examines the con-
tract to determine if it can support the contract and if
so reserves the required resources. A given
ICorpController can add state to the
ICorpContract, which may or may not be
meaningful to the next hop. For example, on an ATM
switch the description of the created virtual connec-
tion is added so that the next hop can make use of it to
create the entire virtual circuit.

If it is the ICorpController of a network
node it then forwards the message to the next
ICorpController upstream. If it is the
ICorpController of a server specified in the
contract and it is willing to support the ICorp it
creates an ISC and it replies by sending RSVP-
ICorp reservation messages upstream. An ICorp-
Controller receiving a first reservation message
for a given ICorp maps the resource reserved for
that ICorp on the appropriate representation for that
element. The ultimate receptor of all the RSVP-
ICorp reservation messages coming from the other

end-points in the ICorp is the IS Proxy resident on
the initiating access router. This proxy is termed the
leader proxy.

Figure 6 Optimizing the virtual network topology.

Implicitly a tree shaped VN is created with the
initiator as the root of the VN and the others end-
points as leaves. Although reachability is guaranteed,
the route taken may be extremely inefficient, i.e., all
communication between leaves must travel across
their nearest common ancestor in the VN tree. The
path message that a host receives contains the
ICorpContract, therefore the receiving host has
access to the complete set of other hosts participating
in the virtual network. An end-point can make a local
decision if there is a better route between itself and
one or more of the other non-senders nodes and can
start sending out path messages for the same contract.
The ICorpController does not forward
ICorpContracts over interfaces to which they are
already supported; normal routing will ensure that the
better route to the other hosts are included as part of
the virtual network. Figure 6 shows a VN created
using RSVP between four end-points H1, H2, H3 and
H4. In the initial phase, H3 and H4 have R1 as nearest
common ancestor. However, H3 recognizes that there
is a better route to H4 and performs a ‘cut through’. In
summary, a tree is created and then if better paths
between the leaves exist, the leaves are joined in order
to make a graph.

The ICorpMaker uses a soft state reservation
model, the resource reservation for a client over a
physical element must periodically be renewed or the
resources on that element for that ICorp are re-
leased.

3.3 End-User Access to ICorp

At the end of a successful creation process, Instant
Server Chunks (ISCs) running appropriate applica-
tions have been started on one or more of the physical
servers and a virtual network has been created which
interconnects these ISCs with the edge routers across
which end-users will access these applications.

7

An IS Proxy creates the illusion that the set of
server partitions is a single server. IS Proxies are
started at access routers which receive RSVP-ICorp
path messages. The IS Proxy knows from the con-
tract the addresses of the ISCs and can perform TCP
forwarding to them. IS Proxies by default perform a
simple round-robin load balancing.

After the gatekeeper has successfully cre-
ated the ICorp it dynamically updates one or more
DNS servers, such that the DNS entry of the client
ICorp resolves to the address of a router hosting an
IS Proxy.

3.4 Client-Delegated Resource Allocation

An ISC not achieving the required performance be-
cause of insufficient resources can use information
available locally to determine whether the congestion
is local or remote, for example: the size of the TCP
congestion window; the CPU occupancies of its proc-
ess. Having identified a problem, the ISC will ask for
an increase in resources within the reservation refresh
message, giving some indication of the type of re-
sources that need to be augmented, for example server
memory, network bandwidth. The ICorpControl-
lers on the elements across which this message
passes will attempt to achieve the increase if possible.
For example, the ICorpController on the server
at which an ISC is asking for more CPU cycles, will
attempt to allocate more processing power to that
ISC. A reservation message carrying a request for
more network capacity will be carried from the server
to the edge routers and each of the network elements
will attempt to readjust the capacity allocated to the
corresponding VN. If the adjustment is insufficient
then in the next iteration the ISC will send a reserva-
tion message asking for a further increase in the ca-
pacity.

The leader IS Proxy resident on the initiating
access router periodically receives the RSVP-ICorp
reservation messages sent by all the other end-points.
It correlates this in order to make load-balancing
decisions. The correlated information is then dis-
patched to all the other end-points, as part of the field
of the RSVP path message. This allows other IS
Proxies to adjust their behavior. The cost of an in-
creased resource allocation to a client is also carried
back to the ISC by sending an updated RSVP-ICorp
path message. It is possible that an increase is not
possible as the physical limits of the device have been
reached. The leader IS Proxy recognizes this situa-
tion after having received the same reservation mes-
sage requesting resource increase a certain number of
times. If it is a request for increased server resources
that cannot be met at the physical server, then the IS
Proxy can request the gatekeeper for another
candidate physical server and augment the ICorp to

include another ISC at that server. If networks re-
sources are the bottleneck, then the Proxy can attempt
to reconfigure the network, for example by moving
the location of the ISCs, adding new access points
etc.

Section 3.1 described how the mapping between
the abstract notion of a resource allocation and the
actual underlying technology is achieved through an
adaptor layer. The client’s request for more of a re-
source is also dependent on the nature of the element
and is also passed through the adaptor. The size of the
increments and decrements that the adaptors use is set
by management. Elements may not react to a user
request for more resource either because: they are at
full capacity all ready; the technology does not sup-
port partitioning or does not support modifying a
partition dynamically; they do not control that re-
source, e.g., the reservation message carrying the
request for more servers cycles is ignored by the
ICorpController of an ATM switch, which
simply forwards it on. If a client is continuously and
unsuccessfully asking for more resources the leader
IS Proxy will try to reconfigure the entire ICorp
and notify a management system.

Reference [14] proposes a Network Element
Control Protocol (NECP) to enable a physical server
to indicate to a router that it is congested demonstrat-
ing the need for collaboration between servers and
networks in order to optimize overall system perform-
ance. The framework described here extends an ex-
isting protocol— RSVP— , allows partitions of serv-
ers to both signal the need for more network and
server resources and have the infrastructure take that
demand into account, all within a single coherent
system. The entity best capable of identifying a con-
gestion problem, the application, is also that which
initiates the allocation of more resources. How the
application identifies a problem and reacts to it, is up
to the application itself, existing mechanisms such as
TCP congestion control fit naturally into the scheme,
e.g. after a certain number of ACKs have been long
lost, increase the capacity of the VN. Clients do not
need to know precise details about how resources are
allocated, only that they need more, or can do with
less.

4 ICorp IMPLEMENTATION

This section complements the description of the
ICorpMaker given in previous sections, by out-
lining how ICorps are created in our test network.

4.1 Implementation of the Virtual Network

The test network is arranged such that there are two
Ethernet islands interconnected via ATM. Each
Ethernet island contains a small number of 100 MB/s

8

Ethernet switches (e.g., IBM8277, IBM8371) and are
connected to the ATM network via AIX workstations
acting as routers. Attached to one of the Ethernet
islands are a collection of servers running Linux and
Windows NT, whereas attached to other are a set of
access routers (Cisco 3600’s) through which clients
on the public network access those servers.

While the concept of a VLAN is available on
most Ethernet switches, their precise realization are
vendor and even switch specific. Therefore coordi-
nating the action of VLANs across different vendors
switches is problematic. However, most implementa-
tions support the concept of an IP-based VLAN, i.e.
one in which the traffic associated with a given IP
subnet is automatically associated with a given
VLAN. Using IP addressing as the means of labeling
ICorp traffic and IP-based VLANs as the means of
differentiating between them permits different vendor
VLAN implementations to have a common under-
standing about how traffic for a given ICorp should
be treated. The ICorp control plane allows the crea-
tion of the VLAN to be coordinated in this heteroge-
neous environment without requiring switches to
speak each others’ proprietary VLAN control proto-
cols. For switches that support IEEE 802.1q the
VLAN is given an appropriate priority, allowing
traffic belonging to high priority ICorps to be privi-
leged over lower ones at those switches.

On the AIX 4.3 router, the routing tables are up-
dated such that the routers forward packets on the new
private IP subnets. The routes to the new private sub-
nets must be via the same physical interfaces as the
corresponding public ones as they are simply an
overlay. A set of permanent virtual circuits (PVCs)
each with a different traffic class interconnects the
two AIX boxes across the ATM network. The router
chooses an appropriate PVC for the demanded service
level, in order to forward traffic to the remote router.
No controller is run for our ATM switches as this is
part of the production network and experimental sys-
tems are not allowed to change the state of production
switches.

Typically a client’s VN within our testbed will
be supported as two private IP subnets each of which
is supported by a single VLAN. One of the VLAN
interconnects all the appropriate servers with the AIX
router linked to the ATM network. The other VLAN
connects the homologue AIX router to all the access
routers. The two AIX routers are updated such that
traffic exchanged between these two private IP sub-
nets is carried over an appropriate ATM PVC. A
client’s request for more network resources gets
translated into an attempt to change the PVC over
which their traffic is carried to one with a larger ca-
pacity.

The intention is to use pricing to force clients to
back-off when requested capacity starts approaching

actual capacity; the client’s ICorp time interval cost
being carried within the RSVP-ICorp Path-Message.
Note that whereas clients can always ask for more
resources, the infrastructure does not guarantee that
they will get them. Initially the infrastructure tries to
increase the amount of capacity of the ICorp without
changing its shape. If the capacity cannot be increased
in the appropriate way on the actual ICorp and the
client’s requests continue, then the system attempts to
change the shape of the ICorp to satisfy the demand.
The time scales on which RSVP-ICorp refresh mes-
sages (and consequently resource modification re-
quests) are sent and acted on are of great importance
to the performance of the system. On-going work is
trying to obtain a best understanding of the issues
through detailed performance analyses.

4.2 Implementation of the Instant Server Chunks

Within the current implementation, ISCs are imple-
mented using commercial software, VMWare [9],
which allows the execution of one operating system
within another. This resident operating system is
called the host OS, whreas those that execute within
the VMWare framework are called guest OSs. Guest
OSs have their own IP and MAC layer addresses, the
host OS acting as a bridge on their behalf. An ISC
corresponds to a single guest Linux OS, started when
a request for an ICorp creation is received. The
Linux boot process is modified such that an ISC
controller daemon is executed before the login shell is
started. This daemon starts the necessary binaries on
behalf of the client, either well known within the OS,
e.g., ftp server, or client supplied (identified by the
URL where the binary is to be obtained). Client bina-
ries may cause their own guest OS to fail, but cannot
hinder those of other clients or the host OS itself. The
guest OS appears as a process within the host OS and
within a Unix system can be allocated a priority. The
guest OS’s hard disk, is a file resident within the host
OS whose size can be set by the host OS. The guest
OS by default is set to a low priority with a small disk.
The ISC running on it sends out reservation messages
to the ICorpController on the host OS. A sim-
ple monitor program checks the resource usage of the
guest OS, if CPU usage exceeds a certain threshold
for a period of time, then the ICorpController
can increase the priority of the guest OS process.

Figure 7 shows the sequence of events at a
server in order to instantiate an ISC. (1) an RSVP-
ICorp path message is received from the
ICorpController at the egress network element.
The ICorpController uses the contract in the
message to create the context in which VMWare is
executed. (2) The VMWare implemented ISC is
started; the last step of the guest OS boot process is
the starting of an ISC controller, this controller starts

9

the client applications, and replies to the
ICorpController with an RSVP-ICorp reser-
vation message (4). The ICorpController then
returns the reservation message to the controller on
the connected network element (4).

Figure 7 Implementation of VN.

Current work is looking at using other parti-
tioning mechanisms, for example [7], to support
ISCs.

5 CONCLUSION

Defining the amount of network and server resources
that a client requires from an ASP to perform a given
activity is problematic: in general, clients cannot be
expected to know details about the ASP’s infrastruc-
ture, nor ASPs the nature of the client’s activity. A
dynamic framework has been presented which using
suitable abstractions and protocols allows the task of
resource allocation to be delegated from the ASP to
the client themselves. Clients may request an increase
or decrease in the size of the resource allocated as a
function of the desired application behavior and the
amount of money they are prepared to spend, but
without requiring a detailed knowledge of the under-
lying technology. Clients do not have to be able to
define their precise requirements a priori and the
framework allows clients to vary their resource allo-
cation dynamically over time as circumstances
change.

REFERENCES

[1] D. Black, S. Blake, M. Carlson, E. Davies, Z.
Wang, and W. Weiss, “An Architecture for Dif-
ferentiated Service,” Internet RFC 2475, May
1998.

[2] B. Glesson, J. Heinanen, G. Armitage, and A.
Malis, “A Framework for IP Based Virtual Private
Networks,”' February 2000.

[3] S. Fotedar, M. Gerla, P. Crocetti, and L. Fratta,
“ATM Virtual Private Networks,” Communica-
tions of the ACM 38, pp.101-109, 1995.

[4] D. Jamieson, B. Jamoussi, G. Wright, and P.
Beaubien, “MPLS VPN Architecture,” draft-
jamieson-mpls-vpn-00.txt, August 1998. Work in
progress.

[5] IEEE/ISO/IEC, “Virtual Bridged Local Area Net-
works,” ISO Publication, July 1998. Draft Stan-
dard: IEEE Standard for Local and Metropolitian
Area Networks, P802.1Q/D11.

[6] E. Rosen, A. Viswanathan, and R. Callon, “A
Proposed Architecture for MPLS,” draft-ietf-mpls-
arch-06.txt, August 1999.

[7] Ensim, “ServerXChange, A Complete Service
Deployment Platform,” Technical White Paper,
October 1999.

[8] D. Reed, I. Pratt, P. Menage, S. Early, and N.
Stratford, “Xenoserver; Accounted execution of
untrusted code,” in Proceedings of Hot Topics in
Operating Systems, 1999.

[9] VMWare, “Getting Started Guide, VMWare 2.0
for Linux,” VMWare Technical Support, January
2000.

[10] P. Key, D. McAuley, and P. Barham, “Con-
gestion Pricing for Congestion Avoidance,” Mi-
crosoft Res. Techn. Rep. MSR-TR-99-15, Feb.
1999.

[11] Y. Rekhter, B. Moskowitz, D. Karrenberg, G.
de Groot, and E. Lear, “Address Allocation for
Private Internets,” RFC 1918, February 1996.

[12] S.S. Sathaye, “ATM Forum Traffic Management
Specification Version 4.0,” in ATM Forum Tech-
nical Committee, Contribution 95-0013, 1995.

[13] L. Zhang, S. Deering, D. Estrin, S. Shenker,
and D. Zappala, “RSVP: A new resource Re-
SerVation Protocol,” IEEE Network 7, pp. 8-18,
September 1993.

[14] A. Cerpa et al., “NECP, the Network Element
Control Protocol,” Internet Draft, February 2000.

