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Abstract: A new reduced-complexity decoding algorithm for low-density parity-check codes that
operates entirely in the log-likelihood domain is presented. The computationally expensive
check-node updates of the sum-product algorithm are simplified by using a difference-metric
approach on a two-state trellis and by employing the dual-max approximation. The dual-max
approximation is further improved by using a correction factor that allows the performance to
approach that of full sum-product decoding.

 



Introduction

A binary low-density parity-check (LDPC ) code [1, 2] is a linear  code described by an (N, K)
 parity-check matrix . Iterative decoding of binary LDPC codes [1] has become a topic ofM %N H

increasing interest after it was recognized that these codes can achieve very good performance on
binary-input memoryless channels such as the binary symmetric channel or the additive white
Gaussian noise channel [2, 3]. The most commonly used method for decoding LDPC codes is the
so-called “sum-product” algorithm (SPA) (cf. [2] and references therein), which is best described
by using the bipartite graph associated with the parity-check matrix . This graph has two kindsH
of nodes:  symbol nodes, corresponding to each bit in the codeword , and  check nodes,N x M
corresponding to the parity checks represented by the rows of the matrix .pcm(x), 1 [ m [ M, H
Each symbol node is connected to the check nodes it participates in, and each check node is
connected to the symbol nodes it checks. The SPA operates by passing messages between symbol
nodes and check nodes. The messages themselves can be a posteriori probabilities (APP) or
log-likelihood ratios (LLR). A convenient and commonly used message-passing schedule
alternately computes updates of all symbol node and of all check node messages.

Recently, a simplification of the SPA has been proposed [3] that reduces its high computational
cost at the price of some loss in performance. In this report, a novel simplified SPA is presented
that operates entirely in the LLR domain and offers a substantial reduction in complexity with
essentially the same performance as the full SPA. Such an algorithm can be used for iteratively
decoding LDPC encoded data over the AWGN channel but also in applications in which LLRs are
used to exchange soft reliability information between the inner and the outer decoders in a serially
concatenated system [4].

The Sum-Product Algorithm (SPA)

Following the notation in [2, 3], let  be the set of bits that participate inN(m)= {n : Hm,n = 1}
check  and let  be the set of checks in which bit  participates. Them, M(n)= {m : Hm,n = 1} n
exclusion of an element  from  or  from  is denoted by  or ,n N(m) m M(n) N(m)\n M(n)\m
respectively, and  is the transpose of . Finally, we denote by  the receivedHT H y= [y1, ..., yN]
sequence that corresponds to the transmitted codeword . The inputs to the LDPCx = [x1, ..., xN]
decoder consist of LLRs  or, equivalently, of APPs ln(P(xn = 1| yn)/P(xn = 0| yn))

, which are determined by the channel statistics. The SPA is anP(xn = 1| yn) and P(xn = 0| yn)
iterative algorithm using this soft information as inputs. In the initial step of the SPA, each symbol
node generates messages  for , and passes them to all check nodes  that aren qm,n(x) x = 0, 1 m
connected to symbol node , i.e., n

Initialization:  for   . qm,n(x)= P(xn = x | yn) x = 0, 1

The core of the SPA consists of two local update rules for check and symbol nodes [1], [2]. The
update of the messages sent from check node  to all symbol nodes  is given bym n cN(m)

Step 1 (check-node update): For each  and , and for , computem n cN(m) x = 0, 1
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rm,n(x)= S
{xnÂ:nÂcN(m)\n}

P(pcm(x)= 0 | xn = x, {xnÂ : nÂcN(m)\n}) P
nÂcN(m)\n

qm,nÂ(xnÂ),

where the conditional probability in the summation is an indicator function that indicates whether
the  check-sum is satisfied given the hypothesized values for  and .m-th xn {xnÂ}

The update of the messages sent from symbol node  to all check nodes  is given byn m cM(n)

Step 2 (symbol-node update): For each , and , and for , updaten m cM(n) x = 0, 1

qm,n(x)=lm,nP(xn = x | yn) P
mÂcM(n)\m

rmÂ,n(x),

where the constant  is chosen such that . The SPA then computes forlm,n qm,n(0)+ qm,n(1)= 1
each  and for , the “pseudoposterior probabilities”  as n x = 0, 1 qn($)

qn(x)=lnP(xn = x | yn) PmcM(n)
rm,n(x), (1)

where the constant  is chosen such that .ln qn(0)+ qn(1)= 1

In the final decoding step the SPA performs the following procedure:

Step 3: (a) Quantize  such that  if , and  if x= [x1,¬ , xN] x n = 1 qn(1)> 0.5 x n = 0
.qn(1)[ 0.5

(b)  If , then stop and  is the decoder output; otherwise go to Step 1.xHT = 0 x
(c)  Declare a failure if the algorithm does not halt within some maximum 
number of iterations.

In general, each check-sum  can be viewed as a single-parity check code on the pcm(x) k = |N(m)|
symbols it checks. The node messages  of Step 1 can be regarded as extrinsic informationrm,n(x)
for  given the statistics . These messages can be computed by the forward-backwardxn qm,n($)
algorithm [2] on the two-state trellis of the single-parity check code. In the probability domain,
the  branch metrics of the two-state trellis corresponding to check node  is given by .ith m qm,i(x)
The metrics  of states  at time  in the forward recursion of the BCJR are updated byai(s) s = 0, 1 i
(where  denotes addition modulo 2):/

forward recursion:   For i = 1,¬ , k − 1 and x = 0, 1

ai(x)=ai− 1(0)qm,i(x)+ ai− 1(1)qm,i(x/ 1) ; (2)

with initial condition . For a fixed time , the state metric  is a probabilitya0(0)= 1, a0(1)= 0 i ai($)
distribution, viz.,  is the probability of reaching state  in the forward recursion, when eachai(s) s
branch is chosen according to the branch metric (probability) .  Similar update rules holdqm,n(x)
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for the state metrics  of the backward recursion, which again have an interpretation asbi(s)
probabilities. In particular the backward recursion of the two-state BCJR algorithm is updated by 

backward recursion:  For i = (k − 1),¬ , 1 and x = 0, 1

bi(0)= bi+ 1(0)qm,i+ 1(x)+ bi+ 1(1)qm,i+ 1(x/ 1) ;

with the initial condition The combining pass of the BCJR algorithm yieldsbk(0)= 1, bk(1)= 0.
the messages that are sent from check node  to symbol node and is given bym n cN(m)

combining recursion: For i = 1,¬ , k and x = 0, 1

rm,i(x)=ai− 1(0)bi(x)+ ai− 1(1)bi(x / 1) .

Simplified SPA Using Log-likelihood Ratios 

It is possible to use LLRs as messages instead of APPs. This allows us to replace multiplications
in Step 2 of the SPA with additions. Step 3 can also be easily adapted for LLRs. The
simplifications derived in this paper allow one to efficiently use LLRs also in Step 1 without
converting between LLRs and APPs. 

In the LLR domain, we define

     and     . dA i í ln ai(1)
ai(0) dB i í ln bi(1)

bi(0)

We will also make use of the following LLRs:

      and    . km,i í ln
qm,i(1)
qm,i(0) Lm,i í ln

rm,i(1)
rm,i(0)

Note that the LLRs and  can be viewed as thedA i = lnai(1)− lnai(0) dB i = lnbi(1)− lnbi(0)
forward and backward difference metrics in the log domain, respectively. The application of a
difference-metric approach to the dual-max detector for partial-response class IV channels has
been proposed in [5]. In this report, we consider the two-state parity-check trellis and use the
difference of state metrics, i.e., the difference of logarithms, which is merely the LLR of the
probabilities. Using the difference metric definition , and the standard approximationdA i

  ,lnS
j

exp a j l max
j

a j

the forward recursion (2) can be rewritten as

3

 



    
dA i = ln

ai− 1(0)qm,i(1)+ ai− 1(1)qm,i(0)
ai− 1(0)qm,i(0)+ ai− 1(1)qm,i(1)

= ln{exp(km,i) + exp(dA i− 1)}− ln{1 + exp(km,i + dA i− 1)} (3)

l max{km,i, dA i− 1}− max{0, km,i + dA i− 1}

= { − sgn(dA i− 1)km,i if dA i− 1| > |km,i|
− sgn(km,i)dA i− 1 otherwise,

(4)

where  is the sign function. The backward and the combining recursions can be formulatedsgn($)
in a similar way. By replacing  and  with  and , respectively, the following LLRdA i dB i da i db i

version of the forward-backward algorithm is obtained:

initialization:  and   da0 = º dbk = º

forward recursion: For i = 2¬ k − 1

da i = { − sgn(da i− 1)km,i if da i− 1| > |km,i|
− sgn(km,i)da i− 1 otherwise

(5)

backward recursion: For i = k − 1 ¬ 1

db i = { − sgn(db i+ 1)km,i+ 1 if db i+ 1| > |km,i+ 1|
− sgn(km,i+ 1)db i+ 1 otherwise

(6)

combining recursion  For i = 1¬ k

Li = { − sgn(da i− 1)db i if dai− 1| > |db i|
− sgn(db i)da i− 1 otherwise

(7)

Correction Factor for the Dual-Max Approximation 

The simplified SPA that results from using Eqs. (5) to (7) for the check node updates will be
called the LLR-SPA because it operates entirely in the LLR domain. The LLR-SPA has a
somewhat lower performance than the full SPA. Following [6, 7], we can apply a correction
factor obtained from the Jacobian logarithm to improve the dual-max approximation in Eqs. (3) to
(4) while maintaining the low complexity. The Jacobian logarithm is given by 
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ln{exp(x)+ exp(y)}= max{x, y}+ ln{1 + exp(− |x − y|)}.
One can show that the approximation error, i.e., Eq. (3) minus Eq. (4), is given by the bivariate
function 

f(u, v)= ln 1+ exp(− | u− v|)
1+ exp(− | u+ v|) ,

where  and . Figure 1 shows a plot of the generic bivariate function . Inu = dA i− 1 v = km,i f(u, v)
practice,  can be approximated by using a single constant term , i.e., f(u, v) c

f(u, v)l {
c if |u + v| > 2|u − v| and |u − v| < 2
− c if |u − v| > 2|u + v| and |u + v| < 2
0 otherwise .

(8)

A similar correction factor applies to the approximations in the backward and combining
recursions. The constant  can be selected to maximize the performance gains in the region ofc
interest with respect to bit-error rate or signal-to-noise ratio. Figure 2 shows a plot of the
simplified bivariate function as given in (8) with . Finally, Figure 3 shows the performancec = 0.5
of the LLR-SPA with correction factor  for the additive white Gaussian noise channel usingc = 0.5
the same rate-1/2 LDPC code with  as in [3]. For comparison, the performance of the fullN = 504
SPA and LLR-SPA is also shown. The number of iterations for the two sets of curves shown is at
most 10 and 200, respectively. It can be seen that LLR-SPA with correction factor performs
within less than 0.05 dB of the full SPA. It can also be seen that the performance difference
between the full SPA and the low-complexity derivatives thereof decreases as the signal-to-noise
ratio increases.

Acknowledgments: We thank D. J. C. MacKay for providing the LDPC matrix for the code used
in this paper.
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Figure 1: Generic bivariate function . f(u, v)
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Figure 2: Simplified bivariate function .f(u, v)
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Figure 3. Performance of rate-1/2 LDPC code with N=504.
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