
RZ 3253 (# 93299) 06/26/00
Computer Science 45 pages

Research Report

Integration of Host-based Intrusion Detection Systems into

the Tivoli Enterprise Console

Christian Gigandet

IBM Research
Zurich Research Laboratory
8803 R�uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside publication,
requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research

Almaden � Austin � Beijing � Delhi � Haifa � T.J. Watson � Tokyo � Zurich

Integration of Host-based Intrusion Detection Systems into the Tivoli

Enterprise Console

Christian Gigandet

IBM Research, Zurich Research Laboratory, 8803 R�uschlikon, Switzerland

Abstract

For many years, the security has become a main issue in Internet community. Intrusion detection
systems (IDSes) are security tools which should indicate when someone is breaking into a system.
However, as this thesis shows, the local exploits are not well detected and IDSes generate a huge
amount of data that should not always be considered as intrusion. There is no universal IDS, all
IDSes have di�erent strengths and weaknesses. The detection of intrusion can be improved by
correlating di�erent information sources and by considering the environment in which they occur.

Contents

1 Introduction 3

2 Background 5
2.1 Network-security . 5

2.1.1 Firewall . 5
2.1.2 User privileges . 6

2.2 Intrusion detection . 6
2.2.1 Information sources . 6
2.2.2 Detection Method . 6
2.2.3 Network-based vs. Host-based . 7

2.3 Products . 7

3 Intrusion Detection Products Testbed 9
3.1 Axent: Intruder Alert v3.0 . 9

3.1.1 Testbed Setup . 10
3.1.2 Policies and Documentation . 14
3.1.3 Results . 17

3.2 ISS: RealSecure v3.2 - System Agent . 23
3.2.1 Testbed Setup . 23
3.2.2 Policies . 26
3.2.3 Results . 26

3.3 General Results . 29

4 Integration 31
4.1 Goals of Integration . 31

4.1.1 Correlation . 31
4.1.2 Host-based event interpretation . 32

4.2 TEC console management . 32

5 Implementation Details 35
5.1 Pre-Adapters . 35

5.1.1 Axent . 35
5.1.2 RealSecure . 35

5.2 Event Class Hierarchy . 36
5.2.1 Class De�nitions . 37

6 Conclusion 39

7 Acknowledgment 41

A Event Class Hierarchy, Host-Based part 43

1

2 CONTENTS

Chapter 1

Introduction

The Internet is the world's largest computer network, connecting several million computers to
each other. More and more companies are on the net. This huge network is one of the main
business place which is conducted nowadays. Lots of sensible data is shared since the coming of
e-commerce, internet-banking and many other applications. All these di�erent businesses speak
in terms of security. Security risks increase as companies migrate their business applications to
support intranet and extranet activities. Since the recent distributed denial-of-service attacks,
some of the biggest companies, like Yahoo, have su�ered. Security became the key word of the
internet community. A lot of network-device companies are developing their own network security
solution. One of the best known is certainly CISCO, but they do not have the monopoly. The
number of �rms which propose other solutions is always growing. A network security solution is
a notion to qualify several tools acting for the protection of your network. The most frequently
used are �rewalls, anti-virus, network scanners, and Intrusion Detection Systems (IDSes).

Many research reports have been written in this �eld. The Global Security Analysis Laboratory
(GSAL) at IBM Research has analyzed several network-based intrusion detection systems and has
integrated them in the Tivoli Enterprise Console [1]. This report completes the previous research
in testing two host-based intrusion detection systems of Internet Security Systems (ISS) and Axent.
The contribution of host-based compared or associated with the network-based IDSes is discussed.

This project has several goals. The �rst one is to get �rst hand experience with two market
leaders of host based IDSes. Then the second aim is to test them with a variety of attacks to
detect their weaknesses. This project enriches the Internet Engineering Task Force (IETF) work
[2] in order to de�ne a format to represent the host-based IDS alerts. Finally we want to design,
implement and test the integration into the Tivoli Enterprise Console (TEC).

The experience with products means, of course, to install them, but furthermore to see what
are their possibilities in terms of con�guration and usability. Their functionality must be well
understood in order to be able to exploit all their capabilities.

These products must be tested in order to see what kind of alerts are generating by the
host-based IDSes. Two kind of events needs to be tested. First, events related to a normal host-
based activity and then, some attacks from outside and inside. Many attacks are available in a
Vulnerability Database, maintaind by IBM, called Vulda.

The IETF work proposes a common representation of the alarms triggered by the IDSes. The
actual format is mainly based on the network aspect and this project aims to complete it by
de�ning the needed host based events.

The motivation of integrating the IDSes events in a common framework is that, as this report
shows, there is no universal IDS and the gain in correlating many sources is important. This helps
eliminating false alarms and increase the amount of detectable events.

3

4 CHAPTER 1. INTRODUCTION

The structure of this report is as follows; chapter 2 introduces the IDSes. The results obtained
by testing two IDSes are described in chapter 3. The integration process is presented in chapter
4. Chapter 5 describes the classes added to the class hierarchy1 proposed by the internet draft [2]
and explains the implementation details. The conclusion can be found in chapter 7.

1representation of the alarms triggered by the IDSes

Chapter 2

Background

The Internet contains a lot of information describing, step by step, how to penetrate systems. This
is one of the reasons why hacking is becoming a popular new hobby. More and more companies
are under hacker's attacks. Mainly based on research reports [3, 4, 5], this chapter introduces the
intrusion detection systems and presents their di�erent characteristics.

2.1 Network-security

Setting up a high-level secured network is more and more diÆcult. Each day lots of new vulner-
abilities are discovered and can immediately be exploited by malicious hackers. Even if a lot of
security measures are deployed, it is impossible to be sure that no security holes are present. In
fact, the holes can be due to miscon�guration, software, hardware, protocol, and other sources.

Basically, a network can be under di�erent types of attacks. It can be attacked by external
parties or internal users could try to abuse their privileges in exploiting some weaknesses in the
system. A FBI report on computer crime notes that the primary threat comes from full-time
employees [6].

A good security strategy should be based on a layer model. The �rst defensive line must control
the access from outsid and from inside. This con�guration should be tested with some security
scanners like Satan [7] or Nessus [8]. Finally a trace of all the actions performed by the users
should be kept. This is frequently done with log �les and auditing.

2.1.1 Firewall

A lot of companies use one or several �rewalls to protect them from outside attackers. A �rewall
is a set of related programs, located at a network gateway server, that protects the resources of a
private network from users of other networks. Basically a �rewall �lters all network packets. If a
packet �ts with the company's inner policy, it is accepted and rejected in the other case.

"We set up �rewalls, so our network is secure" is a comment often heard in the security
industry. Unfortunately, �rewalls can be complicated to set up and are subject to miscon�guration
that can leave the network unprotected. Furthermore �rewalls must guarantee some degree of
access which may allow for probing weaknesses. In addition a �rewall does not prevent from
internal misuses. An unprotected connection can be opened while utilizing a modem.

5

6 CHAPTER 2. BACKGROUND

2.1.2 User privileges

Since the �rst multiuser platforms, a lot of development has been made in order to provide a user
friendly platform and to control resource access. The most common systems used the concept of
\user rights" which allows the manager to de�ne di�erent privileges. However, the user rights do
not prevent the user from exploiting weaknesses in order to increase there privileges.

2.2 Intrusion detection

An IDS aims to detect computer misuses, meaning each activity that does not conform with the
internal policy. Such activity can be caused by internal users or external parties trying to exploit
vulnerabilities. An alert should be generated when someone tries to penetrate the system and
when someone has penetrated it.

Generally the term intrusion de�nes actions from the outside. However for the intrusion de-
tection systems community, an activity of a malicious insider is also an intrusion. The detection
process is composed of several main phases:

� First the IDS acquires information about its environment. It can be from a workstation, a
server, a �rewall, a network component, the network itself, and others.

� Then some form of analyzis is performed to determine the system's state: normal or under
attack.

� When an errorenous state is detected the system must react. It can be with a passive
response like a simple noti�cation or an active response as to kill a session.

2.2.1 Information sources

There are many information sources available that can be used by the IDSes. There are basically
two di�erent types:

1. Information taken from the network: network packets. That means the IDS captures the
packets on the network and analyzes them.

2. Information available on the host, from the operating system, di�erent application logs, data
�les system, etc...

Depending on the information source, the IDS is called network-based or host-based. The
network-based analyze the stream of packets on the network, whereas the host-based evaluate
information that can be found on the host.

2.2.2 Detection Method

There are two di�erent approaches to analyze the collect of data. The �rst one tries to de�ne a
normal behavior1 of the system. When it is de�ned, the IDS simply looks for a eventual deviation
[2]. This �rst way of analyzing is not often used. It is really diÆcult to de�ne what the usual
behavior is. Such a de�nition is unique for each company and of course can depend on many
external factors. An IDS which analyzes information this way is a called behavior-based IDS.

The other way concentrates on the event itself and performs pattern matching to recognize
a particular attack by its signature. That means we must already know the attack signature in

1which can be based on statistics, expert systems and neural networks.

2.3. PRODUCTS 7

order to detect it. This is the reason why the signature database must be frequently updated.
At the present time, almost all commercial systems use this form of analyzis [4]. They are called
knowledge-based IDSes.

2.2.3 Network-based vs. Host-based

In theory, a single product can include both approaches: host-based and network-based. However
they are often separate in two commercial products which are more or less integrate. They are
also complementary. In fact, in deploying both network and host based IDS solutions, both
network traÆc and host exploits are monitored [9]. Basically the network-based approach provide
the earliest possible warning. It detects the attack before the damage is done. The host-based
approach will indicate, most of the time, a successful intrusion. After an intrusion, indications
about the intruder activity on the target system can be provided.

Both network and host-based systems are a�ected by a variety of implementation diÆculties
and limitations [4]. The network-based are vulnerable, among of the things, to packet spoo�ng
and packet fragmentation [10]. It is not always possible to decipher the packets for some other
reasons which can be due to protocols or encryption. Furthermore the network IDS can only
process packets on low-speed networks (10 Mbps) and must be installed on a shared segment. On
the other side, the host-based system does not have all the solutions. They do not monitor direct
information like network-packets, but only indirect auditing information created by the system or
applications which has a performance impact. Host-based IDSes sometimes can also interfere with
regular host operation.

2.3 Products

The IDSes are more and more advanced. The �rst commercial IDS was released in 1991 [4].
Although many di�erent products are available on the market, IDSes are still in research and de-
velopment. There are many research reports about this topic. Table 2.1 shows di�erent commercial
IDS characteristics taken from [4].

Another class of software exists, which includes some detection functionality. These are host
wrappers and personal �rewalls. These tools can be con�gured to look at network packets, con-
nection attempts, or login attempts on a computer[11].

8
C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

Deployment Information Source Method Real-time Initial Re-

Product Strategy Processing lease

net- host- network OS Web router �rewall �le other knowl- behav- yes no year

based based packets server system edge ior

1. Anzen Flight ✗ ✗ ✗ ✗ ✗ 1997

Jacket

2. Centrax ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1998

3. Computer Mis- ✗ ✗ ✗ ✗ ✗ ✗ 1991

use Detection

System (CMDS)

4. Cross-Site for ✗ ✗ ✗ ✗ 1998

Security

5. CyberCop ✗ ✗ ✗ ✗ 1999

Monitor

6. Intruder Alert ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1992

7. Kane Security ✗ ✗ ✗ ✗ 1996

Monitor(KSM)

8. NetProwler ✗ ✗ ✗ ✗ 1997

9. Net-Ranger ✗ ✗ ✗ ✗ 1997

10. Reactive In- ✗ ✗ ✗ ✗ 1998

trusion Detec-

tion (RID)

11. RealSecure ✗ ✗ ✗ ✗ ✗ 1996

12. SecureCom ✗ ✗ ✗ ✗ 1997-8

Switches

13. SecureNet ✗ ✗ ✗ ✗ 1997

PRO

14. SessionWall-3 ✗ ✗ ✗ ✗ 1997

15. SMARTWatch ✗ ✗ ✗ ✗ ✗ 1997

16. Stakeout ✗ ✗ ✗ ✗ 1997

17. Tripwire ✗ ✗ ✗ ✗ 1998

Table 2.1: Current IDS Products [4]

Chapter 3

Intrusion Detection Products

Testbed

This chapter contains results obtained by testing two di�erent host-based intrusion detection
systems: RealSecure system agent version 3.2 from Internet Security Systems (ISS) and Intruder
Alert version 3.0 from Axent. The goal is not to compare these two products, but rather to see the
capabilities of actual commercial host-based IDSes. ISS and Axent are two leaders in the security
market and the evaluation of their host-based solutions should be representative. In order to be
as clear as possible the results of the two products are presented in two di�erent sections.

3.1 Axent: Intruder Alert v3.0

Intruder Alert (ITA) is a host-based IDS composed of four components:

� The manager is a UNIX daemon, Windows NT service or NetWare loadable module used to
organize agents and administer policies. It supervises the communication between all others
ITA components (agents, ITA view and ITA admin).

� The agent is also a UNIX daemon, Windows NT service or NetWare loadable module. It is
used to monitor all the events and perform de�ned actions.

� ITA Admin (Win95/98/NT) is a graphical user interface used to organize the monitoring.
Thus one can organize agents in domains, activate or disable policies, add log �les to monitor,
and so on.

� ITA View (Win95/98/NT) is also a graphical user interface used to view events captured by
Agents.

Intruder Alert is a multi-platform tool. The manager and the agents can be installed on
several UNIX platforms, WinNT and NetWare. The agents are organized in domains where the
same policies are applied.

The term policy can have di�erent meanings. For Axent, a policy is a particular event or group
of events. It can be a basic event like a \su root" or a composed event like a \Network Probe".
A policy contains one or several rules composed of three clauses: select, ignore, and action. The
select and ignore clauses �lter all the information sources, to catch the desired events, while the
action clause de�nes the response.

Several functions are used. The complete list is in table 3.1 and 3.2. Basically the events are
caught by pattern matching (system message functions). The possible responses are either noti�-

9

10 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

cations (email, ITA view), or actions on a speci�c ag (raised up, raised down), or a more active
response (disconnect a session, script execution). Hereafter you will see some policy examples used
an the next chapters.

Function Description

System Messages select events that contain speci�c text (like a keyword search)
ITA Rule select events based on another rule
User events generated by a speci�ed user (not known for each event!)
ITA Command events generated by a speci�c command which can be sent with

ITA View
STATUS select a speci�c Intruder Alert Status messages
ITA error based on error messages (manager.log, agent.log)
Flag select raised ags. When many ags are used inside a policy, the

boolean condition and/or can be used
Date within a range of time
Timer select event when a speci�c timer has ended

Table 3.1: select and ignore clause functions

Function Description

Append to a �le could be on another �le
Send E-mail send an email
Notify(action) Send a message to the term
Pager message on a pager
Kill process only if the event contains a \PID:XXXX"
Disconnect Session kill the session. Event must contain \Session ID:XXXX"
Raised Flag raised a ag for a de�ned period of time. It can be raised

globally on all agent or just locally
Cancel Flag cancel ag
Execute command Execute a program or a script. Two variables can be used,

fuserg and fevent �leg
Record to ITA View(action) record the event into the ITA View GUI
Disable user Account Exepted for accounts having root privileges. Looks for \user-

name: XXXX".
Run shared Actions De�ne several actions witch can be used by all other rules as

reference

Table 3.2: action clause functions

3.1.1 Testbed Setup

The installation process consists of two phases. First the installation of the manager(s) and
the agent(s), and then the GUI tool's installation. During the manager and agent installation,
information like the owner of the ITA �les, the name of the administrator, a password (no relation
with the unix password) and other things are requested. Here is the architecture we decided to
set up:

� Manager and Agent on AIX system (aix1)

� Agent on Solaris system (sun1)

3.1. AXENT: INTRUDER ALERT V3.0 11

Figure 3.1: A screenshot of ITA admin. You can see the pattern matching used for the UNX failed
su.

Figure 3.2: A screenshot of ITA view. In the upper window the list of monitored alerts is presented,
while some description available in the lower window. Host addresses have been hidden for obvious
reasons.

12 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

� ITA Admin on Win98 (win1)

� ITA View on Win98 (win1)

When all components are installed, things are not done. The following sources can be moni-
tored:

� Syslog messages contains operating system messages.

� Wtmp collects login and user-process information.

� Btmp collects failed login information. It is not available on all UNIX platforms.

� process accounting collects user process information and numerous other processing activi-
ties.

� C2 audit logs collect various types of system calls and events depending on the con�guration
in the system (HP-UX, solaris and OSF/1).

� It is possible to look at external log �les as the HTTP log �le or other application logs.

The syslog �le (/omniguard/ita/system/system-name directory) receives event data from the
syslog daemon. Events related to the activated inet daemon services [12] can be captured only if
a service wrapper is associated with the syslog daemon. TCP wrapper was already installed on
aix1. We installed the ITA wrapper on sun1. The other UNIX collectors receive event data from
the UNIX operating system. A collector daemon, collogd, reads the collector �les and pipes event
data to the agent. Then the agent processes events according to its activated policies. Figure 3.3
shows the events collection under unix.

The setup does not activate the C2 auditing [13]. It has to be done manually. First the unix
system must be con�gured. Then it must be initialized in the ita daemon.

The C2 audit process logs numbers of events. Each event belongs to a speci�c class. During
the unix C2 con�guration phase we must decide the classes we want to audit. Here are the default
classes for a Solaris system.

� no: invalid class � cl: �le close � ap: application
� fr: �le read � pc: process � io: ioctl
� fw: �le write � nt: network � ex: exec
� fa: �le attribute access � ip: ipc � ot: other
� fm: �le attribute modify � na: non-attribute � all: all classes
� fc: �le create � ad: administrative
� fd: �le delete � lo: login or logout

It is not simple to decide which class should be audited. The C2 audit belongs to a lower level
of the system and can consume lots of resources. For example the auditing of all �le accesses will
quickly increase the log �le's size. However auditing modi�cations (write, create, delete) on root's
�les may help to detect some attacks. This is why these modi�cations should be supervised. Here
are the classes we have con�gured:

� fw, fc and fd for user root

� na, ad, lo and ex for all users

ITA provide no information about how to con�gure the C2 audit and which classes should be
activated. That means clearly that depending on the con�guration set up, some events can be
missed without any advice from ITA.

3.1. AXENT: INTRUDER ALERT V3.0 13

(syslogd)
Daemon

C2 Audit
Log

(binaryfile)

C2 Daemon
(C2atd)

Collog
Daemon
(collogd)

Intruder Alert
Agentbtmp

(binaryfile)

wtmp
(binaryfile)

Temp
File

Temp
File

Process

(binaryfile)

Accnting

Other
Sources

Other
Sources

Other sources

Intruder Alert
not used by

UNIX

syslog

System
Operating

syslog

Pipe

Pipe

Figure 3.3: ITA Event Collection on a UNIX source [14]

14 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

3.1.2 Policies and Documentation

Policies can be imported from several sources. Some policies are present when installing ITA.
Then you can download new policies from the Axent web site and it is also possible to create our
own policies. Axent gives two kind of policies; generic policies available for all systems and policies
composed for a speci�c system (unix, NT or NetWare).

Unix And Generic Policies

Only generic policies and policies related to unix systems have been tested. They are either default
policies delivered with the installation or downloadable ones. Axent o�ers no policy to monitor the
C2 audit. To check what kind of events could be monitored thanks to our C2 audit con�guration,
we have created a C2 collector policy to catch all the C2 events. Basically it contains a *" in the
select clause and results are appended to a �le. However we �nally decided that we do not want
to spend too much time in creating our own C2 policy. Of course, even if we have not used this
source, the C2 audit has some advantages. Information comes from the kernel itself and not from
a deamon like the syslog. That means that the C2 events are more safe and of course quicker.

In table 3.3 the tested policies are presented, some of them have been modi�ed during the
project. Please note that a policy can work for an AIX but not for a Solaris. The last three
policies are related to the ITA wrapper and therefore have only been activated on sun1.

Attacks Signatures

Hereafter some of Axent attack signatures3 are presented. The goal is to give the reader an idea
about the defensive strategy proposed by axent. We will show that no direct solution is proposed
to detect the local exploits. ITA can detect following exploit only through eventual �les changes.

cron Exploit

Attack Pro�le:

A UNIX process-scheduling tool known as \cron" can be used for more than just
performing routine system maintenance. Rumors gathered from the hacker
underground imply that cron was used in the September 13th attack on the New

York Times web site...
AXENT Strategy:

Intruder Alert can be con�gured to monitor cron �les and notify the security
administrator when any changes occur. The following �les should be monitored:

/usr/spool/cron/crontabs/*
/usr/lib/cron/cron.*

...

NIS/NIS+ Flooding

Attack Pro�le:

An NIS/NIS+ vulnerability has been discovered that has the potential to ood a
local network with NIS traÆc and possibly shut it down.
...

3http://www2.axent.com/swat/swat/03a atk.htm

3.1. AXENT: INTRUDER ALERT V3.0 15

Policies Description

ITA Reports Generates ITA Reports (Agent load Report,agent Policy Re-
port, Agent Active Datastream Report) when an ITA com-
mand is sent via ITA View

Shared Noti�cation Record actions in ITA View for FYIs, Alerts, Emergencies
UNX1Critical Files Monitors �les every 8 hours(long term) and a small group of

highly critical �les every 20 seconds(short term). The groups
long term and short term are de�ned within text �le (ux-
crit L.lst, uxcrit S.lst) and can be modi�ed2. These two groups
are default groups, but we can add other groups with di�erent
time frames. This policy detects when, within the time frame,
a �le is deleted, modi�ed or created. This is done by using
MD5 and other checksums.

UNX Failed ftp Login Detects a failed ftp login (not root) on HP
UNX Failed ftp Root Detects a failed ftp root login on HP
UNX Failed remote Detects failed remote login (Xwindows login on Solaris, telnet

and rlogin on HP)
UNX Failed rlogin Detects a failed rlogin (root or user) on Solaris
UNX Failed su Detects failed su to another user (not root)
UNX Failed su Root Detects failed su to root
UNX Failed telnet Detects a failed telnet login (not root) on solaris
UNX ftp Root Login Detects a failed ftp root logins on Solaris, SunOS, HP
UNX ftp User Login Detects ftp user logins on Solaris SunOS, HP
UNX local Root Login Detects local root login on HP, AIX
UNX local User Login Detects local user logins on HP, AIX
UNX Netprobe Lite Detects a character generator request, an echo request, an

anonymous ftp login from a Satan probe, a remote shell dea-
mon connection from an illegal port, a ftp deamon connection
from an illegal port, and a virtual memory error.

UNX remote Root Login Detects root logins (Xwindows, telnet and rlogin root login on
Solaris and AIX, . . .)

UNX remote User Login Detects user logins (Xwindows, telnet and rlogin user login on
Solaris and AIX, ...)

UNX Root su Detects an su to/from root
UNX su to another Detects an su to another user (not root)
UNX SYN Flood Detects an SYN Flood system attack
UNX syslogd Sol HP Detects startup/graceful-shutdown of syslog daemon on Solaris

and HP
UNX System Problems Detects some system problems
ITA Errors Reports some ITA error like a connection problem
ITA Status Generate some internal messages
UNX Network Probes Detects someone probing your network for vulnerabilities.

(may require system con�guration changes)
UNX ITA Wrap TCP-UDP wrapper that reports a inetd service connection

(comsat, exec, �nger, ftp, login, shell, talk, telnet, uucp)
UNX 3 Failed Root Logins-on3 Detect three failed ftp, remote login or su from Root user
UNX 3 Failed User Logins Detect three failed ftp or su

Table 3.3: UNIX and Generic Policies

16 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

The command \�nger username@system.domain.com" asks the system to look up
information about a username. If the username cannot be determined from the
local password �le, the system will try to �nd it in the global NIS password table.
...
NIS ooding will result, likely cause network timeouts and dropped packets as
well.
AXENT Strategy:

The AXENT Technologies, Inc. information security SWAT team recommends
that �nger services be disabled on all systems con�gured to use NIS

Syslogd

Attack Pro�le:

If the syslog daemon is not running, events will no longer be recorded to syslog
and the security administrator will be unable to monitor system activity. Killing
the syslog daemon at the start of an intrusion and restarting it afterwards helps
intruders \cover their tracks" and hide their progress.
AXENT Strategy:

AXENT's Intruder Alert can detect when the syslog daemon is not running, when
it has been started, and in some cases4 when it has been killed

Bu�er overow Vulnerability
in statd(1M)

Attack Pro�le:

A bu�er overow has been discovered in the statd(1M)program that will allow a
local or remote user to gain root access. For example, it is possible5 for a statd
attack to add an entry to the /.rhosts �le...
AXENT Strategy:

AXENT's Intruder Alert can detect critical system �le tampering, such as
./rhosts modi�ed...

These Axent strategy examples show the defensive solutions proposed by Axent against several
well known exploits. Axent proposed no real solutions; if the �nger service is disabled, a NIS-
Flooding attack will be avoided. But we expected another solution to detect and defend this
attack. Further only a normal syslog daemon shutdown is detected (Policy UNX syslogd), but not
a forced one (kill -9). Lots of exploits like a cron exploit [9] or a statd bu�er overow vulnerability
[9] is detected through �le changes. That would mean a hacker who has gained root access with
statd, can be detected only if he is doing some changes on the �les.

4by \in some cases", understand that when syslog is stopped by a normal way, a shutdown is detected, but not
when it is stopped by a kill -9

5In fact, it is possible, but this is not the only thing...

3.1. AXENT: INTRUDER ALERT V3.0 17

3.1.3 Results

Events related to each policy have been generated from the local network through an Ethernet
connection or on the local machine itself. The results obtained are presented in tables 3.4 and
3.5. The �eld doc refers to the documentation. It indicates whenever the policy should work.
The �eld detected shows a \✓" if the policy works, \|" indicates that the event was not detected
and \�" indicates that some rules of the policy work but not all of them. The majority of the
policies require no more explanation, but if the comments �eld contains \see explanations", there
are precisions below. This is especially the case for policies made of several rules.

policies doc detected source comments

UNX Critical Files ✓ ✓

UNX Failed ftp login
UNX Failed ftp Root
UNX Failed Remote ✓ ✓ btmp
UNX Failed rlogin ✓ ✓ wtmp
UNX Failed su ✓ ✓ syslog
UNX Failed su Root ✓ ✓ syslog
UNX Failed telnet ✓ ✓ wtmp
UNX ftp Root login ✓ ✓ wtmp
UNX ftp user login ✓ ✓ wtmp
UNX local ROOT login
UNX local User login
UNX Netprobe Lite ✓ | see explanations
UNX Network Probes ✓ � syslog see explanations
UNX remote Root Login ✓ Cannot be tested

root remote login denied
UNX remote User Login ✓ ✓ wtmp
UNX Root su ✓ ✓ syslog
UNX su to another ✓ ✓ syslog
UNX SYN ood ✓ ✓ netstat
UNX syslogd Sol HP ✓ � shutdown only
UNX system Problems ✓ |
UNX 3 failed Root logins ✓ ✓ syslog see explanations
UNX 3 failed user logins ✓ ✓ syslog see explanations
UNX ITA Wrap ✓ ✓ syslog

Table 3.4: Results on Solaris

UNX Netprobe Lite

This policy does not work properly. It should detect one of these following events; a character
generator request, an echo request, an anonymous ftp login from a Satan probe, a remote shell
deamon connection from an illegal port, a ftp deamon connection from an illegal port, and a
virtual memory error. This policy should catch all the events by pattern matching. The matching
is done with strings like *daytime*", *chargen*", *ftpd: connection from * on illegal port*",
and others. We have not succeeded in reproducing them even with a Satan probe on the host.
Either the syslog is not well con�gured or these strings are not the correct ones for the systems
tested. As we used the wrapper given by Axent on sun1, it should work. No further documentation
is given, therefore, we cannot say more.

In addition, it is really simple to generate false alarms. This can be done by exploiting a

18 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

Policies: doc detected source Comments

UNX Critical Files ✓ ✓

UNX Failed ftp login
UNX Failed ftp Root
UNX Failed Remote
UNX Failed rlogin
UNX Failed su
UNX Failed su Root
UNX Failed telnet
UNX ftp Root login
UNX ftp user login
UNX local ROOT login ✓ cannot be tested
UNX local User login ✓ cannot be tested
UNX Netprobe Lite ✓ | see explanations
UNX Network Probes ✓ � syslog see explanations
UNX remote Root Login ✓ ✓ wtmp
UNX remote User Login ✓ ✓ wtmp
UNX Root su ✓ ✓ syslog
UNX su to another ✓ ✓ syslog
UNX SYN ood ✓ ✓ netstat
UNX syslogd Sol HP ✓ ✓

UNX system Problems ✓ ✓ to be tested

Table 3.5: Results on AIX

weakness of the patterns. In fact, there are several only one-word pattern like \daytime", \chargen"
or \echo". Thus a telnet request with \echo" as username generates a netprobe lite alert.

UNX Network probe

This policy is designed to detect some network probing. It is composed of several rules; collec-
tor, ftp request, telnet request, uucp/sendmail request, lpd/remsh/echo request, network probe,
possible normal probe, possible heavy probe and heavy probe end. Table 3.6 contains the related
clauses for each rule. As explained hereafter, some rules are only temporary states not recorded
to ITA View. However to verify them, they have been modi�ed to be recorded in ITA View. For
a better understanding, there are some explanations for each rule below.

Collector: this rule is generally desactivated. It is used to collect all events and append them
to a �le. Basically it is done by setting the select �eld to *". We can also look at this rule as an
aggregation of all activated source events.

Ftp request: this detects an ftp request. The select clause referres to the messages generated
by syslog. When the pattern matches, a ag Ftp request is raised for a 2-minute period. If a ftp
request occurs when the ag is already up, nothing happens. That means the time is not reset.
This way of processing will be discussed later.

Telnet request: the processing is similar to ftp request rule.

Uucp/sendmail: this rule detects an uucp connection or a sendmail attack (wiz, debug). We
have launched the sendmail attack from Nessus [8]. To get an alert, the last pattern has been
added. That means the patterns used were not the correct one for our syslog messages. This
illustrates the importance of having good patterns to process the matching. Surly it can depend
on the wrapper con�guration associated to the syslog deamon.

3.1. AXENT: INTRUDER ALERT V3.0 19

Lpd/remsh/echo request: this rule looks for three events; lp request, remsh request and an
echo requests. A remsh is a simple rsh on HPUX and AIX. This is why the pattern should be
di�erent. In fact, a remsh on aix1 generate the same syslog message as an rsh. The pattern to
catch this event should be *rshd[*]* for aix1. Of course, this string depends on the system we
are looking at. The echo service is de�ned as an intern service in the inet daemon and does not
generate a syslog message. Thus it cannot trigger an alert.

Network probe: this rule is a temporary state. It is activated by three ags up: the Ftp ag,
the Telnet ag and the USend ag. A timer (network probe mark) starts for 30 seconds. Under
an lp/remsh/echo request, the timer is canceled and the possible heavy probe activated. If the
timer reaches its deadline, the possible normal probe rule is activated.

Possible normal probe: it occurs at the end of the timer Normal probe mark.

Possible heavy probe: it occurs when four di�erent requests have been detected: ftp, telnet,
uucp/sendmail, and echo request.

Heavy Probe end: we can only say this rule is activated if an event matches with *ftp login*
while we are in the possible heavy probe state. All the other ags are held down.

Table 3.6: UNX Network probe policy

Collector
Select Ignore Action
* - append to a �le

FTP request
Select Ignore Action
string message: Ftp Flag Ftp ag(2min)
ftpd connection

ftpd[]: connection*

inetd[]: ftp/tcp: Connection*

inetd[]: ftp[*] from*

Telnet request
Select Ignore Action
string message: Telnet Flag Telnet ag(2min)
telnetd connection

remote login

inetd[]: telnet/tcp: Connection*

inetd[]: telnet[*] from*

Uucp/sendmail request
Select Ignore Action
string message: USend Flag USend ag(2min)
uucpd connection

*uucp*local login*

sendmail[]: "wiz" command*

sendmail[]: "debug" command*

inetd[]: uucp/tcp: Connection*

inetd[]: uucp[*] from*

sendmail[]:*: "debug" command*6

continued on next page

6this string has been added

20 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

Table 3.6: continued

Select Ignore Action

Lpd/remsh/echo request
Select Ignore Action
string message: echo Flag echo ag(2min)
lpd[]: *

rlpdaemon connection

remshd[]: Connection*

inetd[]: printer/tcp: Connection*

inetd[]: echo[*] from*

Network probe
Select Ignore Action
Flag Telnet + FTP + USend Flag Heavy or Normal Normal ag(2min)

Normal Probe mark
(30 seconds)

Possible Normal Probe
Select Ignore Action
Timer Normal Probe mark Flag Heavy or echo raised down Flags:

Telnet, Ftp, USend,
Normal

Possible Heavy Probe
Select Ignore Action
Flag echo + Normal Flag Heavy or echo raise down all ag

without heavy probe
Flag Heavy(2min)
cancel timer Normal
probe mark

Heavy Probe end
Select Ignore Action
Flag Heavy + raise down all ag
string: *ftp login* Flag Heavy(2min)

The ignore clause

As mentioned before, a request is ignored when the corresponding ag is already up. With an
example we present the weakness of doing it this way.

Let's take the example of the network probe rule with the following scenario:

� 0 : uucp/sendmail request

� 1'30: telnet request

� 1'50: uucp/sendmail request

� 2'10: ftp request

3.1. AXENT: INTRUDER ALERT V3.0 21

The Network probe rule occurs when the three ags ftp request, telnet request and uucp/-
sendmail request are raised. These ags are raised for 2 minutes once the event occurs. With the
default con�guration, the timers are not restarted within the 2-minute window, even if another
request occurs during that time frame. Thus with the scenario exposed before, the timer of the
uucp/sendmail ag is not restarted when the second request arrives at 1'50. At 2'00 this ag is
reseted and when the ftp request appears, no network probe message is generated. However the
last three requests (1'30 telnet, 1'50 uucp/sendmail, 2'10 ftp) are in a sliding window of less than
2 minutes. A network probe should have been triggered depending on what we want to do. Either
we want to catch the three requests in a 2-minute period since the �rst one has occured, or we
want to catch the three requests in a 2-minute sliding window. The default con�guration of this
policy works like the �rst solution. Following, a solution is proposed to activate an event when 3
di�erent events occur in a de�ned period of time.

Three Di�erent Events in a De�ned Period of Time

The goal is to generate an alert when three di�erent events A,B and C occur in a de�ned period
of time X. The order occurence must not be important. The solution is presented in table 3.7. It
is similar to the previous, except for the ignore clause.

rule Clauses

Event A
Select select system messages
Ignore -
Action raise ag A for X seconds

Event B
Select select system messages
Ignore -
Action raise ag B for X seconds

Event C
Select select system messages
Ignore -
Action raise ag C for X seconds

Alarm
Select Flag A,B and C
Ignore -
Action reset all ags

Table 3.7: 3 Di�erent Events in a De�ned Period of Time

The reason Axent has not proceed in such way is certainly because this solution consumes more
resources. In fact, by setting an ignore clause, the number of �red events is reduced compared to
this solution. That clearly means better performance, because an event must be checked with less
�red rules.

UNX 3 failed Root Logins-on3

This policy is based on the following failed events: ftp, remote, and su. It has been tested on
Solaris with \failed su" events. A limitation due to syslog messages has been observed. A syslog is
generated only if it is di�erent to the previous one, otherwise it is kept in a kind of stack while no
other messages occur. Then all the same syslog message are grouped and the following message
appears:

\...last message repeated X times"

It is possible that the 2nd and 3rd fail are sometimes not immediately reported in the syslog.
This causes troubles to the eÆciency of this policy, because an alarm can be missed. In fact, the

22 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

1st failed ag can be already down when the 2nd and 3rd attempts are reported. If other events
between each \failed su" are generated, it works well.

UNX 3 failed User Login

This policy is based on either failed su, or failed ftp. It is composed of three rules; 1st failed, 2nd
failed, and 3rd failed. Table 3.8 contains the di�erent clauses. The default con�guration does not
work well. Three failed su (or ftp) give four alerts being: 1st failed, 2nd failed, 3rd failed, and
1st failed. In fact, two events (1st and 3rd) can be active at the same time. This is illustrated in
�gure 3.4. Two solutions are proposed to improve the default setting of this policy:

1. Generate an alert if three failed attempts appear in a 1-minute period once the 1st one
occured.
Solution: change the select clause of the 3rd rule to: select messages + 1st ag + 2nd ag

2. Since the 1st failed attempt, the second has T1 minutes to occur and then the third has T2
minutes. That means a maximum period of (T1+T2) minutes.
Solution: change the ignore clause of the 1st rule to: 1st ag or 2nd ag

rule Clauses

1st
Select select system messages
Ignore ag 1
Action raise ag 1 for 1 minute

2nd
Select select system messages + ag 1
Ignore ag 2
Action raise ag 2 for 1 minute

3rd
Select select system messages + ag 2
Ignore -
Action Alarm + reset ag 1 and 2

Table 3.8: UNX 3 failed User Logins

Rules that can be activated

2nd Fail1st Fail

1 minute

-

2nd 3rd 1st & 3rd

1st 1st & 2nd 2nd -

1st

Flag up

1st

Figure 3.4: 3 Failed User Logins, schema

3.2. ISS: REALSECURE V3.2 - SYSTEM AGENT 23

UNX SYN Flood

This policy can be activated only through an ita status message. That means ITA status policy
must be activated in order to activate it. Basically a shell script is running periodically. It does a
netstat command and handles the results to know if some SYN requests are on process. Depending
on the number of SYN packets received an alarm is generated.

Network Attacks

Several attacks have been launched to sun1 to see the reported events. We have tested network
scanners like ISS scanner, Satan and Nessus. The event reported are shown in table 3.9. Other
attacks like bonk [15], echo [15], and nestea [15] generated no alert. To detect network attacks
Axent recommends to integrate NetProwler with Intruder Alert. NetProwler is a network-based
IDS. The only outside events that Intruder Alert can detect are ftp request, rsh request, telnet
request, and SYN ooding.

Conclusion

As this section shows, ITA gives us the possibility to interact directly with the rules. The rules
de�nes are more or less complicated depending on the event we wanted to catch. Lot of tools like
timer, ags, etc... can be used giving us a lot of exibility to do more than a basic pattern matching.
That means to express rules to deal with the alerts. The results obtained will be discussed more
deeply hereafter, but we can already mentioned that the reported events are mainly related to the
normal host activity meaning that the real local exploits are only detected through eventual �le
changes.

3.2 ISS: RealSecure v3.2 - System Agent

Realsecure is an IDS composed of two modules:

� Detectors: software that looks for attacks and can generate responses.

� Management console: graphical user interface to manage detectors and collect alerts in a
database.

The detectors are either network engines or system agents. Both are looking for di�erent events
and can send them to the console. The network engine is the network-based part of Realsecure
and will no longer be discussed. The system agents monitor the activity on an individual host.

The system agent runs on WindowsNT or on SPARC Solaris. It is an application which
typically uses less than 1% of the CPU. The system agent and the network engine cannot be
installed on the same computer. The console should run on a di�erent system than the network
engine, since both can be processor and memory intensive. The console runs only on WindowsNT.
Its needs in resources depend on the number of detectors which are managed.

Several responses can be launched by the System Agent when an alert is triggered. First, a
noti�cation with an alarm on the console, via email or through an SNMP trap. Alerts can also be
stored in a database. Some active responses are also possible; e.g. a user account can be disabled.

3.2.1 Testbed Setup

Here is the architecture we have set up:

24 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

ISS Scanner
Policy rule

UNX ITA Wrap telnet request
ftp request

UNX Network probes telnet request
uucp/sendmail request = possible normal probe
Ftp request

UNX Failed telnet solaris
UNX 3 failed user login remote only fail

NESSUS
Policy rule

UNX ITA Wrap telnet (a lot)
FTP (a lot)
�nger (a lot)
Exec

UNX Network probes telnet request
uucp/sendmail request = possible normal probe (2x)
Ftp request

UNX Failed telnet solaris (a lot)
UNX 3 failed user login remote only fail (a lot)

SATAN
Policy rule

UNX ITA Wrap telnet
FTP
�nger (a lot)
Exec
Login
Uucp
Shell

UNX Network probes telnet request
uucp/sendmail request = possible normal probe
Ftp request

UNX Failed telnet solaris

Table 3.9: Events reported under ISS, Nessus, and Satan on sun1

3.2. ISS: REALSECURE V3.2 - SYSTEM AGENT 25

Figure 3.5: A screenshot of the Realsecure Console. Host addresses have been hidden for obvious
reasons.

26 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

� Console management on WindowsNT (win2)

� System agent on WindowsNT (win3)

The installation is done through a windows setup. Nothing special is required. To transmit
data from the detectors to the console and vice-versa, RealSecure can use encryption. Win3
belongs to the IBM global network. This is the reason why only the local administrative privileges
have been used. Events related to global administrative actions have not been tested.

3.2.2 Policies

As mentioned before, policy does not mean the same for all companies. A RealSecure policy de�nes
the global con�guration of the detectors. The policy speci�es what kind of system activity must
be detected, the priority of each event and the response. RealSecure delivers three pre-con�gured
policies for the system agent: default, light, and maximum. The maximum policy enables all
events. The pre-con�gured policies cannot be edited; they will never be lost. To edit a policy,
we must create a custom one. The custom policy is a copy of an existing policy which can be
edited. We have tested all events in the maximum policy. However not all of them were sent
to the console. This is the reason why we have to create a custom policy (maximum customize)
derived from the maximum policy. This custom policy is similar to the maximum one except that
all events are sent to the console. That allows us to see the results in the console.

There are several kinds of events: security events, syslog events, suspect connection events,
and user-de�ned events. Only the security events and suspect connection events have been tested.
In fact, there is no syslog on NT and we do not want to create user-de�ned events. Events de�ned
are presented with the results.

3.2.3 Results

There are two kinds of events tested: security events and suspect events. The security events are
\atomic" NT events related to the action happening on the local machine, while suspect events
monitor di�erent requests from the outside. Results are presented in table 3.10.

Table 3.10: ISS System agent events

Event Name generated Comment
Successful login ✓

User logout ✓

Guest user login ✓

Use of user right ✓ e.g. event viewer
Password change failed ✓

Password change successful ✓

Failed login-account locked out ✓

Failed login-bad username or password ✓

Failed login-password expired ✓

Failed login-time restriction violation

Failed login-account disable ✓

Failed login-account expired

Failed login-net logon not active

Failed login-not authorized for -
console login

continued on next page

3.2. ISS: REALSECURE V3.2 - SYSTEM AGENT 27

Table 3.10: continued

Event Name generated Comment
Failed login-not authorized for -
this type of login

Failed login-unknown error

Logon with admin privileges ✓

Logon with special privileges

Global group changed

Global group created

Global group deleted

Global group user added ✓

Global group user removed ✓

Local group changed ✓

Local group created ✓

Local group deleted ✓

Local group user added ✓

Local group user removed ✓

Account policy changed ✓

User account changed ✓

User account created ✓

User account deleted ✓

User right granted ✓

User right revoked ✓

Audit log cleared ✓

Audit policy change ✓

User added to global admin group

User added to local admin group ✓

User admin right granted ✓

User admin right revoked ✓

Trusted domain added

Trusted domain removed

Startup of important programs ✓ e.g. user manager
Privileged service called ✓ e.g. changing a password
Registry autorun changed ✓

Program execution started ✓

Program exited ✓

Out of virtual memory

Disk space shortage

Brute force login attack ✓ 6 failed logins or more
Brute force login likely successful ✓ 5 failed logins followed by

a correct password
Change password attack ✓

Change password attack likely successful ✓

Registry eventlog settings changed ✓

Registry NT security options changed ✓

Registry remote edit changed

Probing of important �les

Changes to important �les ✓

Failed change of important �les

Con�g-log �les deleted

continued on next page

28 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

Table 3.10: continued

Event Name generated Comment
Con�g-log �les delete failed

Authentication package loaded

Logon process registerfed ✓

Some Exchange Events

Some LDAP Events

Some SQLServer Events

Some Oracle Events

Some Sybase Events

Some MSSQL Events

Suspect portscan ✓

Suspect FTP ✓

Suspect IMAP ✓

Suspect Netstat ✓

Suspect POP3 ✓

Suspect POP2 ✓

Suspect SMTP ✓

Suspect Systat ✓

Suspect Telnet ✓

Suspect Whois ✓

Suspect WWW ✓

Suspect Finger ✓

Suspect Time ✓

Suspect SSH ✓

Suspect Sunrpc ✓

Suspect Netbus ✓

Suspect connection

RealSecure is supposed to generate an alarm related to suspicious connections. A suspicious
connection is a request to a service (ftp, telnet,...) which is not installed. The services de�ned
are as follows: ftp, imap, netstat, pop3, pop2, smtp, systat, telnet, whois, www, �nger, time, ssh,
sunrcp, and netbus. A suspicious connection means a request to a not installed service.

We have to generate these alerts by launching several network scanners: Nessus [8], 7th Sphere
Portscan 1.1 [16], and Strobe [17]. However, a telnet on the default service ports will also generate
an alarm. We can conclude that Realsecure dosen't check the request and only looks at the ports.
In table 3.11 we present the results we got with the scanners and the default ports used.

For a better understanding of these suspicious connections, we have done some more experi-
ments:

� If no services are running when the agent is started, all the requests to the default ports
mentioned before are reported as suspicious connections. The agent replies even with a
warning message saying that this host is protected by ISS. Then we have tried to install a
telnet server (Fictional Deamon v3.3 [18]), however, it was impossible. The port seems to
have already been binded by RS Agent. To install a telnet server, the agent must be halted.
This is certainly the same case for all the other services.

� A telnet server is installed on port 23 (default) and the agent is started. An alert is triggered:

3.3. GENERAL RESULTS 29

Event Name Nessus 7th Sphere Strobe Telnet

Suspect portscan ✓ ✓ ✓

Suspect FTP ✓ ✓ ✓ 21
Suspect IMAP ✓ ✓ 220
Suspect Netstat ✓ ✓ ✓ 15
Suspect POP3 ✓ ✓ ✓ 110
Suspect POP2 ✓ ✓ 109
Suspect SMTP ✓ ✓ ✓ 25
Suspect Systat ✓ ✓ ✓ 11
Suspect Telnet ✓ ✓ ✓ 23
Suspect Whois ✓ ✓ 43
Suspect WWW ✓ ✓ ✓ 80
Suspect Finger ✓ ✓ ✓ 79
Suspect Time ✓ ✓ 37
Suspect SSH ✓ ✓ ✓ 22
Suspect Sunrpc ✓ ✓ ✓ 111
Suspect Netbus ✓ ✓ ✓ 12345

Table 3.11: Events monitored under Nessus, 7thSphere Portscan1.1, Strobe, Telnet on port X

\Detector Error: Port 23 already in use on system". Then the requests on port 23 generates
no alarm. This is normal because a telnet service is installed. It is also possible to install
the telnet server on another port (12345 for example).

� NukeNabber [19] is a TCP/UDP port listener used to securify ports. We launched it when
the agent was running and we got these messages:

[05/08/2000 09:00:46.708 GMT+0200] Port 21 (tcp) is already in use.

[05/08/2000 09:00:46.718 GMT+0200] Port 15 (tcp) is already in use.

...

[05/08/2000 09:00:46.888 GMT+0200] Port 111 (udp) is already in use.

[05/08/2000 09:00:46.898 GMT+0200] Port 12345 (tcp) is already in use.

When the Realsecure agent is started, it looks at all the default ports. A detector error message
is generated for the ports already in use whereas it listens on all unused ports to protect them.
The agent does not periodically verify if the ports that were used at startup time are still in use.
Please pay close attention to the following senario:

1. A service is installed on port X when the RS Agent starts.

2. The service is stopped because of a change in the company's policy.

3. Port X is no more protected and no service is installed behind it.

3.3 General Results

In this section, some general results based on the previous ones are discussed. Two di�erent IDSes
have been tested on di�erent systems: UNIX and NT. As mentioned in the background chapter,
IDSes take their information from sources available on the host; that means mainly the syslog
messages on unix and from events logs on NT. The results depend on the system con�guration as
well as the IDS con�guration.

30 CHAPTER 3. INTRUSION DETECTION PRODUCTS TESTBED

Two kinds of events are reported; local events related to the system and network events. The
majority of local events are well detected. It is not the same for network events. That means the
only network events detected are some request on prede�ned ports. We expected that the IDSes
look at the TCP/IP stack (tcpdump) to check and analyze the received network packets. It would
allow us to do some more comparisons between the network-based IDS and the host-based. In
fact, it would be useful to know which packets travel on the network and which ones are accepted
by the host.

One more weakness is that no real local exploit is detected. We think about exploits like statd,
cmsd, loadmodule and so on [15]. The only way to detect them is through �le changes. That
would mean that a hacker who has gained root access can be detected if he is doing some changes
on the �les. Of course, it is not so simple to keep trace from these exploits, but it might be the
job of a host-based IDS.

The events are caught by pattern matching. The eÆciency of the IDSes depend on them. The
use of patterns cannot really su�er from false alarms, because they are relatively precise; we have
already mentioned that one-word patterns matching should be avoided. However some false alarms
can originate from the sources themselves. In fact on UNIX system the syslog daemon is opened
by default. It accepts remote messages from the network. To protect against such fake syslog,
there is an option witch rejects the remote syslog; you can also con�gure a �rewall to prevent
from connections to the syslog deamon port. By doing forwarding syslog on a host protected by
an IDS, this one can also generate alerts related to events occurring on another host. In this case
you must take care of the results obtained.

Chapter 4

Integration

Nowadays, a lot of network products o�er the possibility to manage network devices from a single
management console. For example, it is possible to con�gure a router or to get information from
a SNMP agent.

4.1 Goals of Integration

For the intrusion detection community, integration is more than representing results of distributed
devices in a single console. The integration of the IDSes leads quickly to the concept of correlation.
A de�nition of correlation is given by Edward Amoroso [20]: \Intrusion correlation refers to the

interpretation, combination, and analysis of information from all available sources about target

system activity from the purposes of intrusion detection and response". As information sources we
are going to consider the results of di�erent IDSes. That means we do not consider all real sources
like network packets or log �les. This is the job of the IDSes. Based on the following observations,
this section aims at demonstrating that the correlation is fundamental for information processing:

� Commercial intrusion-detection systems often generate a huge amount of data. Analyzing
them directly without �ltering functions is diÆcult and is very time consuming

� Sensors may generate a lot of false alerts per day. All this data should not always be
considered as alert. There is lot of false alarms [21] and lot of normal local events.

� There is no universal IDS. That means the IDSes have not the same strength and weakness.
They information sources and process can be di�erent. We can improve the detection by
combining di�erent IDS products.

The goals of the integration of the IDSes in a common framework is to enhance the results
in operating some more processes. In the following sections, we present the correlation needs
for the network and host-based IDSes. Of course, both should be taken into account for better
performances.

4.1.1 Correlation

The IDSes do not have the same strengths and weaknesses. They do not all have the same
information sources and do not treat information in the same manner. That means the di�erent
IDSes do not miss and do not report the same attacks. Thus it is possible to reduce the false
alarms' rate by building rules which contains information to correlate the results. The information

31

32 CHAPTER 4. INTEGRATION

can be of di�erent types. For example, it can be a con�dence level which is associated to each
alarm. The lower the con�dence level is, the higher the probability to get a false alert is. In
addition, it is also possible to increase the global attacks' signatures recognized by summing up
all single IDS's signatures.

4.1.2 Host-based event interpretation

Almost all events generated by host-based IDSes do not concern direct attacks. They describe
user actions that happen on the host. The majority of these actions should not be considered as
alerts. Thus we should take into consideration the context in which an event occurred. In fact,
the common approaches analyze alarms in isolation, whereas the alarm context could enhance
decision making [22]. Following are some examples where alarms should be triggered:

� A \failed password" happens often in every environment and the majority of them should
be ignored. However, if such an event happens in the middle of the night when the computer
room is closed, an alert should be generated.

� If a strange behavior (e.g. port scan) is detected on a single host, it might be a simple false
anomaly and the security manager can ignore it. However, if such a behavior is detected on
several hosts of the network, someone is certainly probing it.

� A \failed su" in some environment can occur many times a day, which in others is not normal
and should trigger an alert.

� If the system is under attack, i.e. an intruder has gained access, all the actions performed
on the systems should be reported to keep traces of intruders.

All these previous examples show that the host-based events are not simple to compute. The
same events can be acceptable for some company, but not for another. We cannot accept having
an alert each time an action is performed on the host, because it will not be useful. The amount of
data needs to be reduced in order to be eÆcient. This can be done by building rules describing the
normal behavior of the system: the pro�le. Of course these rules are not trivial and are company
speci�c. We will not discuss this in more details.

As explained above, the host-based events need a special treatment to be considered as a real
alarm. This can be done by what we call \the pro�le". The pro�le must include all information
that can lead to a better knowledge of the event's context. The network-based IDSes inform about
the current outside attacks, will give you information about the attack that is going on. With this
additional information you can see if the attacker was successful or not, just by watching if your
host-based system reports anything unusual. Normally when someone breaks into a system, the
�rst thing he will do is to clear the log �les or manipulate �les like the .rhosts. By monitoring
these �les as \critical �les" and correlating the information with the network based system you
can tell more precisely what the attacker did and if he was successful. That means you should
double check your system for malicious �les.

4.2 TEC console management

The Tivoli Enterprise Console is a rule-based event management application that integrates net-
work, systems, databases, and application management. The TEC acts like a central point col-
lecting information from many sources.

Events can be imported to the Tivoli Enterprise Console by using event adapters. When
the event adapter receives information from its sources, the adapter formats the information and
forwards it to the event server to process it. Then the information is presented in some distributed
event consoles (GUI). The console lets the administrator view and respond to the events [23].

4.2. TEC CONSOLE MANAGEMENT 33

To Event Server
Adapter

event formatted

Pre-Adapter

IDS

Database

syslog message
event =

IDS
EVENTS

Figure 4.1: Import an IDS event into the TEC

The event adapter transforms source information into event classes before sending information
to the TEC server. Many adapters are currently available for TEC 3.6:

� Log�le adapter for the UNIX syslog messages.

� SNMP adapter.

� Windows NT adapter for the NT event log.

� Network management adapters for events coming from OpenView, AIX, SunNet and others.

To import IDS events into the TEC, we need to transform the IDS messages into a readable
TEC format which needs to be compatible with the adapters available. We have chosen to use
the Log�le adapter. Thus, a module needs to be added to the IDS in order to export its data. It
is called the pre-adapter. Its function is to read IDS messages and to generate syslog messages
which contain the relevant information. Figure 4.1 shows the whole process.

In the event server, the events are represented in a class hierarchy and then they are processed.
Basically, they are �rst logged and checked againse many rules. The rules allow to correlate events,
to generate new events, to respond, and so on. The class hierarchy is discussed more precisely in
the next chapter.

34 CHAPTER 4. INTEGRATION

Chapter 5

Implementation Details

5.1 Pre-Adapters

The pre-adapter aims at exporting information collected by the IDS. It is a module to interface
with the IDS and the TEC event adapter. We have chosen to export the event through syslog
messages with the TEC Log�le event adapter.

5.1.1 Axent

The manager stores data in a binary �le. For the time being Intruder Alert has no option to
generate a text �le instead of a binary one. The only way to export an Axent event is to use the
execute command action. Through this command we can execute an SNMP command or a script
�le. There is the possibility to use two internal variables: fuserg and f�le eventg. f�le eventg is
a temporary �le which contains the information related to an alert. There are attributes present
for all events and attributes speci�c to each rule. fuserg is the name of the user. This variable is
not always de�ned it sometimes crashes.

When an alert is generated, a perl script parse.pl is executed with f�le eventg as argument. The
command executed is the following: parse.pl f�le eventg. The script reads the �le and, depending
on the available attributes, it generates a syslog message which contains information to export.

5.1.2 RealSecure

RealSecure can export event data through SNMP traps, external programs or an ODBC database.
A pre-adapter for the RealSecure Network Engine has already been developed in the Global
Security Analysis Group (GSAL) at IBM Research, Zurich [1]. This pre-adapter is coded in Java
using the JDBC classes to interact with the ODBC database. As the System Agent and the
Network Engine share the same database, we have reused the existing pre-adapter code with some
adaptations, in order to comply with the needs of the System Agent. The System Agent events are
of two di�erent types. The local events and the suspicious connections. The suspicious connection
events fall in the network part of the class hierarchy, because a real source IP address is available.

In table 5.1 and 5.2 you can see the two database tables where information is stored [24].
RSLogEvent table contains information common to all events; there are the date when the event
was recorded, the signature which should uniquely de�ne an event, the IP source address, the
events priority, and so on. Local event �elds related to the source are set to a default value and
should not be computed. The second table RSLogEventInfo gives some additional information
about the events. For the Network Engine, the events' information is almost entirely contained

35

36 CHAPTER 5. IMPLEMENTATION DETAILS

in the �rst table; RSLogEventInfo sometimes gives an url or a script name. This is not the case
for the local events. In fact, a local event has nothing to do with source information. All the
relevant information is stored in the second table; depending on the event, information available
is di�erent. Thanks to a timer, the pre-adapter checks regularly if there are new entries in the
database to export them.

Name Description

ID The unique identi�er for the database record
EventDate The date and the time when the event was

recorded
EventName The name of the recorded event as it appears

in the Attack Signatures
ProtocolID The protocol associated with the event (0-tcp,

1-udp, 2-icmp, 3-unknown)
SourcePort The port number of the source
DestinationPort The port number of the destination
SourcePortName The name of the source port
DestinationPortName The name of the destination port
SourceAddress The IP address of the source
DestinationAddress The IP address of the destination
SourceAddressName The source machine name
DestinationAddressName The destination machine name
TCPFlags This column is currently not in use
ICMPType The type of ICMP packet
ICMPCode The code �eld from the ICMP packet
EventPriority The priority given to the event (1-high, 2-

medium, 3-low)
KillActionSpeci�ed Whether or not the detector is con�gured to

kill a connection for an event of this type
SourceEthernetAddr This column is currently not in use
SourceEthernetVendor This column is currently not in use
DestinationEthernetAddr This column is currently not in use
DestinationEthernetVendor This column is currently not in use
RawDataLen The length of the rawData Field value
RawData Raw data saved for later viewing through Ses-

sion Playback
DecodePairCount The number of decode pairs written as log info

records
EngineIP The IP of the engine from which the event

came
EngineType 0 is the Network Engine and 1 is the System

Agent

Table 5.1: ISS RSLogEvent table

5.2 Event Class Hierarchy

A Class diagram has already been proposed in an Internet draft model [2] to de�ne data formats
to represent the information exported by an intrusion detection system. Our contribution has
been to rede�ne this diagram by adding the eventual host-based part related with the results we

5.2. EVENT CLASS HIERARCHY 37

Name Description

ID The unique identi�er of the entry in the RSLo-
gEventInfo table

LogID The ID of the entry in the RSLogEvent table
TagName The name of the decode value
TagValue The actual value of the decode

Table 5.2: ISS RSLogEventInfo table

got by analyzing the host-based solutions of RealSecure and Axent.

This hierarchy is used to store data received by the TEC of the intrusion detection system.
The goal was to group events with similar data. The logical or semantic relations between the
attacks have not been taken into account.

5.2.1 Class De�nitions

We are not going to explain deeply the existing class diagram, however the global structure is
presented. For more information about the classes which do not belong to the host-based part,
please refer to the draft itself [2]. While you read, you can refer to �gure 5.1.

The top level of the hierarchy is the class event. It does not have a superclass, but might have
an OIDs in the SNMP world. The event class is the minimum amount of information that every
intrusion detection system must provide for its alerts. There are the signature, the date and other
basic information. The second level of the class tree is some kind of a target level. The alert
can have multiple targets (class e multiplehosts) or a single host (e singlehost). If no information
about the source and the destination is reported, the event belongs to a third class (class e weird).
Typically for a host-based IDS, almost all the alerts should belong the the e singlehost class and
its subclasses. We are not going into more details with the others. The e singlehost class has
three subclasses depending on the source of the attacks. The source can be known (es realorigin),
spoofed (es spoofedorigin), and unknown (es application). The majority of the events reported by
the host-based IDS belongs to the es application class which contains basically all the events that
are happening locally on a machine. In addition to the host, this class contains a description of
the used service.

Now we are going to explain more precisely all the subclasses of the es application class. It
contains all the classes which de�ne almost all the host-based events reported by Intruder Alert
and RealSecure. The next level contains information about the user which has initiated the event.
We have two di�erent classes to take into account that an action can be performed by one or
several users. These classes are es user and es multipleusers. For the time being only the single
user class is used. The next level contains information about the target of the attack; it can be a
�le, a process, an account, and the audit con�guration. Depending on the event, the term account
is used either for a user or for a group. If it triggers a group, the event can be related directly to
the group or to a group's members. In this case subclasses are derived to de�ne the members. A
more formal de�nition of the classes can be found in the annex.

38 CHAPTER 5. IMPLEMENTATION DETAILS

Figure 5.1: Class diagram, host-based part. In the complete tree, the classes ES realorigin and
ES spooforigin contain not represented sublasses [2]. Some RealSecure events (RS) and Axent
events (AX) are represented in the diagram.

Chapter 6

Conclusion

The goals of this thesis were to get familiar with two market leader host-based IDSes, to test them
with some attacks in order to generate all the possible host-based events. This task has enabled us
to enrich the current IETF proposition for a common format to represent the alerts generated by
the IDSes. Finally the two products have been successfully integrated into the Tivoli Enterprise
framework thanks to the implementation achieved in the course of the project.

The �rst part has taken a lot of time to understand all the possible functionalities of these
products. We have seen that depending on the product we have more or less capabilities to express
rules to deal with the alerts. Intruder Alert o�ers us the possibility to use tools like ags and
timer, whereas Realsecure does some simple pattern matching against the events it takes directly
from the NT security event log.

The IDS events have been generated in most case by doing simple host tasks like failed su.
We have seen that the majority of the host events do not help us to detect intrusions; they are
normally just information messages about the host activities. Another aspect is that local exploits
are rarely logged, because the only chance to catch them is to set up monitoring of some critical
�les. As already mentioned, depending on the environment, the same event can be considered as
an intrusion or not. This is why we need some more processing on the IDSes event. It is possible
to do this in exporting them. IETF works in de�ning a common format to represent the IDSes
alert.

The products tested have generated UNIX and NT events. We have de�ned new classes to the
class hierarchy proposed the IETF work [2] in order to represent them. That allows other product
to get the IDS alerts and improve the results by doing more processing. In fact, IDSes generate a
huge amount of alarms, so that it is quite impossible for an administrator to keep up with all of
them.

To demonstrate the validity of the format de�ned, we have implemented the integration in the
Tivoli Enterprise Console. That has been done by exporting the IDS events in a readable TEC
format. This could be achieved by adding a module to the IDS, called the preadapter. Then the
events can be imported in the TEC and are represented in the de�ned format. This work might
end up being part in the new Tivoli product called Tivoli Secureway Risk Manager.

We can conclude in saying that, as this thesis shows, it is not because you have set up an IDS
that you network is secure. IDSes are not magical tools. They are an added layer to your security
model to improve it. However there is still a lot of things to do in this �eld.

39

40 CHAPTER 6. CONCLUSION

Chapter 7

Acknowledgment

First I would like to specially thank Candid W�uest for his daily collaboration. He deeply helped
me during the preparation of my thesis with his comments, suggestions and answers to all of my
questions. Of course, we also had some great free time, between the intensive hard work time.

Many thanks to all the members of IBM Zurich Laboratory for always being friendly and
helpful when needed. I will not forget Guy Wald and C�eline Steenkeste; we shared the same oÆce
and had enjoyed swapping jokes. Guy was also a precious LATEX's reference.

My gratitude goes especially to each person who helped me draw up this report. Many thanks.

Finally, I am grateful to Herv�e Debar and Marc Dacier, my company supervisors, and Re�k
Molva from Eurecom Institute, for giving me the chance to develop this thesis. It would not have
been possible without them.

41

42 CHAPTER 7. ACKNOWLEDGMENT

Appendix A

Event Class Hierarchy,

Host-Based part

Baroc �le describing the class hierarchy.

#
Classes related to host-based IDSes, application information, user
information.
#

TEC_CLASS :
ES_Application ISA E_SingleHost
DEFINES {
esa_ptyinfo: STRING, default = "none";
esa_srcport: STRING, default = "none"; # Service name or pointer
esa_dstport: STRING, default = "none";
esa_svcname: STRING, default = "none";
esa_pid : INTEGER; # New attribute of ServiceID

};
END

TEC_CLASS :
ESA_User ISA ES_Application
DEFINES {
esau_username : STRING, default = "none";
esau_userid : STRING;
esau_userdomain: STRING;
esau_purpose : STRING;
esau_additional: STRING; # actually used only as a

privilege field
};

END

TEC_CLASS :
ESAU_Targetaccount ISA ESA_User # account can be a user or a group
DEFINES {
esaut_accountname : STRING, default = "none";
esaut_accountid : STRING;
esaut_accountdomain: STRING;
esaut_purpose : STRING;
esaut_additional : STRING; # actually used only as a

privilege field
};

END

TEC_CLASS :
ESAU_Targetfile ISA ESA_User
DEFINES {
esaut_filename : STRING, default = "none"; # name of the file

(with the path)
esaut_accessflags: STRING;

};
END

TEC_CLASS :
ESAU_Targetprocess ISA ESA_User
DEFINES {
esaut_processid : INTEGER;
esaut_processname : STRING;

};
END

TEC_CLASS :
ESAU_Auditpolicy ISA ESA_User

43

44 APPENDIX A. EVENT CLASS HIERARCHY, HOST-BASED PART

DEFINES { # Actually only for NT audit
esaua_SystemSuccess : STRING;
esaua_SystemFailure : STRING;
esaua_LogonSuccess : STRING;
esaua_LogonFailure : STRING;
esaua_ObjectAccessS : STRING;
esaua_ObjectAccessF : STRING;
esaua_PrivilegeUseS : STRING;
esaua_PrivilegeUseF : STRING;
esaua_DetailedTrackingS : STRING;
esaua_DetailedTrackingF : STRING;
esaua_PolicyChangeS : STRING;
esaua_PolicyChangeF : STRING;
esaua_AccountMgmtS : STRING;
esaua_AccountMgmtF : STRING;

};
END

TEC_CLASS :
ESAUT_User ISA ESAU_Targetaccount
DEFINES {
esautu_accountname : STRING, default = "none";
esautu_accountid : STRING;
esautu_accountdomain: STRING;
esautu_purpose : STRING;
esautu_additional : STRING; # actually used only as a

privilege field or domain field for
account policy changed

};
END
#---

Bibliography

[1] St�ephane Schitter. Integration of Intrusion Detection Products in the Tivoli Enterprise Con-
sole. Master's thesis, Eurecom Institute, June 1999.

[2] Herv�e Debar, Ming-Yuh Huang, and David J. Donahoo. Intrusion Detection Exchange Format
Data Model. Internet Engineering Task Force - INTERNET-DRAFT, March 2000.

[3] Herv�e Debar, Marc Dacier, and Andreas Wespi. A Revised Taxonomy for Intrusion-Detection
Systems. IBM Research Division, October 1999.

[4] Kathleen A. Jackson. Intrusion detection system product survey. Research report LA-UR-
99-3883, Los Alamos National Laboratory, June 1999.

[5] Herv�e Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. COMPUTER NETWORKS, The International Journal of Computer and Telecom-
munications Networking, 1999.

[6] David L. Carter and Andrea J.Katz. Computer Crime: An Emerging Challenge for Law
Enforcement, December 1996.

[7] Satan's home page. http://www.�sh.com/satan.

[8] Renaud Deraison. The nessus project. http://www.nessus.org.

[9] Axent web page. http://www.axent.com.

[10] Thomas H. Ptacek. Insertion, Evasion, and Denial of Service: Eluding Network Intrusion
Detection. Secure Networks, Inc, Janary 1998.

[11] Sans Institute resources. http://www.sans.org/newlook/resources/IDFAQ/ID FAQ.htm.

[12] Aix man pages.

[13] Solaris documentation. http://sunline.ep.ch:8888/ab2/coll.47.5/SHIELD/@Ab2PageView/564.

[14] AXENT. Installation and User manual for Intrudrer Alert.

[15] Common Vulnerabilities and Exposures. http://www.cve.mitre.org.

[16] 7th sphere portscan. http://www.7thsphere.com.

[17] Packet Storm. http://packetstorm.securify.com.

[18] Fictional deamon v3.3. http://http://www.�ctional.net/index.html.

[19] Nukenabber port listener. http://www.nukenabber.com.

[20] Edward Amoroso. Intrusion Detection. Intrusion _Net Books, 1999.

[21] Stefan Axelsson. The Base-Rate Fallacy and its Implications for the DiÆculty of Intrusion
Detection. Chalmers University of Technology, Sweden, May 1999.

[22] Stefanos Mananaris, Marvin Christensen, Dan Zerkle, and Keith Hermiz. A Data Minig
Analysis of RTID Alarms. IBM report.

[23] Tivoli. TME 10 Enterprise Console version 3.6 documentation.

[24] ISS. RealSecure documentation.

45

