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Abstract
The DEAPspace service discovery algorithm provides an efficient, decentralised mechanism for service discovery
in wireless ad-hoc, single-hop networks. The basic workings of this algorithm are reviewed, and modifications are
presented that can reduce the power requirements for weaker devices by allowing some devices to run modified
versions of this algorithm. The modifications are analysed in terms of their helpfulness to weak devices, and of
their effect on unmodified devices in proximity with these special devices.



1. Introduction

As computers become smaller and more pervasive, the
benefits of interaction between them multiply. In the
DEAPspace group, we are studying coordination be-
tween proximate devices into so-called “smart envi-
ronments.” Because we envision this collaboration
happening everywhere, not just in pre-determined lo-
cations, we have developed a decentralised service dis-
covery algorithm that allows any set of devices to lo-
cate services withing a single hop of themselves.

Previous analyses of this algorithm have been made
with uniform device configuration; in this paper, I will
show that, with no significant loss to performance, the
power requirements for small devices can be reduced
through the use of asymmetric client configurations.

1.1. Background

The DEAPspace algorithm uses proactive single-hop
broadcasts to share a world view with all proximate
devices. Each individual device schedules a broadcast
for some time in the future, waits until that time, then
broadcasts its list of known services (service elements,
or SEs) as a service advertisement message (SAM).
These broadcasts are single-hop, and will not be for-
warded beyond the local transmission range of the de-
vice in question. If, while waiting for its broadcast
time, a SAM is received from elsewhere, the receiving
device resets its broadcast timer to some new time in
the future. By choosing times with some random jitter,
the devices take turns sharing their world view. When
a device receives a SAM that has its local informa-
tion correct, and with a reasonable time to live (expiry
time), it has no need to send its own SAM, because the
important information has already been sent for it. If it
sees that its local information is absent or about to ex-
pire, it can schedule its next SAM transmission sooner
than usual, improving its chance of winning the broad-
cast race, and being known to others. When a device is
scheduling SAM transmissions from this lower range,
it is said to be in apanicstate.

When a new device enters the transmission range
of an existing group, it needs only to receive a single
advertisement to learn about the entire set of services
now available. Moreover, because the transmissions
are scheduled reactively, the time for mutual discovery

(the existing group knows about the new device, and
vica verca) is better with DEAPspace than with regular
beacons [1].

To avoid collisions, short-range radio MACs of-
ten schedule broadcasts, requiring some sort of extra
work on the part of the device that wants to trans-
mit. Because of this, sending broadcasts may require
the transceiver to be active longer, resulting in more
power consumption. Although the DEAPspace algo-
rithm was designed to be completely decentralised, it
would be useful to be able to use asymmetric allocation
of behaviour parameters to shift some of the broadcast
load to devices with better power availability.

The simplest way to achieve this shift is to allow
power-rich devices to choose their normal (non-panic)
timeouts from a range lower than the regular devices’
normal range, but still higher than their panic range.
In this way, the power-rich device will more often win
the race to broadcast, but the normal devices will still
be able to renew their services when they are about to
expire, or when new devices arrive.

A better way to save energy is to deactivate the
transceiver circuits. Because the DEAPspace algo-
rithm has a small number of large messages, with a rea-
sonably predictable arrival pattern, some devices in the
group can be configured to hibernate their transceivers
at the times when receiving a message is least likely.

Because theoretical analysis in the case of non-
uniformly configured devices is very difficult, the ef-
fects of asymmetric parameter assignment have been
explored through simulations. In the remainder of this
paper, I will first introduce and justify the simulator,
then review the goals and measures of quality for ser-
vice discovery, then analyse the effects of these two
power-saving methods on the performance of the algo-
rithm.

2. Simulations

To test the effectiveness of the DEAPspace algorithm,
I first implemented the device code in Java using a
generic network interface. By connecting this code
to an IP or Ethernet back end, I was able to check
for any unexpected behaviour; then by connecting it
to a network emulator that could introduce delays and
losses, I was able to measure the internal behaviour
of a group by running actual applications in real time.
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This method was effective, but slow, so I then coded
a special-purpose simulator (in C) for service discov-
ery. The results from this simulator was compared to
the behaviour observed with the emulator, and to the
behaviour predicted by theoretical analysis.

2.1. Expected Behaviour

The expected behaviour was derived from three direc-
tions: a model of the number of normal rounds ex-
pected to pass between occurrences of a device en-
tering a panic state, the observed total broadcasts per
minute on an emulated network, and hand-derived val-
ues for total broadcasts per minute expected under
specific conditions. This last case is explained sepa-
rately [1], and the first two I will now describe.

Modelling the number of rounds expected to pass
between panic states is a combinatorial problem. The
challenge is to enumerate possible series of events, at-
tach probabilities to them, and add them up. To help
this analysis, it helps to count only the number of
broadcast rounds, rather than actual time, and to ignore
the possibility of collisions or losses. The behaviour
of a single device in a group ofn can be described by
first writing down the generating function� for all se-
ries of rounds where the device sends a broadcast (x)
and rounds where it receives a broadcast (y) that end
in a series ofb + 1 consecutive receives. For now,x
andy are just place holders, their exponents denote the
repetition of their associated events in the state being
described, and the coefficient is the frequency of that
combination of occurrences (i.e. the number of valid
permutations)1.

� = yb+1 + [(1 + y + y2 + y3 + : : :+ yb)x]yb+1

+[(1 + y + y2 + y3 + : : : + yb)x]2yb+1

: : :+ [(1 + y + y2 + y3 + : : :+ yb)x]1yb+1(1)

In this case,b is the number of rounds that a device
can allow to pass without renewing its services, and
without entering a panic state. Also, for future use,
usez to count the number of rounds, regardless of who
sent or received. In closed form, this gives Equation 2.

�(x) =
(yz)b+1

1� (xz)(1�(yz)b+1)
1�(yz)

(2)

1For an introduction to this notation, see [2].

In the series described by Equation 2, every term
N(xuyvzw) representsN ways in which exactlyu
sends andv receives can result inw rounds passing
before the first time the device in question has re-
ceivedb+ 1 times in a row, thus entering a panic state
(w = u+ v). By differentiating� w.r.t. z, then setting
z to one, the terms will look like this:Nw(xuyv). If x
is the probability of sending on a particular round, and
y is the probability of not sending (receiving), then the
sum of these terms is the expected number of rounds
between panic states. Performing this differentiation,
and substitutingy = 1� x gives Equation 3.

E(x) =
@

@z
�jz=1;y=1�x =

1

x(1� x)b+1
�

1

x
(3)

Unfortunately, when a device enters a panic state,
it causes the next round not to be a fair race. By pick-
ing a timeout from the lower range, all devices that are
not already in a panic state are guaranteed (by our cur-
rent definition) to lose the next race. If the value pre-
dicted by Equation 3 is large, then this effect will just
be noise, and should not really cause any trouble. If
worrying is a relatively frequent occurrence, however,
the unfair races must be accounted for in calculating
the expected duration of steady-state.

To deal with this feedback problem, assume the
probability x of a particular device winning a given
race is known. Equation 3 can be used to turn this
into an expected number of rounds,E(x). By invert-
ingE(x), we get the probability of worrying on a par-
ticular round. Therefore, the probability of a particular
device that is not in a panic state having a fair race to
be the next sender is(1�E(x)�1)n�1, and the proba-
bility of it winning that race isn�1, giving Equation 4.

x =

�
1

n

��
1�

1

E(x)

�n�1
(4)

Solving Equation 4 for various values ofn and
b, then comparing these results to simulations shows
strong agreement up to the point wheren approaches
b, as shown in Figure 1. Ifn andb have similar values,
it is increasingly likely that multiple devices will be
simultaneously in a panic state. This makes the proba-
bility of being already in a panic state during any given
round significant, compared to the probability of enter-
ing a panic state during that round, and invalidates the
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Figure 1: Comparing the results of Equation 4 to sim-
ulations for three values ofb, and various numbers of
devices

assumptions used to derive Equation 4, so the lack of
agreement in this region is not surprising.

The fact that the behaviour of each device is so de-
pendent on the behaviour of others puts a great many
restrictions on theoretical models of this kind. A state
transition model would also be possible, but the num-
ber of states necessary to model even small scenarios
is so large that analysis would be almost indistinguish-
able from simulation anyway. So, for simplicity, and
also for an easier transition to counting time instead of
rounds, I have made all further analysis of the system
using simulation and implementation.

For the actual implementation, each device is coded
as a Java object that connects to an underlying network
interface. The network interface has been created to
be generic, allowing the devices to be tested over real
and emulated underlying network layers. The service
discovery module executes in its own thread. A pseu-
docode overview of this module is shown in Figure 2,
usingX to represent the range of time intervals from
which the broadcast timer is usually reset, andX 0 to
represent the range that is used during a panic state.

Using a network emulator, this implementation can
be used to give the actual distribution of round dura-
tions. These results compare favourably with the re-
sults of simulation, as shown in Figure 3. Right now,
some discrepancy can be seen in the counts of very
short rounds, especially for very low packet loss rates.
This is because the emulator uses propagation delay,
while the simulator does not. The result of propa-
gation delay is sometimes having two winners of the
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Figure 3: Cumulative distribution for round durations
with six normal devices, havingX = [10; 15] and
X 0 = [3:33; 5]

race to broadcast, since the second to actually send
can queue its SAM before receiving the SAM from the
actual winner. Because our model environment gives
responsibility for collision avoidance to the lower lay-
ers, this discrepancy will be resolved by modifying the
emulator in time for the final version of this paper.
The results presented here are completely consistent
with expectations, and lead me to be confident that the
modified emulation will agree very closely with simu-
lations.

3. Modifications for Special Devices

In general, modifications have tradeoffs; in this sec-
tion, I will examine two power-saving modifications
for the DEAPspace algorithm, and study the tradeoffs
that they offer, in terms of several important criteria:

Total Transmissions: The total number of broad-
casts offered to the network by all devices. This
value represents the network load incurred by the
algorithm under whatever circumstances are be-
ing examined.

Fraction Expired : The fraction of time during which
the SE for some device exists unrenewed in some
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advertise(LOCAL) f Intervalupdate(LOCAL,REMOTE)f
time tout getTimeout(X) foreach r2 REMOTEf
loop(forever)f if(r is not my service)f

REMOTE read(tout) if(9l2LOCAL r.id = l.id) f
if(timed out)f if(r.expiry > l.expiry)

foreach l2 LOCAL l.expiry r.expiry
if(l is my service) g elsef

l.expiry NormalExpiry insert r into LOCAL
broadcast(LOCAL) g
tout getTimeout(X) g

g elsef g
Interval I update(LOCAL,REMOTE) if(9s2my servicess =2REMOTE) returnX 0

tout getTimeout(I) foreach r2 REMOTEf
g if(r is my service and r.expiry< minExpiry)

g return X’
g g else returnX

g
read(t) f getTimeout(I) f

blocking read from network with timeout t pick random value on interval I
g g

Figure 2: Sample pseudocode implementation of the DEAPspace algorithm

other device’s list for longer than its default time
to live value.

Time to Mutual Discovery: The number of seconds
from the moment when communication becomes
possible between a new device and an existing
group until all devices know the services offered
by all other devices.

3.1. Rich Devices

If a target platform has the property that transmitting a
broadcast, including all associated protocol overhead,
is more expensive than reading one, then it is enough
to shift the burden away from normal devices, and onto
power-rich devices. This can be done by simply ar-
ranging to have rich devices usually choose broadcast
times smaller than the times usually chosen by other
devices. Here, I will leave the distribution unchanged,
but lower the range from which a timeout is selected.
An alternative would be to use the same range for all
devices, but skew the probability density function used
by rich devices towards the lower end of that range.

Figure 4 shows that while this scheme will slightly
increase the overall network load in the vicinity of one

of these rich devices, it will reduce number of broad-
casts sent by normal devices in that same area. In this
example, the broadcast times for normal devices are
taken from the rangeX = [12; 15] seconds, and for
rich devices fromX = [10; 13] seconds. The expiry
times are 60 seconds, and a device will choose from
X 0 = [4; 5] seconds if it sees a SAM showing its own
services within 20 seconds of expiry. By allowingX
andX to overlap, the normal devices will still make
some normal (non-panic) broadcasts. In this way, the
number of short rounds caused by panic will be kept
down, but the rich devices will still assume more of
the broadcast load.

As shown in Figure 5, this scheme slightly in-
creases the total number of broadcasts per minute, but
it reduces the number of broadcasts sent from the nor-
mal devices. Moreover, it does not affect the frequency
with which devices are expired in the lists of others.

Unsurprisingly, the smaller the difference between
the rich and normal devices, the smaller the effect that
the rich device will have on the system. Figure 6 shows
what happens when the overlap is increased by chang-
ing the normal range for rich devices from [10,13] to
[11,14], the total number of broadcasts is reduced, and
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Figure 4: In the presence of zero, one, or two rich de-
vices, the total number of broadcasts per minute for the
local network, and the average per device for rich and
normal devices

the number of broadcasts made by the normal devices
is increased.

What we learn from this is that by asymmetrically
assigning timing parameters, we can shift a dispropor-
tionate fraction of the broadcast responsibility to de-
vices of our choosing. This is an interesting property,
and is helpful in situations where broadcast transmis-
sions are significantly more expensive than receptions.
Having more general application, however, is actually
to power-down the transceiver circuitry. Identifying
good times for weak devices to stop listening is useful
on all platforms, including those low power radios for
which the signal processing circuitry uses more power
than the actual transmission amplifier.
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Figure 5: In the presence of zero, one, or two rich de-
vices, the fraction of the time spent expired by an aver-
age normal device, and the average number of broad-
casts per minute for a normal device

3.2. Weak Devices

Because sharing world views has the effect of greatly
reducing the total broadcast frequency, compared with
having all the devices advertise their own services
(replacing n broadcasts of one SE each with one
broadcast ofn SEs), the proposed scheme results in
much longer pauses between broadcasts. During these
pauses, some power-sensitive devices may wish to use
whatever idle mode is available from their hardware
platform. It is important that whatever solution is im-
plemented should not interfere with the normal be-
haviour of other devices.

The specific technique that I have used involves pe-
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Figure 6: Number of broadcasts per minute for the
whole set of six devices, and the average number of
broadcasts per minute for a normal device for various
ranges of timeouts for rich devices

riodic idles with duration equal to the minimum broad-
cast delay (in this case, 4 seconds). This will be done
every time a broadcast is received in which the weak
device’s own services are all not near expiry, or when
a broadcast is transmitted, excepting when it is trans-
mitted as a result of seeing a service about to expire.
Using longer idle times could cause devices to miss
the last-minute renewals sent to prevent imminent ex-
piries, and using shorter idle times would only allow
broadcasts to be received from devices that missed the
previous transmission.

Implementing this simple modification on one de-
vice in a group of six allows that device to be hibernat-
ing more than a quarter of the time when packet loss

advertise(LOCAL) f
time tout getTimeout(X)
loop(forever)f

REMOTE read(tout)
if(timed out)f

foreach l2 LOCAL
if(l is my service)

l.expiry NormalExpiry
broadcast(LOCAL)
tout getTimeout(X)

g elsef
Interval I update(LOCAL,REMOTE)
tout getTimeout(I)

g
if(tout > X 0

max) f
tout � = X 0

min

hibernate(X 0

min)
g

g
g

Figure 7: Allowing weak devices to hibernate during
service discovery

is less than one in two, while the total network load
is not significantly different2 from the load caused by
six normal devices, as can be seen in Figure 8. As the
packet loss gets worse, the device will automatically
hibernate less frequently, allowing it to take advantage
of whatever packets do arrive correctly. With our test
parameters as before, all devices are expiring in the
lists kept by the normal devices slightly less often than
they would if all six were normal, although the list kept
by the weak device tends to be slightly worse. In gen-
eral, and especially at low packet loss rates, this modi-
fication does not affect the total system performance.

A possible drawback to this technique is its im-
pact on the timeliness of discovery. With reasonably
sized groups, like the six-member groups used above,
there is very little effect. For a normal device entering
a group that contains a weak device, some extra de-
lay for mutual discovery results from the weak device
sometimes being idle when the new device arrives, but
the normal devices discover each other as fast as ever,
because the first message either way causes some de-

2With the same sample configuration parameters used in Sec-
tion 3.1,X = [12; 15]; X 0 = [4; 5].
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Figure 8: Behaviour of a group of six devices, in which
one through five of them use the weak device modifi-
cation described in Figure 7, havingX = [12; 15] and
X 0 = [4; 5]

vice to enter a panic state, the same as usual. If the new
device is the weak one, then the situation is slightly
worse, but the total effect is still very small (Figure 9).
This difference is from the number of cases when the
existing group is the first to transmit, and the weak
device is idle at the time. The fraction of time spent
idle by a lone device will be about4=13:5, and the
group will transmit first about half the time, so one
would expect this to happen about 15% of the time,
and cause discovery to be delayed until the new de-
vice transmits, about another 11.5 seconds. The vari-
ous panic timeouts chosen by the existing group make
the difference slightly less, for low packet loss rates,
than the0:15 � 11:5 = 1:6 seconds that this would

8

10

12

14

16

18

20

22

24

26

28

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
im

e 
to

 M
ut

ua
l D

is
co

ve
ry

 (
se

co
nd

s)

Packet Loss Rate %

Time For Mutual Discovery

6 normal
5 normal, 1 weak (normal arrives)

5 normal, 1 weak (weak arrives)

Figure 9: Time to mutual discovery when a new device
enters an existing group of five devices

suggest but, in general, mutual discovery of the new
device is contained by this limit. Furthermore, if a sig-
nal is sent to the detection algorithm when the underly-
ing network establishes a connection, then the incom-
ing device will always be first to transmit [1], meaning
that this problem will never occur at all.

The most danger with this technique is the case of
two devices meeting, where both are weak. As with
the larger group, if connection establishment is be-
ing signalled to upper layers, there will be no draw-
back; but consider the case where it is not being sig-
nalled. Because both devices were previously alone,
they will both be sending SAMs about once every 13.5
seconds, and hibernating for 4 seconds following each
broadcast. In the worst case, one device (call ita)
has just started hibernating when communication be-
comes possible, and the other (b) sends during this pe-
riod. One of the devices, probablya, will be the next
to send. This broadcast will be during an awake time
for b. If this message is lost, thena will be hibernat-
ing during the next broadcast fromb. In other words,
slightly less than a third of the time, the chance of los-
ing the first two packets is the same as the chance of
losing the first one. For example, when the packet loss
is 20%, the chance of one of the first two messages get-
ting through is1 � (0:22) = 96% for two normal de-
vices, but1� (130:2+

2
30:2

2) = 91% for two weak de-
vices. As you can see from Figure 10, this can mean a
difference of two or three seconds when the packet loss
is bad, but means that the lone devices were achieving
this rate while hibernating a third of the time. In many
applications, this tradeoff is worth while.
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4. Conclusions

In this paper, I have presented some analysis tech-
niques for a new service discovery algorithm, and
used those techniques to evaluate ways to save power-
consumption through asymmetric assignment of con-
figuration parameters to the various devices. One tech-
nique was able to shift the broadcast responsibility to
devices that choose to identify themselves as power-
rich, and another was able to intelligently offer hiber-
nation windows to devices that identify themselves as
power-weak. Both of these techniques can be used to
conserve power for weak devices, without causing sig-
nificant interference with the unmodified devices.
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