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Abstract

An information-theoretic model for steganography with passive adversaries is proposed. The
adversary's task of distinguishing between an innocent cover message C and a modi�ed message
S containing a secret part is interpreted as a hypothesis testing problem. The security of a
steganographic system is quanti�ed in terms of the relative entropy (or discrimination) between
PC and PS . It is shown that secure steganographic schemes exist in this model provided the
covertext distribution satis�es certain conditions. A universal stegosystem is presented in this
model for which the participants do not have to know the covertext distribution except that it
consists of a series of independent experiments.
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1 Introduction

Steganography is the art and science of hiding information such that its presence cannot be
detected. Motivated by growing concern about the protection of intellectual property on the
Internet and by the threat of a ban for encryption technology, interest in techniques for infor-
mation hiding has been rising across the recent years [And96]. Two general directions can be
distinguished within information hiding scenarios: protection only against the detection of a
message by a passive adversary and hiding a message such that not even an active adversary
can remove it. A survey of current steganography is given by Petitcolas et al. [PAK99].

Steganography with a passive adversary is perhaps best illustrated by Simmons' \Prisoners'
Problem" [Sim84]. Alice and Bob are in jail and wish to devise an escape plan. All their commu-
nication is observed by the adversary (the warden), who will thwart their plan by transferring
them to a high-security prison as soon as he detects any sign of a hidden message. Alice and
Bob succeed if Alice can send information to Bob such that Eve does not become suspicious.

Hiding information from active adversaries is a di�erent problem since the existence of a hid-
den message is publicly known, as for example in copyright protection schemes. Steganography
with active adversaries can be divided into watermarking and �ngerprinting. Watermarking
supplies digital objects with an identi�cation of origin; all objects are marked in the same
way. Fingerprinting, conversely, attempts to identify individual copies of an object by means
of embedding a unique marker in every copy that is distributed. If later an illegal copy is
found, the copyright owner can identify the buyer by decoding the hidden information (\traitor
tracing") [NFC94, PS96].

Since most objects to be protected by watermarking or �ngerprinting consist of audio or im-
age data, these data types have received most attention so far. A number of generic hiding tech-
niques have been developed whose e�ects are barely perceptible for humans but can withstand
tampering by data transformations that essentially conserve its contents [CKLS96, BGML96].

A common model and terminology for information hiding has been established at the 1996
Information Hiding Workshop [P�96]. An original, unaltered message is called covertext; the
sender Alice tries to hide an embedded message by transforming the covertext using a secret
key. The resulting message is called the stegotext and is sent to the receiver Bob. Similar to
cryptography, it is assumed that the adversary Eve has complete information about the system
except for a secret key shared by Alice and Bob that guarantees the security. However, the
model does not include a formal notion of security.

Our Approach. In this paper, we propose that steganography with a passive adversary is
a problem of hypothesis testing and introduce a corresponding information-theoretic notion of
security. Upon observing a message sent by Alice, the adversary has to decide whether it is
an original covertext C or contains an embedded message and is a stegotext S. This is the
problem of distinguishing two di�erent explanations for the observed data that is investigated
in statistics and in information theory as \hypothesis testing." We follow the non-Bayesian
approach between statistics and information theory advocated by Blahut [Bla87], based on the
relative entropy function as the basic measure of the information contained in an observation.
Thus, we use the relative entropy D(PCkPS) between PC and PS to quantify the security of a
steganographic system (or stegosystem for short) against passive attacks. If the covertext and
stegotext distributions are equal and D(PCkPS) = 0, the stegosystem is perfectly secure and
the adversary can have no advantage over merely guessing without observing a message. This
parallels Shannon's notion of perfect secrecy for cryptosystems [Sha49].
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However, some caution has to be exerted using this model: On one hand, information-
theoretic methods have been applied with great success to the problems of information encoding
and transmission, starting with Shannon's pioneering work [Sha48]. Messages to be transmitted
are modeled as random processes and systems developed in this model perform well in practice,
which can easily be veri�ed. For information hiding, on the other hand, the relation between
the model and its validity is more involved. A message encrypted under a one-time pad,
for example, is indistinguishable from uniformly random bits and this is a perfectly secure
stegosystem according to our notion of security. But no warden would allow the prisoners to
use one-time pad encryption! Thus, the crucial issue for the validity of a formal treatment of
steganography is the accuracy of the model for real data.

Nevertheless, we believe that our model provides insight in steganography. We hope that
it also lays ground for further work to formalize active adversaries or computational security.
A model for active adversaries is presented by Ettinger [Ett98] and uses a game-theoretic
approach. A direct extension of our approach would be to model the covertext source as a
stochastic process and consider statistical estimation and decision techniques.

Related Work. Other information-theoretic treatments of steganography have been devel-
oped by Z�ollner et al. [ZFK+98] and by Mittelholzer [Mit99]. A discussion of their models with
respect to ours is included in Section 7. Another related work is a paper by Maurer [Mau96]
on unconditionally secure authentication [Mas91], which shows how Simmons' bound [Sim85]
and many other lower bounds in authentication theory can be derived and generalized using
the powerful tools of hypothesis testing.

Organization of the Paper. Hypothesis testing is presented in Section 2 from an information-
theoretic viewpoint. Section 3 contains the formal description of the model and the security
de�nition. In Section 4, we provide some examples of unconditionally secure stegosystems. A
universal information hiding scheme that requires no knowledge of the covertext statistics is
presented in Section 5. Some extensions of the approach are sketched in Section 6 and the
paper concludes with a discussion.

2 Review of Hypothesis Testing

We give a brief review of hypothesis testing and information-theoretic notions (cf. [Bla87,
CT91]). Logarithms are to the base 2. The cardinality of a set S is denoted by jSj. The
entropy of a random variable X with probability distribution PX and alphabet X is de�ned as

H(X) = �
X
x2X

PX(x) logPX(x):

The conditional entropy of X conditioned on a random variable Y is

H(XjY ) =
X
y2Y

PY (y)H(XjY = y)

where H(XjY = y) denotes the entropy of the conditional probability distribution PXjY=y. The
mutual information between X and Y is de�ned as the reduction of entropy that Y provides
about X, i.e., I(X;Y ) = H(X)�H(XjY ).

Hypothesis testing is the task of deciding which one of two hypotheses H0 or H1 is the true
explanation for an observed measurement Q. In other words, there are two plausible probability
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distributions, denoted by PQ0 and PQ1 , over the space Q of possible measurements. If H0 is
true, then Q was generated according to PQ0 , and if H1 is true, then Q was generated according
to PQ1 . A decision rule is a binary partition of Q that assigns one of the two hypotheses to each
possible measurement q 2 Q. The two errors that can be made in a decision are called a type
I error for accepting hypothesis H1 when H0 is actually true and a type II error for accepting
H0 when H1 is true. The probability of a type I error is denoted by �, the probability of a type
II error by �.

A method for �nding the optimum decision rule is given by the Neyman-Pearson theorem.
The decision rule is speci�ed in terms of a threshold parameter T ; � and � are then functions
of T . The theorem states that for a threshold T 2 R and �xed maximal tolerable probability
� of type II error, � can be minimized by assuming hypothesis H0 for an observation q 2 Q if
and only if

log
PQ0(q)

PQ1(q)
� T: (1)

In general, many values of T must be examined to �nd the optimal decision rule. The term on
the left hand side in (1) is called the log-likelihood ratio.

Relative Entropy. An important information measure in hypothesis testing is the relative
entropy or discrimination between two probability distributions PQ0 and PQ1 , de�ned as

D(PQ0kPQ1) =
X
q2Q

PQ0(q) log
PQ0(q)

PQ1(q)
(2)

(with the standard conventions that 0 log 0 = 0 log 0
0 = 0 and p log p

0 =1 if p > 0).
The conditional relative entropy between PQ0 and PQ1 given a random variable V is de�ned

as

D(PQ0jV kPQ1jV ) =
X
v2V

PV (v)
X
q2Q

PQ0jV=v(q) log
PQ0jV=v(q)

PQ1jV=v(q)
: (3)

The relative entropy between two distributions is always nonnegative and is 0 if and only
if the distributions are equal. Although relative entropy is not a true distance measure in the
mathematical sense because it is not symmetric and does not satisfy the triangle inequality, it
can be useful to think of it as a distance. The binary relative entropy d(�; �) is

d(�; �) = � log
�

1� �
+ (1� �) log

1� �

�
:

Relative entropy and hypothesis testing are linked through the Neyman-Pearson theorem
above because the expected value of the log-likelihood ratio in (1) with respect to PQ0 is equal
to the relative entropy D(PQ0kPQ1). The following standard result shows that deterministic
processing cannot increase the relative entropy between two distributions.

Lemma 1. Let PQ0 and PQ1 be probability distributions over Q. For any function f : Q ! T ,
let T0 = f(Q0) and T1 = f(Q1). Then

D(PT0kPT1) � D(PQ0kPQ1):
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Because deciding between H0 and H1 is a special form of processing by a binary function,
the type I and type II error probabilities � and � satisfy

d(�; �) � D(PQ0kPQ1): (4)

This bound is typically used as follows: Suppose that D(PQ0kPQ1) < 1 and that there is a
given upper bound on the type I error probability �. Then (4) yields a lower bound on the
type II error probability �. For example, � = 0 implies that � � 2�D(PQ0

kPQ1
).

If an experiment is repeated independently n times, an appropriate statistical test will cause
the errors to decrease exponentially in n. Stein's Lemma, an asymptotic version of (4), shows
that for a �xed upper bound on the type I error probability, the exponent of the type II error
probability achieves D(PQ0kPQ1) but cannot be made better.

Lemma 2 (Stein's Lemma). Let X1; : : : ;Xn be independent and identically distributed ac-
cording to PX and consider the hypothesis test between the alternatives PX = PQ0 or PX = PQ1 .
For given �, let ��n be the smallest achievable type II error probability over all decision rules
with the property that the type I error does not exceed �. Then

lim
n!1

1

n
log ��n = �D(PQ0kPQ1):

Stronger results of this type can be shown, see the survey by Csisz�ar [Csi98]; it is also
possible to weaken the independence assumption from memoryless sources to �nite Markov
chains [Nat85].

Allowing Side Information. The case is similar for a generalized hypothesis testing sce-
nario, where the distributions PQ0 and PQ1 depend on knowledge of an additional random
variable V . The probability distributions, the decision rule, and the error probabilities are now
parameterized by V . In other words, the probability distributions are PQ0jV=v and PQ1jV=v for
all v 2 V, the decision rule may depend on the value v of V , and the error probabilities are �(v)
and �(v) for each v 2 V. Let the average type I and type II errors be � =

P
v2V PV (v)�(v) and

� =
P

v2V PV (v)�(v). It follows from the Jensen inequality and from (4) that

d(�; �) � D(PQ0jV kPQ1jV ): (5)

Useful properties. We note the following two properties of relative entropy. The �rst one
connects entropy, relative entropy, and the size of the alphabet for any random variable X 2 X :
If PU is the uniform distribution over X , then

H(X) +D(PXkPU ) = log jX j: (6)

The second one states that conditioning on derived information (with equal distribution) can
only increase the discrimination: If there is a deterministic function f : Q ! V such that the
random variables f(Q0) and f(Q1) have the same distribution PV , then [Bla87]

D(PQ0kPQ1) � D(PQ0jV kPQ1jV ): (7)
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Figure 1: The model of a secret-key stegosystem with passive adversary. It shows the environ-
ment Y , the embedded message E, the covertext C, the stegotext S, Alice's private random
source R, and the secret key K shared by Alice and Bob. Alice is either sending covertext C
or stegotext S.

3 Model

Setting. Figure 1 shows our model of a stegosystem. Assume for the moment that the
environment Y is �xed. Eve observes a message that is sent from Alice to Bob. She does not
know whether Alice sends legitimate covertext C or stegotext S containing hidden information
for Bob. We model this by letting Alice operate strictly in one of two modes: either she is
active and her output is S or she is inactive and sends covertext C.

If Alice is active, she transforms C to contain an embedded message E using a secret key K.
(Alternatively, Alice could also generate C herself.) Alice may use a private random source R
for embedding. The output of the hiding process is the stegotext S. Bob's decoder outputs an
estimate Ê for E using his knowledge of the stegotext S and from the key K; in order for the
stegosystem to be e�ective, Ê must provide information about E.

Expressed in terms of entropy, the system satis�es:

1. H(SjCEKRY ) = 0. The stegotext is determined uniquely by Alice's inputs.

2. H(EjY ) > 0. There is uncertainty about the embedded message.

3. I(E; ÊjSKY ) > 0. Bob must be able to get information about the embedded message.

If Alice is inactive, she sends covertext C and no embedding takes place. The embedding
mechanism, E, K, and R can be thought of as absent.

It may be that C consists of multiple messages sent from Alice to Bob. We explicitly address
the case where covertext and stegotext consist of independently repeated experiments; here,
Alice is either active or passive in all repetitions. Otherwise, if Alice sends multiple dependent
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messages to Bob and at least one of them contains hidden information, she is considered active
and S consists of the concatenation of all her messages.

The probability distributions are assumed to be known to all parties if not stated otherwise.
In addition, Bob knows whether Alice is active or not.

Eve, upon observing the message sent by Alice, has to decide whether it was generated ac-
cording to the distribution of the innocent covertext C or according to the modi�ed distribution
of the stegotext S, i.e., whether Alice is active. Since this task is a hypothesis testing problem,
we quantify the security of a stegosystem in terms of the relative entropy distance between PC
and PS .

De�nition 1. A stegosystem as introduced above with covertext C and stegotext S is called
�-secure against passive adversaries if

D(PCkPS) � �:

If � = 0, the stegosystem is called perfectly secure.
When covertext C and stegotext S consist of n independently repeated experiments, the

security is measured in terms of the normalized relative entropy between PC and PS and the
stegosystem is said to be �-secure against passive adversaries whenever

1

n
D(PCkPS) � �:

It is sometimes appropriate to relax the above model of the embedding process and allow
for a deterministic processing of C by Alice, resulting in an encoding Z, before the actual
embedding takes place. In this case, Z is sent over the public channel and the relevant quantity
is the relative entropy between PZ and PS . If C consists of a sequence of independent random
variables, we still use normalized relative entropy even if Z has arbitrary distribution.

Bounds on Detection Performance. Consider Eve's decision process for a particular de-
cision rule, given by a binary partition (C0; C1) of the set C of possible covertexts. She decides
that Alice is active if and only if the observed message c is contained in C1. Ideally, she would
always detect a hidden message. (But this occurs only if Alice chooses an encoding such that
valid covertexts and stegotexts are disjoint.) If Eve fails to detect that she observed stegotext S,
she makes a type II error; its probability is denoted by �.

The opposite error, which usually receives less attention, is the type I error: Eve decides that
Alice sent stegotext although it was a legitimate cover message C; this probability is denoted
by �. An important special case is that Eve makes no type I error and never accuses Alice of
sending hidden information when she is inactive (� = 0). Such a restriction might be imposed
on Eve by external mechanisms, justi�ed by the desire to protect innocent users.

Lemma 1 imposes a bound on the achievable error probabilities by Eve. From (4) we obtain
the following result.

Proposition 3. In a stegosystem that is �-secure against passive adversaries, the probability �
that the adversary does not detect the presence of the embedded message and the probability �
that the adversary falsely announces the presence of an embedded message satisfy

d(�; �) � �:

In particular, if � = 0, then

� � 2��:
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In a perfectly secure system we have D(PCkPS) = 0 and therefore PC = PS ; thus, Eve can
obtain no information about whether Alice is active by observing the message.

Moreover, Stein's lemma can be applied to a stegosystem that consists of n independent
repetitions of an �-secure stegosystem (i.e., C and S are memoryless sources and Alice is either
always active or always passive). It follows that the performance of an optimal statistical test
by Eve is determined by the discrimination between the covertext and the stegotext and the
type II error exponent is bounded by ��.

Proposition 4. Let C = (C1; : : : ; Cn) and S = (S1; : : : ; Sn) denote the covertext and stegotext
of an �-secure stegosystem that consist of independently repeated experiments. Then for any �xed
bound � on the probability that the adversary falsely detects an embedded message, the smallest
achievable error probability ��n of not detecting an embedded message satis�es ��n

1=n � 2���o(n):

An Example. Suppose Alice is given a digital image m that she is permitted to send to
Bob. Using a perceptional model, she has determined a set M of equivalent images that are
visually indistinguishable from m. Regardless of whether Alice is active or not, she will send
a randomly chosen element of M and this de�nes the probability space underlying C. Note
that in our model, the adversary knows at least M and possibly also m. Alice can use the
techniques described below for embedding information; however, to achieve robustness against
active adversaries who modify the image, more sophisticated coding methods are necessary,
e.g. [CKLS96, BS98].

Incorporating the Environment. It may be the case that external events inuence the
covertext distribution; for example, a news report or the local weather if we think of the prison-
ers' problem. This external information is denoted by Y and known all participants. Our model
and the security de�nition above are then as follows. All quantities involved are conditioned on
knowledge of Y and we consider the average error probabilities � =

P
y2Y PY (y)�(y) for the

type I error and � =
P

y2Y PY (y)�(y) for the type II error, where �(y) and �(y) denote the
type I and type II error probabilities for Y = y, respectively.

De�nition 2. A stegosystem with external information Y , covertext C, and stegotext S is
called �-secure against passive adversaries if

D(PCjY kPSjY ) � �:

It follows from (5) that the average error probabilities satisfy d(�; �) � �, similar to Propo-
sition 3.

We now show that perfectly secure stegosystems exist for particular sources of covertext.
We start with especially simple (or unrealistic) covertext distributions and consider arbitrary
and unknown covertext statistics later.

4 Unconditionally Secure Stegosystems

The above model tells us that we obtain a secure stegosystem whenever the stegotext distri-
bution is close to the covertext distribution without knowledge of the key. The embedding
function depends crucially on knowledge about the covertext source. We assume �rst that the
covertext distribution is known and design corresponding embedding functions.
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One-Time Pad. If the covertext consists of independent and uniformly random bits, then
the one-time pad provides a perfectly secure stegosystem. For completeness, we briey describe
this system formally.

Assume the covertext C is a uniformly distributed n-bit string for some positive n. The key
generator chooses the n-bit key K with uniform distribution and sends it to Alice and Bob.
The embedding function (if Alice is active) consists of the bitwise XOR of the particular n-bit
message e and K, thus S = e�K, and Bob can decode by computing e = S�K. The resulting
stegotext S is uniformly distributed in the set of n-bit strings and therefore D(PCkPS) = 0.
Thus, the one-time pad provides perfect steganographic security if the covertext is uniformly
random.

As a side remark, we note that this one-time pad system is equivalent to the basic scheme of
visual cryptography [NS95]. This technique hides a monochrome picture by splitting it into two
random layers of dots. When these are superimposed, the picture appears. It is also possible
to produce two innocent looking pictures such that both of them together reveal an embedded
message.

General Distributions. For arbitrary covertext distributions, we now describe a system that
embeds a one-bit message in the stegotext as an example. The extension to larger message spaces
is straightforward, but requires even more accurate knowledge of the covertext distribution. Let
the covertext C with alphabet C have distribution PC . Alice constructs the embedding function
from a partition of C into two parts such that both parts are assigned approximately the same
probability under C. In other words, let

C0 = min
C0�C

����X
c2C0

PC(c)�
X
c62C0

PC(c)

���� and C1 = C n C0:

Alice and Bob share a one-bit key K 2 f0; 1g. De�ne C0 to be the random variable with
alphabet C0 and distribution PC0 equal to the conditional distribution PCjC2C0 and de�ne C1

similarly over C1. Then Alice computes the stegotext to embed a message e 2 f0; 1g as

S = Ce�K :

Bob can decode the message because he knows that e = 0 if and only if S 2 CK .

Theorem 5. The one-bit message stegosystem described above is

1

ln 2

�
Pr[C 2 C0]� Pr[C 2 C1]

�2
secure against passive adversaries.

Proof. Let Æ = Pr[C 2 C0]� Pr[C 2 C1]. We show only the case Æ > 0. It is straightforward to
verify that

PS(c) =

(
PC(c)=(1 + Æ) if c 2 C0,

PC(c)=(1 � Æ) if c 2 C1.
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It follows that

D(PCkPS) =
X
c2C

PC(c) log
PC(c)

PS(c)

=
X
c2C0

PC(c) log(1 + Æ) +
X
c2C1

PC(c) log(1� Æ)

=
1 + Æ

2
� log(1 + Æ) +

1� Æ

2
� log(1� Æ)

�
1 + Æ

2
�
Æ

ln 2
+
1� Æ

2
�
�Æ

ln 2
= Æ2= ln 2

using the fact that log(1 + x) � x= ln 2.

A remark on data compression techniques. Suppose the embedding as described above takes
place before compression is applied to S (or C). Data compression is a deterministic process.
Therefore, Lemma 1 applies and shows that if we start with an �-secure stegosystem, the security
of the compressed system is also at most �. To put it another way, data compression can never
hurt the security of a stegosystem and it does not make detection any easier for the adversary.

5 Steganography with Universal Data Compression

The stegosystems described in Section 4 assume that the covertext distribution is known to
all parties. This seems not realistic for many applications. However, if we allow our covertext
data to consist of independent repetitions of the same experiment, we can apply universal data
compression algorithms that do not su�er from this limitation. We show how they can be
modi�ed for steganography and illustrate this for a particularly simple algorithm.

Traditional data compression techniques, such as Hu�man coding, require a priori knowledge
about the distribution of the data to be compressed. Universal data compression algorithms
treat the problem of source coding for applications where the source statistics are a priori
unknown or vary with time. A universal data compression algorithm achieves asymptotically
optimal performance on every source in some large class of sources, characterized by an ergod-
icity condition. This is accomplished by learning the statistics of the data during operation as
more and more data is observed. The best known examples of universal data compression are
the practical algorithms by Lempel and Ziv [ZL77, WZW98, BCW90].

Throughout this section we assume the environment Y is �xed.

The Method of Types. One of the fundamental concepts of information theory is themethod
of types [CK81, Csi98]. It leads to simple proofs for the asymptotic equipartition property (AEP)
and many other important results. The AEP states that the set of possible outcomes of n
independent, identically distributed realizations of a random variable X can be divided into a
typical set and a non-typical set, and that the probability of the typical set approaches 1 with
n ! 1. Furthermore, all typical sequences are almost equally likely and the probability of a
typical sequence is close to 2�nH(X).

Let xn be a sequence of n symbols from X . The type or empirical probability distribution
Uxn of xn is the mapping that speci�es the relative proportion of occurrences of each symbol

x0 2 X in xn, i.e., Uxn(x0) =
Nx0 (x

n)
n , where Nx0(x

n) is the number of times that x0 occurs in
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the sequence xn. The set of types with denominator n is denoted by Un and for U 2 Un, the
type class fxn 2 X n : Uxn = Ug is denoted by T (U).

The following standard result summarizes the basic properties of types.

Theorem 6 ([CK81, CT91]). Let Xn = X1; : : : ;Xn be a sequence of n independent and
identically distributed random variables with distribution PX and alphabet X and let Un be the
set of types. Then

1. The number of types with denominator n is at most polynomial in n, more particularly
jUnj � (n+ 1)jX j:

2. The probability of a sequence xn depends only on its type and is given by PXn(x
n) =

2�n(H(Uxn )+D(UxnkPX)):

3. For any U 2 Un, the size of the type class T (U) is approximately 2nH(U). More precisely,
1

(n+1)jXj 2
nH(U) � jT (U)j � 2nH(U):

4. For any U 2 Un, the probability of the type class T (U) is approximately 2�nD(UkPX). More
precisely, 1

(n+1)jXj 2
�nD(UkPX) � Pr[Xn 2 T (U)] � 2�nD(UkPX):

The Data Compression Algorithm. A universal coding scheme for a memoryless source X
works as follows. Fix a rate R < log jX j and let Rn = R�jX j log(n+1)

n . De�ne a set of sequences
An = fxn 2 X n : H(Uxn) � Rng. The block code is given by an enumeration 0; : : : ;M � 1
of the elements of An. In other words, the encoder maps a sequence Xn to a codeword Z if
the entropy of the type of Xn does not exceed Rn and to a default value � otherwise. Using
the concept of types it is very easy to show using the �rst and the third property of types
that jAnj � 2nR and therefore dnRe bits are suÆcient to encode all xn 2 An [CK81, CT91].
Moreover, if H(X) < R then values outside An occur only with exponentially small probability

and the error probability p
(n)
e = Pr[Z = �] satis�es

p(n)e � (n+ 1)jX j2�nminU:H(U)>Rn D(UkPX): (8)

The following observation is needed below. Because codewords can be decoded uniquely, we
have

H(XnjZ) = Pr[Z 6= �]H(XnjZ) + Pr[Z = �]H(XnjZ) � p(n)e nH(X):

Together with H(Xn) = H(XnZ) = H(Z) +H(XnjZ), it follows

H(Z) � nH(X)(1 � p(n)e ): (9)

A Universal Information Hiding Scheme. Suppose the covertext consists of n indepen-
dent realizations of a random variableX. The universal hiding scheme applies data compression
as described above and possibly embeds hidden information if Alice is active.

Given R and n, Alice maps the incoming covertext Xn to its index Z 2 f0; : : : ;M � 1g.
W.l.o.g. assume Z is a binary m-bit string and m = dlogMe; further, let the key K be an `-bit
string and the particular message e to be embedded an `-bit string with ` � m.

If Alice is active, she outputs S = Z�(e�Kk0m�`), otherwise she outputs C = Z unmodi�ed
(where k denotes the concatenation of bit strings).

Bob recovers the embedded message as Ê = Z �Kk0m�`.
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Theorem 7. Let covertext C = (X1; : : : ;Xn) consist of n identical and independently repeated
experiments with distribution PX and let � > 0. Then the algorithm above implements a uni-
versal stegosystem that is �-secure against passive adversaries and hides an `-bit message with
` � nH(X) for n suÆciently large.

Proof. It is clear from the description that the scheme satis�es the �rst two conditions of a
stegosystem. It remains to show that it is �-secure and that Ê provides information about E.

Let R = H(X) + �=2. Then

m = dnRe � dnH(X) + n�=2e: (10)

The codeword Z is distributed according to the output of the compression algorithm. Let
T = Z[m�`+1;:::;m] denote the suÆx of Z of lengthm�` bits. Because S has the same distribution
as Z with the exception that it is uniform over all strings with a particular m� `-bit suÆx, we
have for all s

PS(s) = 2�` PT (s[m�`+1;:::;m]): (11)

We now derive a bound on D(PZkPS) according to the remarks after De�nition 1. Since T
has the same distribution regardless of whether Alice is active or not, we can apply (7), followed
by (11) and (6) to obtain

D(PZkPS) � D(PZjT kPSjT )

=
X
t

PT (t)D(PZjT=tkPSjT=t)

=
X
t

PT (t)
�
`�H(ZjT = t)

�
= `�H(ZjT ): (12)

Because each Z uniquely determines its suÆx T , which is an `�m-bit value, we have

H(ZjT ) = H(ZT )�H(T ) = H(Z)�H(T ) � H(Z)� (m� `): (13)

Combining (12) and (13) gives

D(PZkPS) � m�H(Z): (14)

Now insert (10) and (9) into (14) to obtain

1

n
D(PZkPS) �

1

n

�
dnH(X) + n�=2e � nH(X)(1 � p(n)e )

�
�

1

n

�
p(n)e nH(X) + n�=2 + 1

�
= p(n)e H(X) + �=2 +

1

n
:

Since Rn approaches R from below and R > H(X), it follows that for all suÆciently large
n, also Rn > H(X) and the value minU :H(U)>Rn D(UkPX ) in the exponent in (8) is strictly
positive. This implies that the last expression is smaller than � for all suÆciently large n and
that the stegosystem is indeed �-secure.

It is easy to see that Bob recovers E from Ê whenever Z 6= �, which occurs with probability

at least 1 � p
(n)
e . Thus, the probability of a decoding error is exponentially small by (8) and

the remark above.
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6 Extensions

The presented information-theoretic model can be considered as one particular example of a sta-
tistical model. Other methods from statistics seem useful for a formal treatment of steganogra-
phy as well. If one introduces valuations for the possible decisions, tools from statistical decision
theory can be applied and allow for reasoning about the cost of the involved actions [Ber85]. As
noted before, another extension more on the grounds of information theory would be to model
the covertext source as an ergodic process.

Simmons' original scenario of the prisoners' problem includes authentication, that is, the
secret key K shared by Alice and Bob is partially used for authenticating Alice's messages.
The reason for this is that Alice and Bob want to protect themselves (and are allowed to
do so) from a malicious warden that tries to fool Bob into accepting fraudulent messages as
originating from Alice. This implies some changes to the model. Denote the part of the key used
for authentication by V . Then, for every value v of V , there is a di�erent covertext distribution
PCjV=v induced by the authentication scheme in use. However, since the adversary Eve does not
know V , the covertext distribution to consider for detection is PC as the marginal distribution
induced by PCV . Note that this model di�ers from the general scenario with an active adversary;
there, the adversary succeeds if she can destroy the embedded hidden information (as is the
case in copyright protection applications, for example). Here, the prisoners are only concerned
about hiding information in messages that may be authenticated to detect tampering.

7 Discussion

The approach of this paper is to view steganography with a passive adversary as a problem of
hypothesis testing because the adversary succeeds if he merely detects the presence of hidden
information.

Other information-theoretic models for steganography have been proposed in the literature
and take a slightly di�erent view:

� Z�ollner et al. [ZFK+98] correctly recognize that breaking a steganographic system means
detecting the use of steganography to embed a message. However, they formally require
only that knowledge of the stegotext does not decrease the uncertainty about an embedded
message, similar to Shannon's notion of perfect secrecy for cryptosystems.

� Mittelholzer [Mit99] considers steganography (with a passive adversary) and watermark-
ing (with an active adversary). A stegosystem is required to provide perfect secrecy for the
embedded message in sense of Shannon, and an encoder constraint is imposed in terms of
a distortion measure between covertext and stegotext. The expected mean squared error
is proposed as a possible distortion measure.

Although these conditions may be necessary, they are not suÆcient to guarantee undetectable
communication, as can be seen from the following stegosystem.

Let the covertext consist of an m-bit string with even parity that is otherwise
uniformly random (m � 2). A ciphertext is computed as the XOR of the one-bit
message and a one-bit random secret key; this is a random bit. Then the �rst bit
of the covertext is replaced by the ciphertext and the last bit is adjusted such that
the parity of the stegotext is odd.
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Clearly, the scheme provides perfect secrecy for the message. The squared error distortion
between covertext and stegotext is 1=m and vanishes as m!1. Yet, an adversary can easily
detect the presence of an embedded message with certainty. Our model from Section 3 reects
this fact adequately and considers such a scheme to be completely insecure (the discrimination
is in�nite).

As already mentioned in the introduction, the assumption of a �xed covertext distribution
seems to render our model somewhat unrealistic for the practical purposes of steganography.
But what are the alternatives? Should we rather study the perception and detection capabilities
of human cognition since most cover data (images, text, sound) is ultimately intended for
human receivers? Viewed this way, steganography could fall entirely into the realms of image,
language, and audio processing or arti�cial intelligence in general. However, it seems that
the information-theoretic model or other formal approaches will ultimately be more useful for
deriving statements about the security of information hiding schemes|and a formal security
notion is one of the main reasons for introducing a mathematical model of steganography.
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