RZ 3318 (# 93364) 01/22/01
Computer Science 90 pages

Research Report

Specification of Dependable Trusted Third Parties

Christian Cachin (editor), Joy Algesheimer, Klaus Kursawe, Frank Petzold,
Jonathan A. Poritz, Victor Shoup and Michael Waidner

IBM Research
Zurich Research Laboratory
8803 Riischlikon

Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports
are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

== Research
= Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Specification of Dependable Trusted Third Parties

Christian Cachin (editor), Joy Algesheimer, Klaus Kursawe, Frank Petzold,
Jonathan A. Poritz, Victor Shoup and Michael Waidner

IBM Research, Zurich Research Laboratory, 8803 Riischlikon, Switzerland

Abstract

This document describes an architecture for secure service replication in an asynchronous net-
work like the Internet, where a malicious adversary may corrupt some servers and control the
network. The underlying protocols for Byzantine agreement and for atomic broadcast rely on
recent developments in threshold cryptography. These assumptions are discussed in detail and
compared to related work from the last decade. A formal model using concepts from modern
cryptography is developed, modular definitions for several broadcast problems are presented,
including reliable, atomic, and secure causal broadcast, and protocols implementing them.
Reliable broadcast is a basic primitive, also known as the Byzantine generals problem, provid-
ing agreement on a delivered message. Atomic broadcast imposes additionally a total order
on all delivered messages. A randomized asynchronous atomic broadcast protocol is presented
that maintains liveness and safety at the same time. It is based on a new efficient protocol for
multi-valued asynchronous Byzantine agreement with an external validity condition. Secure
causal broadcast extends atomic broadcast by encryption to guarantee a causal order among
the delivered messages. Furthermore, it is discussed how several distributed trusted applica-
tions can be realized using such an architecture: a digital notary service, a trusted third party
for fair exchange, a certification authority, and an authentication service.

Project IST-1999-11583

Malicious- and Accidental-Fault Tolerance
for Internet Applications

SPECIFICATION OF DEPENDABLE TRUSTED
THIRD PARTIES

Christian Cachin (editor)
IBM Research, Zurich Research Laboratory

MAFTIA deliverable D26

Public document

22 JANUARY 2001

Research Report RZ 3318, IBM Research, Zurich Research Laboratory

il

Editor
Christian Cachin

Contributors

Joy Algesheimer
Christian Cachin
Klaus Kursawe
Frank Petzold
Jonathan A. Poritz
Victor Shoup
Michael Waidner

Address of all authors:

IBM Research

Zurich Research Laboratory
Saumerstr. 4

CH-8803 Riischlikon
SWITZERLAND
http://www.zurich.ibm.com/

iii

v

Contents

1 Motivation

2 Model

2.1 Cryptography
2.2 No Timing Assumptions e
2.3 Static Server Set
24 Related Worko
2.5 Generalized Adversary Structures
2.5.1 Concept
2.5.2 Designing Protocols for General Adversary Structures
2.5.3 Differentiating Servers by Attributes
2.6 System Initializationo oL
2.6.1 Types of Cryptographic Keys
2.6.2 Key Generation By Trusted Dealer
2.6.3 Key Generation by Distributed Protocols

2.7 Relation to MAFTIA Middleware Architecture

Architecture

3.1 Formal Model
3.1.1 Basic System Model
3.1.2 Byzantine Agreement oL Lo
3.1.3 Cryptographic Primitives.

3.2 Broadcast Primitiveso oo

3.2.1 Reliable Broadcast

10
11
12
12
15
15
16
17

19

21

3.3

3.4

3.5

3.2.2 Verifiable Broadcast L0,
3.2.3 Consistent Broadcast L.
Validated Byzantine Agreement
3.3.1 Definition
3.3.2 Protocols for Binary Agreement
3.3.3 A Protocol for Multi-valued Agreement
3.3.4 A Constant-round Protocol for Multi-valued Agreement
Atomic Broadcasto L
3.4.1 Definition
3.4.2 A Protocol for Atomic Broadcast
3.4.3 Equivalence of Byzantine Agreement and Atomic Broadcast

Secure Causal Atomic Broadcast
3.5.1 Definition Lo

3.5.2 A Protocol for Secure Causal Atomic Broadcast

4 Applications

4.1
4.2
4.3
4.4

Digital Notary Services e
Fair Exchange TTPs
Certification Authority and Directory Service

Authentication Serviceo

5 Extensions

vi

68
70

73
73
76
80

81

83

Abstract

This document describes an architecture for secure service replication in an asynchronous
network like the Internet, where a malicious adversary may corrupt some servers and
control the network. The underlying protocols for Byzantine agreement and for atomic
broadcast rely on recent developments in threshold cryptography. These assumptions are
discussed in detail and compared to related work from the last decade. A formal model
using concepts from modern cryptography is developed, modular definitions for several
broadcast problems are presented, including reliable, atomic, and secure causal broadcast,
and protocols implementing them. Reliable broadcast is a basic primitive, also known
as the Byzantine generals problem, providing agreement on a delivered message. Atomic
broadcast imposes additionally a total order on all delivered messages. A randomized
asynchronous atomic broadcast protocol is presented that maintains liveness and safety
at the same time. It is based on a new efficient protocol for multi-valued asynchronous
Byzantine agreement with an external validity condition. Secure causal broadcast extends
atomic broadcast by encryption to guarantee a causal order among the delivered messages.
Furthermore, it is discussed how several distributed trusted applications can be realized
using such an architecture: a digital notary service, a trusted third party for fair exchange,
a certification authority, and an authentication service.

vii

viii

1 Motivation

Distributed systems running in error-prone and adversarial environments must rely
on trusted components. In today’s Internet these are typically directory and authorization
services like the domain name system (DNS), Kerberos, certification authorities, or secure
directories accessed through LDAP. Building such centralized trusted services has turned
out to be a valuable design principle for computer security because the trust in them can
be leveraged to many, diverse applications that all benefit from centralized management.
Often, a trusted service is implemented as the only task of an isolated and physically
protected machine.

Unfortunately, centralization introduces a single point of failure. Even worse, it is
increasingly difficult to protect any single system against the sort of attacks proliferating
on the Internet today. One established way for enhancing the fault tolerance of centralized
components is to distribute them among a set of servers and to use replication algorithms
for masking faulty servers. Thus, no single server has to be trusted completely and the
overall system derives its integrity from a majority of correct servers.

In this report, we describe an architecture for distributing trusted services among a
set, of servers that guarantees availability and integrity of the services despite some servers
being under control of an attacker or failing in arbitrary malicious ways. Our system
model is characterized by a static set of servers, completely asynchronous point-to-point
communication, and the use of modern cryptographic techniques. Trusted applications
are implemented by deterministic state machines replicated on all servers and initialized
to the same state. Client requests are delivered by an atomic broadcast protocol that
imposes a total order on all requests and guarantees that the servers perform the same
sequence of operations; such atomic broadcast can be built from a randomized protocol to
solve Byzantine agreement. We use efficient and provably secure agreement and broadcast
protocols that have recently been developed.

In the first part of the report (Chapter 2), we provide a detailed discussion of these
assumptions, compare them to related efforts from the last decade, and argue why we be-
lieve that these choices are adequate for trusted applications in an Internet environment.
We also review the threshold failure assumptions and show how to extend them to gen-
eralized adversary structures, which allow for more adequate representation of real-world
failure and trust assumptions (Section 2.5). System initialization is discussed in Section 2.6
and the relation to the MAFTIA middleware architecture [64] is described in Section 2.7.

In Chapter 3, a detailed description of our protocol architecture is given. We develop
a formal model using concepts from modern cryptography, present modular definitions for
several broadcast problems, including reliable, atomic, and secure causal broadcast, and
present protocols implementing them. Reliable broadcast is a basic primitive, also known

as the Byzantine generals problem, providing agreement on a delivered message. Atomic
broadcast imposes additionally a total order on all delivered messages. We present the first
randomized asynchronous atomic broadcast protocol that maintains liveness and safety at
the same time. It is based on a new efficient protocol for multi-valued asynchronous
Byzantine agreement with an external validity condition. Secure causal broadcast extends
atomic broadcast by encryption to guarantee a causal order among the delivered messages.

We describe several possible applications of our architecture to trusted services in
more detail in Chapter 4:

Certification authority and directory service: All public-key infrastructures (PKIs)
use certification authorities (CAs) for binding attributes to public keys; this is done in
the form of digital signatures issued by the CA. More generally, any secure directory
service that uses signatures for authenticating the returned values can be realized by
similar mechanisms (e.g., DNS with authentication [25]). A PKI is a typical example
of a service that must be trusted and is exposed to malicious attacks on a global
scale.

Fair Exchange TTPs: The problem of fair exchange of digital items or signatures over
the Internet cannot be solved efficiently unless a trusted third party is used. So-called
optimistic protocols [2]| avoid calling the third party in regular executions where no
faults occur. They rely on the trusted party only to recover from problems. We give
the protocols for replicating a trusted third party for fair exchange in a distributed
system.

Notary service: We describe a simple digital notary and time-stamping service that acts
as a secure document registry with a logical clock; it assigns a sequence number to all
submitted documents in the order of submission. Such a service is necessary for fully
digitalizing legal processes such as filing patents. It must also prevent preliminary
disclosure of the document’s content before it is properly registered, as the process
of filing a patent application illustrates.

Authentication service: An authentication service has to verify the claimed identity of
a user. The user must present secret information that identifies her. If verification
succeeds, the service will take some action to grant the request, like establishing
a session or replying with a cryptographic token. Often, the answer contains a
freshly generated, random session key as in Kerberos; such an authentication server
is also called a key distribution center (KDC). The randomness is generated by a
cryptographically strong pseudorandom generator from a secret seed.

The report concludes in Chapter 5 with mentioning possible future extensions of
the model and the protocols.

2 Model

The system model described here is used for describing dependable trusted third-
party services in this report. It has to be seen in relation to the general model of the
MAFTIA middleware, described in a companion report [64]. Compared to the general
middleware architecture, the model used here makes many simplifications (asynchrony,
full connectivity, no particular network topology). On the other hand, it uses a much more
formal approach to the system model, in particular in Chapter 3 for describing the archi-
tecture and the secure protocols; this is necessary for reasoning about a secure distributed
system. Qur approach combines the formal models of cryptography and distributed sys-
tems.

Our system consists of a static set of n servers, of which up to ¢ may fail in completely
arbitrary ways, and an unknown number of possibly faulty clients. All parties are linked
by asynchronous point-to-point communication channels. Without loss of generality we
assume that all faulty parties are controlled by a single adversary, who also controls the
communication links and the internal clocks of all servers.

Faulty parties are called corrupted, the remaining ones are called honest. Thus, any
statement about the common state of the system can rely only on the honest parties, and
they proceed only to the extent that the adversary delivers messages faithfully. In short,
the network is the adversary.

Furthermore, there is a trusted dealer that generates and distributes secret values
to all servers once and for all, when the system is initialized. The system can process a
practically unlimited number of requests afterwards. Sometimes, it is possible to bootstrap
security from a public-key infrastructure, e.g., to establish secure point-to-point channels.
Since we use specialized key generation protocols and our goal is to protect the heart of
the PKI itself, however, an external mechanism is needed.

This model falls under the impossibility result of Fischer, Lynch, and Paterson [27]
of reaching consensus by deterministic protocols. Many developers of practical systems
seem to have avoided this model in the past for that reason and have built systems that
are weaker than consensus and Byzantine agreement. However, Byzantine agreement can
be solved by randomization in an expected constant number of rounds only (see [14] and also
the survey of Chor and Dwork [18]). Although the first randomized agreement protocols
were more of theoretical interest, their practical relevance has been recognized by now.
For example, Guerraoui et al. [36] argue that solving consensus is central for building
asynchronous distributed systems tolerating crash failures; we pursue the same approach
in the model with Byzantine faults.

The recent Byzantine agreement protocol of Cachin, Kursawe, and Shoup [12] is

based on modern, efficient cryptographic techniques with provable security, withstands the
maximal possible corruption, and is also quite practical given current processor speed. (Its
security proof uses the random oracle model, see below.)

In our architecture we use Byzantine agreement as a primitive for implementing
atomic broadcast, which in turn guarantees a total ordering of all delivered messages. Note
that atomic broadcast is equivalent to Byzantine agreement in our system model [16] and
thus considerably more expensive than reliable broadcast, which only provides integrity of
the delivered messages, but no ordering (see Chapter 3).

In the first three subsections of this chapter, we elaborate on the three key features
of our model (cryptography, asynchronous communication, static server set) and then
compare it to related efforts.

Of course, distributing a central service to a set of servers enhances its fault tolerance
only if there is enough diversity in that set such that common failure modes can be ruled
out. For example, if the same simple attack succeeds for all servers, not much has been
gained by distribution. It is thus crucial for this approach to make sense that the servers
vary in their configuration, operating system, physical location, load etc. Placing them in
different administrative domains also eliminates corruptible system administrators as one
path of attack.

The traditional assumption in distributed systems is that at most a certain fraction
of homogeneous nodes fails. Based on recent progress in distributed systems and cryptog-
raphy, we introduce in Section 2.5 systems that tolerate a family of novel failure patterns,
which allow for more realistic modeling of real-world trust assumptions. For example, they
allow a distributed system running at multiple sites to continue operating safely even if
all hosts at one site are unavailable or corrupted, no matter how many there are. One
may construct a distributed system that maintains its integrity despite the corruption of
a majority of its servers in this way.

In Section 2.6 we address the initialization and setup in our system architecture.
Although this can be done by a trusted dealer, we are interested in secure distributed
protocols for this purpose to eliminate the dealer as a single point of failure.

The architecture described in this report is a special case of the general service and
protocol architecture of the MAFTIA middleware, as described in the companion report
[64]. The relation between these two is discussed in Section 2.7.

2.1 Cryptography

Cryptographic techniques such as public-key encryption schemes and digital signa-
tures are crucial already for many existing secure services. For distributing trusted services,
we also need distributed variants of them from threshold cryptography [20].

Threshold cryptographic schemes are non-trivial extensions of the classical concept
of secret sharing in cryptography. Secret sharing allows a group of n parties to share a
secret such that ¢ or fewer of them have no information about it, but ¢ + 1 or more can
uniquely reconstruct it. However, one cannot simply share the secret key of a cryptosystem
and reconstruct it for decrypting a message because as soon as a single corrupted party
knows the key, the cryptosystem becomes completely insecure and unusable.

A threshold public-key cryptosystem looks similar to an ordinary public-key cryp-
tosystem with distributed decryption. There is a single public key for encryption, but each
party holds a key share for decryption (all keys were generated by a trusted dealer). A
party may process a decryption request for a particular ciphertext and output a decryption
share together with a proof of its validity. Given a ciphertext resulting from encrypting
some message and more than ¢ valid decryption shares for that ciphertext, it is easy to
recover the message; this property is called robustness. The scheme must also be secure
against adaptive chosen-ciphertext attacks in order to be useful for all conceivable applica-
tions (see [58] for background information). The formal security definition can be found in
the literature [60]; essentially, it ensures that the adversary cannot obtain any meaningful
information from a ciphertext unless she has obtained a corresponding decryption share
from at least one honest party.

In a threshold signature scheme, each party holds a share of the secret signing key
and may generate shares of signatures on individual messages upon request. The validity
of a signature share can be verified for each party. From ¢ + 1 valid signature shares, one
can generate a digital signature on the message that can later be verified using the single,
publicly known signature verification key. In a secure threshold signature scheme, it is
infeasible for a computationally bounded adversary to produce ¢+ 1 valid signature shares
that cannot be combined to a valid signature (robustness), and to output a valid signature
on a message for which no honest party generated a signature share (no forgery).

Another important cryptographic algorithm is the threshold coin-tossing scheme in
the randomized Byzantine agreement protocol of Cachin, Kursawe, and Shoup [12] that
provides arbitrarily many unpredictable random bits. It guarantees termination of the
agreement protocol within an expected constant number of rounds.

Threshold-cryptographic protocols have been used for secure service replication be-
fore, e.g., by Reiter and Birman [56]. However, a major complication for adopting threshold

cryptography to our asynchronous distributed system is that many early protocols are not
robust and that most protocols rely heavily on synchronous broadcast channels. Only very
recently, non-interactive schemes have been developed that satisfy the appropriate notions
of security, such as the threshold cryptosystem of Shoup and Gennaro [60] and the thresh-
old signature scheme of Shoup [59]. Both have non-interactive variants that integrate well
into our asynchronous model. However, they can be proved secure only in the so-called
random oracle model that makes an idealizing assumption about cryptographic hash func-
tions [4]. This falls short from a proof in the real world but gives very strong heuristic
evidence for their security; there are many practical cryptographic algorithms with proofs
only in this model.

2.2 No Timing Assumptions

Like the other parts of this report, this section applies to the specific model used
for the design of secure service replication protocols, and has to be seen in the context
of the general MAFTIA middleware architecture [64]. Here, we do not make any timing
assumptions and work in a completely asynchronous model. (In contrast, the MAFTIA
middleware relies on a minimal, trusted time service provided by a specialized subsys-
tem [63].) Asynchronous protocols are attractive because in a synchronous system, one
would have to specify timeout values, which is very difficult when protecting against arbi-
trary failures that may be caused by a malicious attacker.

It is usually much easier for an intruder to block communication with a server
than to subvert it. Prudent security engineering also gives the adversary full access to
all specifications, including timeouts, and excludes only cryptographic keys from her view.
Such an adversary may simply delay the communication to a server for a little longer than
the timeout and the server appears faulty to the remaining system.

Time-based failure detectors [16] can easily be fooled into making an unlimited
number of wrong failure suspicions about honest parties like this. The problem arises
because one crucial assumption underlying the failure detector approach, namely that
the communication system is stable for some longer periods when the failure detector is
accurate, does not hold against a malicious adversary. A clever adversary may subvert a
server and make it appear working properly until the moment at which it deviates from
the protocol—but then it may be too late. Heuristic predictions about the future behavior
of a server are pointless in security engineering.

Of course, an asynchronous model cannot guarantee a bound on the overall response
time of an application. But the asynchronous model can be seen as an elegant way to
abstract from time-dependent peculiarities of an environment for proving an algorithm
correct such that it satisfies liveness and safety under all timing conditions. By making no

6

assumption about time at all, the coverage of the timing assumption appears much bigger,
i.e., it has the potential to be justified in a wider range of real-world environments. For our
applications, which focus on the security of trusted services, the resulting lack of timeliness
seems tolerable.

A variation of the asynchronous model is to assume probabilistic behavior of the
communication links [11, 49], where the probability that a link is broken permanently
decreases over time. But since this involves a timing assumption, it is essentially a prob-
abilistic synchronous model (perhaps it should also bear that name) and suffers from all
the problems mentioned before. The model investigated by Moser and Melliar-Smith [49]
assumes, additionally, a fairness property and a partial order imposed by the underlying
communication system, but such assumptions seem also difficult to justify on the Internet.

2.3 Static Server Set

Distributing a trusted service among a static set of servers leverages the trust in
the availability and integrity of each individual server to the whole system. This set is to
remain fixed during the whole lifetime of the system, despite observable corruptions. The
reason is that all existing threshold-cryptographic protocols are based on fixed parameters
(e.g., n and t) that must be known when the key shares are generated.

A corrupted server cannot be resurrected easily because the intruder may have
seen all its cryptographic secrets. Unless specialized “proactive” protocols [13] are used to
refresh all key shares periodically, the only way to clean up a server is to redistribute fresh
keys. However, proactively secure cryptosystems in asynchronous networks are an open
area of research (see Chapter 5).

The alternative is to remove apparently faulty servers from the system. This is the
paradigm of view-based group communication systems in the crash-failure model (see the
survey in [53]). They offer resilience against crash failures by eliminating non-responding
servers from the current view and proceeding without them to the next view. Resurrected
servers may join again in later views.

The Rampart toolkit [55] is the only group communication system that uses views
and tolerates arbitrary failures. But since it builds on a membership protocol to agree
dynamically on the group’s composition, it easily falls prey to an attacker that is able
to delay honest servers just long enough until corrupted servers hold the majority in the
group. Because the maintenance of security and integrity is the primary application of
our protocols for trusted services, we cannot tolerate such attacks and use a static group
instead (but again, see Chapter 5).

2.4 Related Work

The use of cryptographic methods for maintaining consistent state in a distributed
system has a long history and originates with the seminal work of Pease, Shostak, and
Lamport [51].

One of the first attempts to build secure and robust replicated services was DELTA-
4, an EU-funded research project [21]. DELTA-4 developed a general architecture for de-
pendable distributed systems. It provides distributed, intrusion-tolerant services for data
storage, authentication and authorization. Secrecy is supported via client-side encryption
and data fragmentation, and availability via data replication for the fragments. Secret
sharing is supported, but no computations on shared secrets or robust protocols are imple-
mented. DELTA-4 assumes a synchronous communication network, and for the security
services a static, threshold-based adversary structure.

The pioneering work of Reiter and Birman [56] (abbreviated RB94 henceforth)
introduces secure state machine replication in a Byzantine environment and a broadcast
protocol based on threshold cryptography that maintains causality among the requests.
Similar to our architecture, it uses a static set of servers, who share the keys of a threshold
signature scheme and a threshold cryptosystem. Thus, clients need only know the single
public keys of the service, but not those of individual servers.

In order to obtain a fully robust system for an asynchronous environment with ma-
licious faults, however, RB94 must be complemented with robust threshold-cryptographic
schemes and secure atomic broadcast protocols, which were not known at that time. Our
work builds on this and attempts to close this gap.

Subsequent work by Reiter on Rampart [55] shares our focus on distributing trusted
services, but assumes a different model as explained in the previous sections: it implements
atomic broadcast on top of a group membership protocol that dynamically removes appar-
ently faulty servers from the set.

The broadcast protocols of Malkhi, Merritt, and Rodeh [45] work again with a
static group in a model similar to ours, but implement only reliable broadcast and do not
guarantee a total order, as needed for maintaining consistent state.

The e-Vault prototype for secure distributed storage [30] addresses a subset of the
applications considered here, namely storing and retrieving immutable data. It works in a
synchronous environment, though, and is not directly applicable to wide-area networks.

Castro and Liskov [15] (called CL99 below) present an interesting practical algo-
rithm for distributed service replication that is very fast if no failures occur. It requires no
explicit timeout values, but assumes that message transmission delays do not grow faster

than some predetermined function for an indefinite duration. Since the CL99 protocol is
deterministic, it can be blocked by a Byzantine adversary (i.e., violating liveness), but
it will maintain safety under all circumstances. In contrast, our approach satisfies both
conditions because it is based on a probabilistic agreement protocol.

The Fleet architecture of Malkhi and Reiter [47] supports loose coordination in
large-scale distributed systems and shares some properties of our model. It works in a
Byzantine environment and uses quorum systems and threshold cryptography for imple-
menting a randomized agreement protocol (in the form of “consensus objects”). However,
the servers do not directly communicate with each other for maintaining distributed state
and merely help clients carrying out fault-tolerant protocols. Close coordination of all
servers is also not a primary goal of Fleet. Implementing distributed state machine repli-
cation on top of Fleet is possible, in principle, but needs additional steps.

The Total family of algorithms for total ordering by Moser and Melliar-Smith [49]
implements atomic broadcast in a Byzantine environment, but only assuming a benign
network scheduler with some specific probabilistic fairness guarantees. Although this may
be realistic in highly connected environments with separate physical connections between
all machines, it seems not appropriate for arbitrary Internet settings.

SecureRing [39] and the very recent work of Doudou, Garbinato, and Guerraoui [24]
(abbreviated as DGGO00) are two examples of atomic broadcast protocols that rely on
failure detectors in the Byzantine model. They encapsulate all time-dependent aspects and
obvious misbehavior of a party in the abstract notion of a failure detector and permit clean,
deterministic protocols (see also [3]). However, most implementations of failure detectors
will use timeouts and actually suffer from some of the problems mentioned above. It also
seems that Byzantine failure detectors are not yet well enough understood to allow for
precise definitions.

A tabular comparison of systems for secure state machine replication is shown in
Table 2.1. We think the cryptographic model with randomized Byzantine agreement is
both practically and theoretically attractive, although it seems to have been somewhat
overlooked in the past. (The fact that randomized agreement protocols may not terminate
with non-zero probability does not matter because this probability is negligible; more-
over, if a protocol involves any cryptography at all, and the practical protocols mentioned
above do so, a negligible probability of failure cannot be ruled out.) Remarkably, during
the two decades since the question of maintaining “interactive consistency” was first for-
mulated [51], no secure system in our asynchronous model has been designed until very
recently.

Reference Timing Servers BA? Remark

RBY4 [56] async. static ~ yes(!) crash-failures only

Rampart [55] async. dynamic no FD for liveness and safety
Total alg. [49] | prob. async. static no needs causal order on links
CL99 [15] async. static no FD for liveness

Fleet [47] async. static yes®® no state machine replication
SecureRing [39] async. static yes® “Byzantine” FD

DGGO00 [24] async. static yes® “Byzantine” FD

this work async. static yes¥ general adversaries (@)

Table 2.1: Systems for secure state machine replication (Fleet supports only loose coordi-
nation, but not state machine replication directly). All systems achieve optimal resilience
t < n/3. The column entitled “BA?” notes if a system solves Byzantine agreement (BA);
those who do build (1) on an (assumed) atomic broadcast protocol, (2) on randomization
and threshold signatures, (3) on a failure detector or “muteness detector” in the Byzantine
model, or (4) on a cryptographic coin [12] in the underlying Byzantine agreement proto-
col. Some systems need a failure detector (FD); all except Total need a trusted dealer
for setup. Fleet can also tolerate adversaries of Byzantine Quorum systems, our system
tolerates general (Q*-adversaries.

2.5 Generalized Adversary Structures

The common approach in fault-tolerant distributed systems is that at most a frac-
tion of all servers fail. This model is based on the assumption that faults occur indepen-
dently of each other and affect all servers equally likely. For random and uncorrelated
faults within a system as well as isolated external events this seems adequate.

However, faults that represent malicious acts of an adversary may not always match
these assumptions. This causes a conceptual obstacle for using the replication-based ap-
proach to achieve security in adversarial environments. In our setting, for example, if all
servers in the system have a common vulnerability that permits a successful attack by
an intruder, the integrity of the whole system may be violated easily. The independence
assumption applies here only to the extent that the work needed for breaking into a server
is the same for each machine. With the sophisticated tools, automated exploit scripts,
and large-scale coordinated attacks found on the Internet today, this assumption becomes
increasingly difficult to justify.

10

2.5.1 Concept

One solution for this problem, which we propose here, is to use generalized adversary
structures. They can accommodate a strictly more general class of failures than with any
weighted threshold structure. In the Byzantine model, a collection of corruptible servers
is also called an adversary structure. Such an adversary structure specifies the subsets of
parties that may be corrupted at the same time.

We describe two concrete instantiations of such general adversary structures that
are based on a classification of all servers according to one or more attributes with at least
four values each.

Generalized adversary structures for secure fault-tolerant computing are also used
in Byzantine Quorum systems [46] and the synchronous Byzantine agreement protocol of
Fitzi and Maurer [28]; for combining them with threshold cryptography, we are restricted
to those that correspond to linear secret sharing schemes (based on the results of Cramer,
Damgard, and Maurer [19]).

Let P = {1,...,n} denote the index set of all parties P, ..., P,. The adversary
structure A is a family of subsets of P that specifies which parties the adversary may
corrupt. A is monotone (i.e., S € Aand T C S imply T € A) and uniquely determined
by the corresponding maximal adversary structure A4* in which no subset contains another
one. For the traditional threshold model of at most a certain number of corrupted parties,
the adversary may corrupt up to ¢ arbitrary parties. In this case, A* contains all subsets
of P with cardinality t.

Most protocols impose certain restrictions on the type of corruptions that they can
tolerate. For a threshold adversary in an asynchronous distributed system model, n > 3t
is in general a necessary and sufficient condition. The analogous condition for protocols
with a general adversary structure A is the so-called Q® condition [38]: no three of the sets
in A cover P. (Note that n > 3t is a special case of this.)

The adversary structure specifies the (maximally) corruptible subsets of parties. Its
complement is called the access structure and specifies the (minimally) qualified subsets
that are needed to take some action. For example, it is used in secret sharing in cryp-
tography [62], where it denotes the sets of parties who may reconstruct the shared secret.
The access structure is usually the more important tool for the protocol designer than the
adversary structure. In the example of the threshold system above, all sets of ¢+ 1 or more
parties belong to the access structure.

11

2.5.2 Designing Protocols for General Adversary Structures

Every adversary structure can also be described by a Boolean function g on n
variables that represent a subset of P as follows. We associate a subset of P with its
characteristic vector whose ith element is 1 if and only if P; is in the subset. Extending
the domain of g to all subsets of P in this way, g outputs 0 on all elements of the adversary
structure (i.e., for all sets of parties that might be corrupted by the adversary), and 1
otherwise. To represent g, we use arbitrary fan-in threshold gates ©} that output 1 if and
only if at least k£ of their inputs are 1 (note that AND and OR gates correspond to the
special cases O] and O7). For example, g(S) = O},,(S) in the threshold example.

Although they are not described in this form, all threshold-cryptographic protocols
used by our architecture (cf. Chapter 3) can be extended to a generalized Q* adversary
structure A for which the corresponding secret sharing access structure can be implemented
by a linear secret sharing scheme. This requires changing some details in the cryptographic
operations, but there are no essential difficulties. The agreement and broadcast protocols
need to be changed as follows:

e Where a set of n — t values is required, take all values in P \ S for some S € A*.

e Where 2t + 1 values are needed, take all values in SUT U {i} for any S,T € A* with
SNT=0Pandig SUT.

e Where t + 1 values are needed, take all values in S U {i} for any S € A* and i € S.

2.5.3 Differentiating Servers by Attributes

Suppose there is an attribute of all parties in the system that takes on at least four
different values. If the characteristics of corrupting a party vary with the attribute, then
this classification can be exploited directly to design a system in which all parties in the
same class may be corrupted simultaneously. With n = 4 this reduces to the threshold
case. For example, the servers in a wide-area distributed system may vary by physical
location, logical domain, system management personnel, type of operating system, other
applications running on the same machine, and implementation of the protocols. All of
these are suitable attributes.

We do not make any further distinctions between the attribute values here; this
leads naturally to a threshold failure model in the attribute dimension. However, arbitrary
and complex relations between the parties can be modeled as long as there exists a cor-
responding linear secret sharing scheme. For simple linear relations, traditional weighted

12

thresholds may already be enough, which can be obtained by grouping together several
logical parties to a single physical party.

We give two examples of generalized adversary structures by describing the linear
secret sharing schemes on which they are based. The first one shows how to combine
attribute classification with the traditional threshold model, the second one is based on
combining two separate classifications.

Before we continue, we need to introduce some notation. Let class denote the name
of an attribute and also the set of attribute values. For ¢ € class, define x. : 2 — {0,1}
as the characteristic function of the attribute on a set of parties such that x.(S) =1 if and
only if class(i) = ¢ for some i € S.

Example 1. Consider a system of nine servers and one attribute class = {a, b, ¢, d} that
satisfies

class(1) = --- = class(4
class(5) = class
class(7) = class

N N N N
0]

~— — —— ~—
I

Q0o o e

This could be the operating system of a server, for example, with class a representing a
common but not very secure operating system and class d representing the most secure
one of the four class values.

We want to design a system that tolerates the corruption of at most two arbitrary
servers or all servers in any particular class; its adversary structure A; is given by

9(8) = 65(5) V O3(Xa(S), x6(5), Xe(5), Xa($5))-

A} consists of {1,...,4} and of all pairs of servers that are not both of class a. The
corresponding access structure for secret sharing is given by

g(S) = Gg(s)/\@%(Xa(s)aXb(S)7Xc(S)7Xd(S))'

In other words, secrets may be reconstructed by coalitions of servers of size at least three
that also cover at least two different classes.

One may readily verify that A, satisfies the Q? condition. The corresponding linear
secret sharing scheme follows directly from the expression for ¢(S) using the standard
construction of Benaloh and Leichter [8]. The agreement and broadcast protocols can be

adapted according to the modifications sketched above.

13

Example 2. The classification method works simultaneously for an arbitrary number of
attributes and attribute values. We illustrate this for two attributes with four values each,
denoted by class; = {a,b,c,d} and class, = {e, 8,7,d}. Assume all combinations of class;
and classy exist so that P contains at least sixteen servers.

To be concrete, think of a distributed system of sixteen servers implementing a
secure directory service for a large company that is running on nodes in New York (USA),
Tokyo (Japan), Zurich (Switzerland), and Haifa (Israel) and consists of servers running
AIX, Windows N'T, Linux, and Solaris operating systems. Thus, class; corresponds to the
location and classy to the operating system of a server.

We can now obtain a distributed system that, for example, tolerates the simulta-
neous corruption of all servers with a particular operating system and all servers in one
location. Its adversary structure is characterized by

g(S) = @%(xa,xb,xc,xd) VG%(yaayﬂay’y’y(f):

where for v € classy,

Ty = 0;(Xu(S) A Xa(S), X0(S) AX5(S), Xu(S) A X4(S), Xu(S) A x5(S))

and for v € classs,

Yo = 05(xa(S) A X (S), X6(8) A xu(S), Xe(S) A xu(S), xalS) A xu(S))

This adversary structure satisfies the @ condition, as can be verified easily. The cor-
responding secret sharing scheme is characterized by the negated expression, g(S) =
O5(Zas Ty Tey Ta) A O3(Ya, Ys, Yy, Ys)- Intuitively, the sharing introduces two secret values
(one for each class) at the top level that must both be known to recover the secret. To
reconstruct the first one, at least two of the four class, points z,, ..., s must be known;
each point in turn can again only be reconstructed by a subset that covers at least two
classy values and the corresponding class; value. In other words, z, is shared among the
four parties with a class; value of a using a two-out-of-four scheme, etc. The top-level
secret for class, is distributed analogously.

The resulting distributed system maintains liveness and safety as long as there are
servers with three operating systems at three locations that are uncorrupted; but one
location may be unreachable and one operating system could contain easily exploitable
vulnerabilities so that a maximum of seven servers could have failed at any moment. Note
that all solutions based on thresholds can tolerate at most five corruptions among the 16
servers.

14

2.6 System Initialization

Our distributed system architecture uses several broadcast protocols which involve
threshold cryptography primitives. In order to engage in such threshold-cryptographic
protocols, the servers need specific cryptographic keys, which are established during the
initialization phase. More precisely, in the initialization phase we run several key generating
algorithms on the inputs k, n, ¢, and x, where £ is a suitably chosen security parameter, n
is the number of participants, ¢ is the number of corrupted parties, and « is the combining
threshold such that t < kK < n —t (usually kK = t + 1). At the end of the initialization
phase, each party (or server) must have all its secret key shares in its private storage.

The above description assumes that a trusted dealer creates all those keys; however,
this introduces a single point of failure and it would be desirable to avoid this. The
alternative is to use a distributed key generation protocol by all parties in the system.

In this section we describe all cryptographic keys that have to be provided during
initialization and discuss their generation by a trusted dealer and by distributed protocols.

2.6.1 Types of Cryptographic Keys

According to the previous sections, we need keys for the following cryptographic
schemes:

Threshold signature scheme: We use the non-interactive threshold signature scheme
by Shoup [59], which is based on RSA [57] and can be proven secure in the random
oracle model assuming the RSA problem is hard. Its key-generation algorithm must
provide the public key of the signature scheme PK, a global verification key VK, n
secret key shares, SK,...,SK,, and n local verification keys VK;,...,VK,. The
initial state information for server i consists of the secret key SK; along with all
verification keys.

Threshold cryptosystem: We use the non-interactive threshold cryptosystem that is
secure against chosen-ciphertext attacks proposed by Gennaro and Shoup [60]. It is
proven secure in the random oracle model assuming the hardness of the Diffie-Hellman
problem. The keys for this scheme are discrete logarithm-based Diffie-Hellman public
keys. The key generation algorithm outputs a public encryption key F, and a list
of secret decryption key shares Dq,...,D,. The initial state information for the
threshold encryption scheme for server i consists of the decryption key share Dj
along with the public encryption key FE.

15

Threshold coin-tossing: Cachin et al. [12] mention two implementations of a threshold
coin-tossing scheme: based on deterministic threshold signatures or a novel protocol
based on discrete logarithms. The first implementation simply uses the hash of a
threshold signature on the name of a coin as the coin value. It can be based on
the RSA-threshold signature scheme by Shoup [59] mentioned above. The second
implementation uses exactly the same keys as the discrete-logarithm-based threshold
cryptosystem mentioned above [60].

Digital signature scheme: Our architecture assumes that every party can issue digital
signatures under its signing key, for example, RSA signatures [57]. In order to obtain
the necessary keys, a public signature verification key and a private signing key must
be produced for each party. After initialization, each server must know its private
signing key and all public verification keys.

Message authentication: For message authentication, a symmetric secret key for every
pair of servers is needed (using any MAC algorithm [48]). Generating these keys is
straightforward. After initialization, each server must know those symmetric keys
that it shares with all other servers.

Since the keys for coin-tossing are the same as for either threshold signatures or
threshold public-key encryption, we do not mention them further. In conclusion, the
initial state information of each server contains: one secret key and all verification keys of
the threshold signature scheme, one public encryption key and one secret decryption key
of the threshold cryptosystem, one private signing key and all public keys for the digital
signature scheme, and n — 1 symmetric keys for message authentication.

2.6.2 Key Generation By Trusted Dealer

Using a trusted dealer, key generation works as follows. A special party, the dealer,
runs the algorithms for generating all necessary keys and outputs n files, each containing
the initial state information for one party. This key file is then given to the corresponding
party, i.e., included in its initial state, before the party starts operating. There exist
several methods for distributing these files to the servers. If an authenticated public key
for encryption is known of each party, the dealer can encrypt the information and send it
over a public network. Otherwise, external authentication must be used, and the file could
be distributed on a floppy disk by a trusted courier or sent by registered mail.

Generating and distributing these keys must occur securely and be protected from
the adversary. The dealer must be trusted to perform the operations correctly and not to
leak any information about the keys. It is best to assume that all records and information
pertaining to the key generation are destroyed afterwards.

16

RSA-based threshold signature keys: The keys of the threshold signature schemes
are the public key PK, consisting of a standard RSA public key pair (N, e), where
N is the product of two safe primes and e a prime greater than n (the number of
participating servers). The algorithm for creating the RSA public key pair (IV,e)
does the following;:

e Select two large prime numbers p’ and ¢', compute p = 2p' + 1 and ¢ = 2¢’ + 1,
and test whether p and ¢ are prime, and repeat until the test outputs “yes” for
both. (This can be done with a Rabin-Miller primality test.)

e Let N =pgand ¢(N)=(p—1)(¢g—1).
e Choose a number d that does not divide ¢(N)
e Let e be such that ed =1 mod ¢(N).

The number d is input to the generation algorithm for the secret key shares. The
algorithm selects a random polynomial f(z) € Zoaas(ny)[z] of degree t with its con-
stant term set to d. Each secret key SK; (for i = 1,...,n) results from evaluating
foni, ie, SK; = f(i) computed in Z,gapny)- (Note that odd(¢(N)) = p'q’ is the
product of all odd prime factors of ¢(N).)

Then the global verification key V K is chosen randomly in the subgroup of all squares
in Z%, and the verification keys V K; are generated by computing V K/ in Z% for
1=1,...,n.

Discrete-logarithm-based keys: For the threshold public-key cryptosystem, a shared
Diffie-Hellman public key is generated as follows. Choose randomly a large prime
q and a generator g of a group G such that G is of order q. Choose a random
polynomial f(z) € Zy[z], let x; = f(i) for i = 0,...,n, and let y = ¢g*. The key
shares are D; = (y, hi, - .., hy,), where h; = ¢% for i = 1,...,n, and the public key is
E=y.

Signature keys and authentication keys: Generating these keys by a dealer is straight-
forward [48].

2.6.3 Key Generation by Distributed Protocols

Unfortunately, assuming a trusted dealer for key-distribution introduces a single
point of attack. One can avoid this by using a distributed protocol for key generation
among the servers that (ideally) tolerates the same type of faults as the distributed system.
Consequently, this has to be done without revealing the private keys in the initial state
information, which should not be known by the other servers.

17

However, no efficient key generation algorithms are currently known in our asyn-
chronous cryptographic system model. There are protocols that work in a synchronous
setting and assume that all servers are connected by an authenticated broadcast channel.
Since the initialization process depends on a synchronized external action anyway, it seems
reasonable to exploit synchrony also for a distributed system initialization protocol.

It should be noted that any distributed protocol will need to authenticate the par-
ticipating servers at the very least. Thus, key generation for the signature scheme (or a
public-key infrastructure) cannot be realized fully by a distributed, fault-tolerant protocol.

Key generation protocols for discrete logarithm-type public keys are well known.
See, for example, the work of Gennaro et al. [32] and the references therein.

For generating ordinary RSA threshold public keys, Boneh and Franklin [9] recently
introduced a scheme in which three (of more) parties are able to generate a shared RSA key
without a trusted dealer. However, they proved their scheme secure only in the honest-but-
curious case. Later Frankel, MacKenzie, Yung [29] added some techniques to the original
scheme to achieve robustness, i.e., the shared key generation is possible even in the presence
of malicious parties.

It is currently not known, however, how to efficiently generate RSA public keys of
the special form needed by the threshold signature scheme mentioned above (i.e., NV being
the product of two safe primes). Below we sketch how such a protocol for distributively
generating the product of two safe primes might work.

The generated RSA modulus has to be the product of two safe primes, i.e., N = pq,
where p = 2p' + 1 and ¢ = 2¢' + 1 are prime and p' and ¢’ are itself prime numbers. On a
high level, such a protocol proceeds as follows:

1. Each server picks an integer p; and keeps it secret. Using a private distributed
computation, the servers make sure that p =)" | p; is not divisible by any prime
less than some bound B. If this step fails, they repeat it until the condition holds.
q¢ =Y. ¢ is computed analogously.

2. Using a private distributed computation, the servers compute N = (327, p;) -
(Z?:l qi). Having obtained N as the proposed public key, the parties perform a
trial division to test if NV is not divisible by small primes in a certain range. Then
the servers engage in a private distributed computation to test that /V is indeed the
product of two primes. If the test fails, the protocol is restarted from the first step.

3. Finally the servers engage in a second private distributed computation to test whether
the two primes the modulus exists of are safe primes or not. If the test fails, the
protocol is restarted from the first step.

18

4. They output N as the modulus, and perform another distributed computation to
obtain a public exponent e and, from p; and ¢;, the corresponding secret key shares
SK;, the verification key V K, and the local verification keys VK; for i =1,...,n.

2.7 Relation to MAFTIA M:iddleware Architecture

The architecture described in this report is a special case of the general service and
protocol architecture of the MAFTIA middleware, as described in the companion report
[64]. This general architecture aims at integrating all concepts that are relevant for typical
distributed Internet-based applications, and is therefore conceptionally much richer than
the small subset needed here.

The general system model supports different models for faults, different levels of
synchronization among parties, a general hierachical network topology, miscellaneous in-
teraction styles among the parties, and different types of groups (see Section 2 of [64]).
Here we use one specific incarnation of this system:

e We use a controlled failure assumption, but controlled in a very weak sense only: we
just assume that the adversary cannot break our cryptographic primitives. (Chap-
ter 5 sketches an extension to a hybrid failure assumption.)

e We follow the time-free approach, assuming an asynchronous network (see Section 2.2).

The general model of [64] defines a hybrid model of synchrony, the Trusted Timely
Computing Base (TTCB). The TTCB defines a core part of a system which is essen-
tially synchronous and thus provides timeliness. The other parts of a system might
be arbitrarily asynchronous (see [64], Section 2.2 for details), and are used for all
those interaction where timeliness is not essential, or can be achieved indirectly (by
using the TTCB as a means for recovery from timing failures). Thus, the TTCB
allows to combine the best of both worlds.

The applications considered here have no strict real-time requirements, and thus
timeliness is a less important issue. On the other hand, our applications should be
secure even against the strongest adversaries, e.g., one that can influence the syn-
chronization among parties. Thus, the time-free approach offers a sufficient quality of
service, and allows us to be on the safe side. We may envision using security-related
services provided by the TTCB, if that improves the efficiency and complexity of the
protocols.

e In principle, our applications could run on any network topology, but from a security
point of view we require a high degree of connectivity and, for servers, independence
of sites and participants (in terms of [64]). The latter is given by the generalized

19

adversary structures above, which describe the sets of servers that might fail simul-
taneously.

e All our applications are instances of a client-server model with replicated servers (in
the sense described earlier). The group of servers uses a multipeer interaction style.

Viewed as an instance of the MAFTIA middleware, our architecture supports a
client-server model for transactional services.

e Our applications assume an open, dynamic group of remote clients and a closed,
static group of servers. See Section 2.3 for more details.

The general service architecture of [64], Section 3, provides a structure for the
components of a MAFTIA node and identifies the services that shall be provided by the
MAFTIA middleware. The specific architecture described here provides a subset of these
services, as needed for our applications.

More specifically, at the Site Level we assume a Multipoint Network as described
in [64], Section 3. On top of this network we implement time-free versions of all Commu-
nication Support services except those related to time and clock synchronization (which
are not needed here). On the Participant Level we support several Activity Services-such
as static replication management, key management and transactional management—always
assuming the special system model sketched above and described earlier in this section.

20

3 Architecture

This chapter presents a protocol architecture for multiple broadcast protocols and
implementations of broadcast protocols, as used by our distributed trusted services. We
need protocols for basic, reliable broadcast, atomic broadcast, and secure causal atomic
broadcast (see below); they can be described and implemented in a modular way as fol-
lows, using multi-valued Byzantine agreement and randomized binary Byzantine agreement
primitives.

Secure Causal Atomic Broadcast
Atomic Broadcast
Multi-valued Byzantine Agreement
Broadcast Primitives ‘ Byzantine Agreement

All our broadcast and agreement protocols work under the optimal assumption that
n > 3t.

Byzantine agreement requires all parties to agree on a binary value that was pro-
posed by an honest party. The protocol of Cachin et al. [12] follows the basic structure of
all randomized solutions (e.g., [5]) and terminates within an expected constant number of
asynchronous rounds. It achieves the optimal resilience n > 3¢ by using a robust threshold
coin-tossing protocol, whose security is based on the so-called Diffie-Hellman problem. It
requires a trusted dealer for setup, but can process an arbitrary number of independent
agreements afterwards. Threshold signatures are further employed to decrease all mes-
sages to a constant size. As mentioned before, its security proof relies on the random
oracle model.

A useful primitive is also multi-valued Byzantine agreement, which provides agree-
ment on values from larger domains. Multi-valued agreement requires a non-trivial ex-
tension of the binary Byzantine agreement protocols mentioned above. The difficulty in
multi-valued Byzantine agreement is how to ensure the “validity” of the resulting value,
which may come from a domain that has no a priori fixed size. One cannot tolerate the
agreement protocol to decide on a value that no party proposed. Our implementation of
multi-valued Byzantine agreement uses only a constant expected number of rounds.

A basic broadcast protocol in a distributed system with failures is reliable broadcast,
which provides a way for a party to send a message to all other parties. Its specification
requires that all honest parties deliver the same set of messages and that this set includes
all messages broadcast by honest parties. However, it makes no assumptions if the sender
of a message is corrupted and does not guarantee anything about the order in which
messages are delivered. The reliable broadcast protocol of our architecture is an optimized

21

variant of the elegant protocol by Bracha and Toueg [11]. We also use a variation of
it, called consistent broadcast, which is advantageous in certain situations. It guarantees
uniqueness of the delivered message (thus the name consistent broadcast), but relaxes the
requirement that all honest parties actually deliver the message—a party may still learn
about the existence of the message by other means and ask for it. A similar protocol has
also been used by Reiter [54].

An atomic broadcast guarantees a total order on messages such that honest parties
deliver all messages in the same order. Any implementation of it must implicitly reach
agreement whether or not to deliver a message sent by a corrupted party and, intuitively,
this is where Byzantine agreement is needed. The basic structure of the atomic broadcast
protocol follows the atomic broadcast protocol of Chandra and Toueg [16] for the crash-
failure model: the parties proceed in global rounds and agree on a set of messages to deliver
at the end of each round.

Multi-valued Byzantine agreement is used to determine the set of messages to be
delivered in the current round. All selected messages are then delivered according to a
fixed order. This atomic broadcast protocol guarantees liveness, i.e., a message broadcast
by an honest party cannot be delayed arbitrarily by the adversary once it is known to at
least t + 1 parties.

A secure causal atomic broadcast is an atomic broadcast that also ensures a causal
order among all broadcast messages, as put forward by Reiter and Birman [56]. It can
be implemented by combining an atomic broadcast protocol that tolerates a Byzantine
adversary with a robust threshold cryptosystem. Encryption ensures that messages remain
secret up to the moment at which they are guaranteed to be delivered. Thus, client requests
to a trusted service using this broadcast remain confidential until they are scheduled and
answered by the service. The threshold cryptosystem must be secure against adaptive
chosen-ciphertext attacks to prevent the adversary from submitting any related message
for delivery, which would violate causality in our context. Maintaining causality is crucial
in the asynchronous environment for replicating services that involve confidential data.

The protocol for secure causal atomic broadcast follows the basic idea of Reiter and
Birman’s protocol. By using the robust atomic broadcast mentioned before and the recent,
non-interactive threshold cryptosystem [60], it is actually the first secure implementation
that we are aware of, and it can be proved secure in the random oracle model.

3.1 Formal Model

This section describes a formal model for our modular protocol architecture, where
a number of parties communicate over an insecure, asynchronous network, and where an

22

adversary may corrupt some of them.

Our model differs in two respects from other models traditionally used in distributed
systems with Byzantine faults:

1. In order to use the proof techniques of complexity-based cryptography [33], our model
is computational: all parties and the adversary are constrained to perform only fea-
sible, i.e., polynomial-time, computations. This is necessary for using formal notions
from cryptography in a meaningful way.

2. We make no assumptions about the network at all and leave it under complete control
of the adversary. Our protocols work only to the extent that the adversary delivers
messages faithfully. In short, the network is the adversary.

The differences become most apparent in the treatment of termination, for which we use
more concrete conditions that together imply the traditional notion of “eventual” termi-
nation.

We define termination by bounding a statistic measuring the amount of work that
honest, uncorrupted parties do on behalf of a protocol; in particular, we use the commu-
nication complexity of a protocol for this purpose. Since the specification of a protocol
requires certain things to happen under the condition that all protocol messages have been
delivered, bounding the length (and also the number) of protocol messages generated by
uncorrupted parties ensures that the protocol has actually terminated under this condition.
In cryptography one proves security with respect to all polynomial-time adversaries, and we
adopt this model here as well. Our notion of an efficient (deterministic) protocol requires
that the statistic is bounded by a fixed polynomial, which is independent of the adversary.
As we rely on randomization (for Byzantine agreement as well as for other things), we also
define a corresponding probabilistic bound for randomized protocols; from this a bound
on the expected running time of a protocol can be derived. Both of our notions are closed
under modular composition of protocols, which is not trivial for randomized protocols.

Among the many established formal models for asynchronous distributed protocols,
the I/O automata model of Lynch and Tuttle [42, 44, 43] seems to be the most general
one. It has also been extended to allow for modeling of randomized protocols. But even
though authentication and digital signatures have been used before in secure distributed
protocols, apparently no adequate formal model has integrated both approaches before [43,
p. 115].

23

3.1.1 Basic System Model

The security parameter of our computational security model is denoted by k. A
quantity e is called negligible (as a function of k) if for all ¢ > 0 there exists a kg such that
e(k) < 4 for all k > k. As k is usually not mentioned explicitly, keep in mind that all
parameters are bounded by polynomials in &.

3.1.1.1 Parties and Protocols

Multi-Party Protocols. An n-party protocol consists of a collection of n parties, P, ..., P,,
which are probabilistic interactive Turing machines that run in polynomial time (in k).
Such a machine has two dedicated interfaces for reading incoming messages and writing
outgoing messages. There is also an initialization algorithm, which is run by an additional
party called the dealer; on input k, n, and ¢, it generates the state information that is used

to initialize each party. For simplicity, assume n < k.

After initialization, a party P, may be activated repeatedly with some input mes-
sage. It will carry out some computation, update its state, possibly generate some output
messages, and wait for the next activation.

We leave it to the adversary to choose n and ¢, but a specific protocol might impose
its own restrictions (e.g., t < n/3). We can assume that the dealer includes these values,
as well as the index 4, in the initial state of P;.

Our model includes a public-key infrastructure for digital signatures, i.e., the dealer
generates a key pair for a digital signature scheme S for each party, and includes in the
initial state of each party its private key and the public keys of all parties. The dealer
initializes a fixed number of threshold cryptosystems as required by the implemented pro-
tocols.

The dealer may also generate a public output for information associated with the
n-party protocol; this information may be useful for clients of a replicated service that is
implemented by the n-party protocol.

Executions and the Adversary. As our network is insecure and asynchronous, pro-
tocol execution is defined entirely via the adversary. The adversary is a polynomial-time
interactive Turing machine that schedules and delivers all messages and corrupts some
parties.

After the initial setup phase, the adversary repeatedly activates a party with some

24

input message(s) and waits for the party to generate some output message(s). The output
is given to the adversary and perhaps indicates to whom these messages should be sent,
and the adversary may choose to deliver these messages faithfully at some time. But in
general, the adversary chooses to deliver any message it wants, or no message at all; we
sometimes impose additional restrictions on the adversary’s behavior, however.

The adversary also corrupts t parties. W.l.o.g. any adversary that corrupts fewer
than ¢ parties can be converted into one that corrupts exactly ¢ parties. This simplification
seems justified for distributed systems with Byzantine faults where one cannot rely on the
actions of a single, potentially corrupted party; all our intended applications are be based
on the behavior of (a majority of) the uncorrupted parties.

One distinguishes between static and adaptive corruptions in cryptography: in the
static corruption model, the adversary must decide whom to corrupt independently of
the execution of the system, whereas in the adaptive corruption model, the adversary can
adaptively choose whom to corrupt as the attack is ongoing, based on information it has
accumulated so far. We adopt a static adversary in this work for using the threshold coin-
tossing scheme and the Byzantine agreement protocol of Cachin, Kursawe, and Shoup [12],
the threshold cryptosystem of Shoup and Gennaro [60], and the threshold signature scheme
of Shoup [59]. All of these assume static corruptions.

The adversary receives the initial state of the corrupted parties as produced by the
dealer. Otherwise, the corrupted parties are simply absorbed into the adversary: we do
not regard them as system components. Uncorrupted parties are called honest.

Our formal model leaves control over the application interface for invoking broad-
casts and starting agreement protocols up to the adversary. The protocol definitions merely
state that if the adversary invokes the protocol in a certain way—in the same way an in-
tended application would do—then the protocol should satisfy some specific conditions.
This reflects that applications might be partially influenced by an adversary, which might
cause some security problems if this is not allowed. For simplicity, the application program
interface is also mapped onto the single messaging interface, described next.

Modular Protocol Architecture. We describe a modular protocol architecture, in
which multiple broadcasts and transactions may execute in parallel. These protocol in-
stances run concurrently and may also invoke other protocol instances on their behalf as
sub-protocols. The dynamic relation between all concurrently running protocol instances
is given by a directed acyclic graph in which every sub-protocol points to its parent. The
“root” protocols with no parents represent instances directly invoked by a user application;
in our formal model, they are invoked by the adversary. All other protocol instances are
invoked as sub-protocols of some already running parent instance. The reason for letting
the adversary invoke the root protocol instances is that a protocol that meets our spec-

25

ifications will behave accordingly in any application, since our definition requires that it
works for any adversary. Applications whose behavior can be influenced by an adversary
are common in distributed systems with security demands.

To identify protocol instances, we assume that each instance is associated with a
unique tag ID. The value ID is an arbitrary bit string whose structure and meaning
are determined by a particular protocol and application; in our formal model, the tag of
the root instances is chosen by the adversary because the adversary invokes them. Sub-
protocols are identified by hierarchical tags of the form ID|ID'|.... The tag value ID|ID'
typically identifies a sub-protocol of the parent protocol instance ID and is determined by
the parent. The adversary may not introduce a new tag on its own if this extends any
previously introduced tag, i.e., the set of tags chosen directly by the adversary must be
prefix-free.

3.1.1.2 Communication

Messages. The protocols are described in terms of a single communication interface
to which the adversary delivers messages. Each party runs an internal scheduler that
delivers messages to the protocol instance associated with the corresponding ID. The
message interface is used in two different ways, however: to send and receive messages
via the network and as a placeholder for local invocation of sub-protocols. Syntactically,
invoking a sub-protocol appears as if it were a request of the adversary in our formal model
(as mentioned above). Since our protocol specifications guarantee certain behavior when
requests come from an arbitrary adversary, an application using a sub-protocol can benefit
from this universality, as long as it meets the requirements in the respective specification.
The detailed mechanism for composing protocols is part of the scheduler described below.

There are three different types of messages: input actions, output actions, and
protocol (implementation) messages. Input and output actions represent local events and
provide local input or carry local output to or from a protocol instance, which might be
a sub-protocol of an already running protocol. On the “protocol stack” of the layered
architecture, input and output actions travel vertically: inputs “down” to sub-protocols
and outputs “up” to higher-layer protocols. All other messages are protocol messages,
generated and processed by the protocol implementation; they are intended for the peer
instances running at other parties on the same level of the stack (directed “horizontally”).

These messages are internal implementation messages and they are distinct from
the messages actually disseminated as payloads of the broadcast protocols; such messages
are sometimes explicitly called payload messages.

26

An input action is a message of the form
(ID, in, action, . ..),

where action is specific to the protocol and followed by arbitrary data. Input actions
represent local invocations of a protocol, either as a root protocol instance by the adversary
or as a sub-protocol of an already running protocol instance. An input action is used
to request a service from the protocol instance. There is a special input action open,
represented by

(ID, in, open, type),

which must precede any other input action with tag ID. When P; processes such a message
with tag ID for the first time, it initializes the instance; type specifies the type of the
protocol being initialized. We say that P; has opened a “channel” with tag ID or activated
a “transaction” with tag ID. (Although it is a crucial element, it occurs mostly implicitly
before the first regular input action.)

An output action is a message of the form
(ID, out, action, .. .),

where action is again dependent on the particular service. These messages typically contain
an output from the protocol instance to the calling entity. There is a special output action
halt, represented by

(ID, out,halt),

after which no further messages tagged with ID are processed by the party. When P,
generates such a message with tag ID, we say that P; has halted instance ID.

We stress that in a real protocol implementation, input and output actions both do
not involve any real network communication but will be mapped onto local events being
generated or processed by the calling entity. But in the formal model at least some of them
are generated and received by the adversary.

The third type of message generated by P; are of the form
(ID,i,4,...),

where 1 < 7 < n denotes the index of the recipient. Such a message is called a protocol
message; the idea is that the adversary delivers it to P;, where it is processed by the
corresponding protocol instance.

27

Internal Scheduling. When a party is activated by the adversary, all incoming messages
are appended to a local buffer and the internal scheduler is invoked. It delivers messages to
the protocol instance associated with the corresponding ID. If no protocol associated with
ID is running yet, the scheduler buffers all arriving messages until a corresponding instance
has been opened. If the protocol instance has already halted, the message is discarded.

The applicable messages in the buffer are delivered to the protocol instances as
follows. For each input action open with a tag ID that has not been opened before, a new
protocol instance with the specified ID is initialized and the scheduler remembers that it
was started over the network (i.e., by the adversary).

Each opened protocol instance may execute a wait for operation specifying the
types of messages it is accepting and the particular conditions under which it processes
them. When a message is delivered to a protocol instance, the instance processes the mes-
sage, potentially generating some messages, until it performs the next wait for operation
or an explicit halt operation. The scheduler translates halt into the output action halt
for tag ID and removes the instance ID (further messages tagged with ID are ignored).

The scheduler treats messages generated by an instance ID as follows. Protocol
messages are simply written to the outgoing communication interface. For each input
action open, however, a new protocol instance with the specified child ID is initialized,
as if the message came from the network. The scheduler remembers the ID of the parent
instance; all subsequent input actions from the parent addressed to the child are not written
out to the network, but included directly in the buffer. Each output action of a sub-protocol
instance ID is mapped directly into a corresponding internal message for its parent; output
actions of a root protocol instance are written to the outgoing communication interface.
These steps allow local activation of sub-protocols and local processing of their output to
be described in terms of the single message interface.

The scheduler continues to deliver messages to protocol instances in an arbitrary
order, until the buffer contains no more applicable messages. When no instance is waiting
for any message present in the buffer, control is returned to the adversary. Some messages
may remain in the buffer until the next activation because no protocol was waiting for them.
Correctness and security of a protocol instance should not depend on the implementation
of the scheduler, as long as it obeys these rules.

Our protocol descriptions are mostly written in reactive style, consisting simply of
message handlers for which a global wait for operation is issued implicitly. Upon receiving
an applicable message, the handler will execute some instructions, update its state, and
may also perform a wait for operation which will block until the appropriate messages
have arrived. If an instance ID waits for messages tagged with its own ID, it is simply a
shorthand notation for the corresponding message handlers. But if an instance ID waits
for output from a child instance (that has previously been opened), the scheduler delivers

28

the output actions of the child to the parent, as mentioned before. We make the assumption
that an instance waiting for output from an uninitialized instance triggers implicitly a
corresponding open action, which initializes the instance.

For simplicity, we shall assume that messages are authenticated, which means that
we restrict the adversary’s behavior as follows: if P; and P; are honest, and the adversary
delivers a protocol message M of the form (ID,i,j,...) to P;, then M was generated by
P; at some prior point in time. It is reasonable to build authentication into our model
because it can be implemented very cheaply using standard symmetric-key cryptographic
techniques [48].

3.1.1.3 Quantitative Aspects

Defining Termination. In the model with computationally bounded participants con-
sidered here, we cannot apply the notion of “eventual” termination traditionally used in
distributed computing, which allows for infinite protocol runs and would make formal
models of cryptographic methods with computationally bounded adversaries meaningless.
Instead, we define termination of a protocol instance only to the extent that the adversary
faithfully delivers messages among the honest parties (analogous to [12]). To bound the
adversary’s running time, we must be able to quantify the amount of work done by honest
parties on behalf of a protocol. We measure the efficiency of a protocol for this purpose.
Combined with liveness conditions (such as “validity”), restricting the amount of work
implies eventual termination in the conventional sense.

Formally, our efficiency condition is based on a statistic X (k) measuring the work
done by honest parties in a multi-party protocol execution, such as “useful” computation
steps or the number of generated message bits. The statistic is a non-negative value
depending on the protocol and on the adversary, and is a function of the security parameter.
We only allow statistics that are polynomial in the security parameter (but depending on
the adversary); assume w.l.o.g. that every statistic is bounded by the running time of the
adversary. In general, X (k) is a discrete random variable (actually, a family {X (k)}, of
random variables indexed by k) induced by the coin flips of the dealer, the honest parties,
and the adversary. The key to defining efficiency is bounding the statistic independently of
the adversary, i.e., in such a way that the bound depends only on the particular protocol.
This will rule out trivial protocols that never terminate but always cause some work to be
done without making progress.

As we consider deterministic and randomized protocols (which may not always
terminate after a polynomial number of steps), we introduce two corresponding notions for
polynomially bounding a statistic as follows. The probabilistic bound allows the statistic

29

to exceed the fixed polynomial with non-negligible probability, but this probability is again
independent of the adversary.

Definition 1 (Bounded Statistics). Let 7'(k) and U(k) be arbitrary fixed polynomials
on the integers, independent of the adversary, and let X (k) be a statistic as above (a
discrete non-negative random variable induced by the adversary). We say that

1. X (k) is [deterministically] polynomially bounded if for negligible ¢ and for all adver-
saries,

PrX(k) > T (k)] < e(k);

2. X (k) is probabilistically polynomially bounded if for negligible ¢, for all adversaries,
and for all [> 1,

Pr[X (k) > WU(k) + T (k)] < 27"+ e(k).

Although a probabilistically bounded statistic is not bounded by a fixed polynomial,
its expected value is at most O(U (k) + T'(k)). More precisely, the following can be shown.

Lemma 1. Suppose X (k) is a probabilistically polynomially bounded statistic of a multi-
party protocol, with polynomials T'(k) and U(k). Then the expected value of X (k) is bounded
by 2U (k) + T'(k) + €' (k), for negligible €.

Proof. Recall that the statistic is bounded by some polynomial ¢(k) in the security pa-
rameter (depending on the adversary); thus the random variable X (k) exceeds ¢(k) with
probability zero.

Set X'(k) = (X (k) —T(k))/U(k); it follows X'(k) < ¢'(k) for some polynomial
q' (k). Because X (k) is probabilistically polynomially bounded, we know that Pr[X'(k) >
I] < 27"+ e(k) for all I > 1. Together with E[Y] < >~,_ Pr[Y > [] for any non-negative
discrete random variable Y, it follows -

¢ (k) ¢ (k)
BIX'(k)] <) PrX'(k)>1] <) Pr[X'(k)>1] < > 27 +e(k) < 2+ (k)e(k).

1>0

Because ¢ is negligible and by the linearity of the expectation, this implies that there is a
negligible € for which E[X (k)] < 2U (k) + T'(k) + €' (k). O

30

Communication and Message Complexity. An appropriate statistic in the above
sense is the communication complexity of a multi-protocol; it is used in this work to define
termination. Formally, the communication complexity is equal to the bit length of all
associated protocol messages that honest parties generate. Which protocol messages are
associated to a particular instance ID will vary according to the protocol type and will be
noted explicitly when defining a protocol. Typically, this includes all messages with the
tag ID or any tag starting with ID|...; through the second form, also messages generated
by sub-protocols on behalf of the calling protocol can be associated to an instance ID. Our
protocol architecture ensures that all messages generated by honest parties are associated
to some protocol.

Restricting to messages generated by honest parties seems the best one can say
about a protocol in a Byzantine environment; the adversary can always deliver “junk” pro-
tocol messages to honest parties, which require some work to be read. Network bandwidth
is an apparent resource that communication protocols consume, thus, measuring it seems
adequate.

Alternatively, one could bound the bit length of all distinct messages delivered to
one honest party that was generated by another honest party. But this is bounded by the
communication complexity in the sense above.

As it is, there is no a priori restriction on the size of a payload message in our formal
model. However, the communication complexity of a broadcast protocol depends on the
length of such a message. For simplicity, we will therefore assume that there exists a fixed
polynomial upper bound on the length of all payload messages that are contained in any
input or output action message of any honest party. From this, and from the description
of a particular protocol implementation, one can derive an upper bound on the maximal
length of any protocol message.

Another appropriate statistic for a certain class of protocols (like Byzantine agree-
ment, as used in [12]) is the message complezity, defined as the total number of all associated
protocol messages that honest parties generate.

If the communication complexity (or also the message complexity) is polynomi-
ally bounded, the adversary could quickly make all honest parties terminate the protocol
instance, but it is not forced to do so.

Modular Protocol Composition. Using the message complexity (or communication
complexity) as a statistic has the advantage that it is closed under the modular composition
of protocols as follows. According to our architecture, a higher-level protocol may invoke
a sub-protocol to carry out a certain task; this appears as a one or more input actions
generated by the higher-level protocol, which will start the sub-protocol as described above.

31

Suppose for the moment that the sub-protocol is implemented by a distributed oracle
available to every party, which provides the service of the sub-protocol in an ideal and
instantaneous way. We call such a protocol an oracle protocol. A party invokes the protocol
oracle by generating a suitable message, so that this counts as one unit in the message
complexity statistic.

Consider two multi-party oracle protocols A and B with respective message com-
plexities X4 and Xp that both are both polynomially bounded. Suppose that the oracle
protocol A uses an oracle for the task provided by B. Since B is implemented by the oracle,
X 4 counts every invocation of B by any honest party as one unit.

If we replace every oracle call by A to B by actually invoking B according to our
general system model, we obtain a composed protocol AB with message complexity X 4p.
This counts all messages that protocol A generates directly and those generated by the
instances of B started on behalf of A. But because X4 and X are polynomially bounded,
there exist fixed, polynomial upper bounds on the message complexities of A and B and
also on the number of activations of protocol B (because message complexity bounds also
the number of sub-protocol invocations). Thus, there exists also a polynomial upper bound
on X 4p, independent of the adversary.

In other words, if we compose two protocols with polynomially bounded message
complexities (one of them being an oracle protocol), we obtain another protocol with poly-
nomially bounded message complexity. This extends trivially to communication complexity
and, in fact, to any statistic in which invoking a sub-protocol is counted as one cost unit.
So we have shown the following:

Lemma 2. Polynomially bounded communication complexity is closed under the modular
composition of protocols.

Using a simple, but tedious calculation, one can also show that this holds for ran-
domized protocols with probabilistically polynomially bounded communication complexity.

Lemma 3. Probabilistically polynomially bounded communication complexity is closed un-
der the modular composition of protocols.

This is an important property of our notion of termination for randomized protocols
and justifies the way in which we have defined it. If one would merely consider the ezpected
value of a statistic for a randomized protocol, one could not draw such conclusions. For
example, combining a protocol from which we only know that its expected number of
rounds is constant with another one having the same property would not guarantee that
the total expected number of rounds is also constant.

32

3.1.2 Byzantine Agreement

We give the definition of Byzantine agreement (or consensus in the crash-fault
model) here as it is needed for building atomic broadcast protocols. It can be used to
provide agreement on independent transactions.

The Byzantine agreement protocol is activated when the adversary delivers a mes-
sage to P; of the form
(ID, in, propose,v),

where v € {0,1}. When this occurs, we say P; proposes v for transaction ID.

A party terminates the Byzantine agreement protocol (for transaction ID) by gen-
erating an output message of the form

(ID, out, decide,v).
In this case, we say P; decides v for transaction ID.

Let any message with tag ID or ID|... that is generated by an honest party be
associated to the agreement protocol for ID.

Definition 2 (Byzantine agreement). A protocol solves Byzantine agreement if it sat-
isfies the following conditions except with negligible probability:

Validity: If all honest parties that are activated on a given ID propose v, then any honest
party that terminates for ID decides v.

Agreement: If an honest party decides v for ID, then any honest party that terminates
decides v for ID.

Liveness: If all honest parties have been activated on ID and all associated messages have
been delivered, then all honest parties have decided for ID.

Efficiency: For every ID, the communication complexity for ID is probabilistically poly-
nomially bounded.

This is the usual definition of validity in the literature. In Section 3.3 we introduce
the weaker notion of external validity that is useful for certain applications. For instance,
if initial values come with validating data (e.g., a digital signature) that establishes their
validity in a particular context, we will require that an honest party may only decide on a
value for which it has the accompanying validating data. Thus, even if all honest parties
start with 0, they may still decide on 1 if they obtain the corresponding validating data
for 1 during the agreement protocol.

33

3.1.3 Cryptographic Primitives

Apart from ordinary digital signature schemes, we use robust, non-interactive thresh-
old signatures, threshold public-key encryption schemes, and a threshold coin-tossing pro-
tocol.

We need a collision-free hash function H : {0,1}* — {0,1}* with the property
that the adversary cannot generate two distinct strings « and z’ such that H(z) = H(2'),
except with negligible probability.

Another useful primitive is a cryptographically strong pseudorandom generator [34],
denoted by G : {0,1}¥" — {0,1}*, that stretches a k"-bit seed by an arbitrary polynomial
factor. G is a deterministic algorithm with input a random k”-bit seed such that its
output is computationally indistinguishable from a uniform random string of the same
length. In other words, for every efficient statistical test running in time polynomial in
k, the probability that it can distinguish the output of G with a random seed from truly
random bits is negligible.

Many efficient cryptographic schemes, and in particular all the threshold-cryptography
protocols needed below, can be analyzed only in the so-called random-oracle model [4]. This
refers to an idealized world where a hash function has been replaced by a truly random
oracle, available to all participants. Although such proofs provide only a heuristic notion of
security, the model allows to design truly practical protocols that admit a security analysis,
which yields very strong evidence for their security.

3.1.3.1 D:agital Signatures

A digital signature scheme [35] consists of a key generation algorithm, a signing
algorithm, and a wverification algorithm. The key generation algorithm takes as input a
security parameter, and outputs a public key/private key pair. The signing algorithm takes
as input that private key and a message m, and produces a signature o. The verification
algorithm takes the public key, a message m, and a putative signature o, and outputs a bit
that indicates whether it accepts or rejects the signature. A signature is considered wvalid
if and only if the verification algorithm accepts. All signatures produced by the signing
algorithm must be valid.

The basic security property is unforgeability. The attack scenario is as follows. An
adversary is given the public key, and then requests the signatures on a number of messages,
where the messages themselves may depend on previously obtained signatures. If at the
end of the attack, the adversary can output a message m and a valid signature o on m,

34

such that m was not one of the messages whose signature it requested, then the adversary
has successfully forged a signature. Security means that it is computationally infeasible
for an adversary to forge a signature.

3.1.3.2 Non-Interactive Threshold Signatures

An important tool for our broadcast protocols are non-interactive threshold signa-
tures. More precisely, we need dual-threshold variations as introduced by Shoup [59] and
Cachin, Kursawe, and Shoup [12]. The basic idea of a dual-threshold signature scheme is
that there are n parties, ¢t of which may be corrupted. The parties hold shares of the secret
key of a signature scheme, and may generate shares of signatures on individual messages.
The only requirement is that x signature shares are necessary and sufficient to construct a
signature, where t < k < n —t. (The standard notion of threshold schemes considers only
k=t+1.)

More precisely, a non-interactive (n, , t)-dual-threshold signature scheme consists
of the following parts:

A key generation algorithm with input parameters k, n, «, and t. It outputs the
public key of the scheme, a private key share for each party, and a local verification
key for each party.

e A signing algorithm with inputs a message, the public key and a private key share.
It outputs a signature share on the submitted message.

e A share verification algorithm with inputs a message, a signature share on that
message from a party P;, along with the global public key and the local verification
key of P;. It determines if the signature share is valid.

e A share combining algorithm that takes as input a message and x valid signature
shares on the message, along with the public key and the verification keys, and
(hopefully) outputs a valid signature on the message.

e A signature verification algorithm that takes as input a message and a signature (gen-
erated by the share-combining algorithm), along with the public key, and determines
if the signature is valid.

The interaction takes place in the basic system model introduced above. During
initialization, the dealer runs the key generation algorithm and gives each party the public
key, all local verification keys, and its private key share. The adversary may submit signing
requests to the honest parties for messages of its choice. Upon receiving such a request, a

35

party computes a signature share for the given message using its private key share. Given
k valid signature shares from distinct parties on the same message, they may be combined
into a signature on the message.

The two basic security requirements are robustness and non-forgeability. Robustness
means that it is computationally infeasible for an adversary to produce k valid signature
shares such that the output of the share combining algorithm is not a valid signature.
Non-forgeability means that it is computationally infeasible for the adversary to output a
valid signature on a message that was submitted as a signing request to less than xk — ¢
honest parties.

A practical scheme that satisfies these definitions in the random-oracle model was
proposed by Shoup [59] and is based on RSA [57]. Each signature share has essentially
the size of an RSA signature and the final signature is a standard RSA signature. Our
definition of a threshold signature scheme would also admit the trivial implementation of
just using a set of k ordinary signatures.

The dual-threshold scheme is used in some of our protocols, where a threshold
signature with k > t + 1 provides evidence for the fact that x — ¢ honest parties have
executed some steps in the protocol. A single-threshold scheme would not work here
because although our system corruption model is static, the adversary may adaptively
decide from which honest parties to request additional signature shares by scheduling
messages accordingly.

3.1.3.3 Non-Interactive Threshold Cryptosystems

We use the definition of non-interactive threshold cryptosystems with security against
adaptive chosen-ciphertext attacks put forward by Shoup and Gennaro [60]. (For ordinary
public-key cryptosystems, security against adaptive chosen-ciphertext attacks is equivalent
to non-malleability [23].)

A (n,t + 1)-threshold cryptosystem is given by the following algorithms:
e A key generation algorithm, taking as input k, n, and ¢. Outputs are the public key
and a private decryption key for each party.

e An encryption algorithm with inputs the public key, a cleartext message m € {0, 1}*.
The algorithm outputs a ciphertext ¢ and a label £ € {0, 1}*.

e A decryption algorithm with inputs the public key, an index i € {1,...,n}, the
private key of P;, a ciphertext ¢, and a label £. It outputs a decryption share or a
special symbol L if the inputs are invalid.

36

e A combination algorithm that takes as inputs the public key, a ciphertext ¢, a label
¢ and a list D of decryption shares, of which some may be invalid. If D contains at
least ¢+ 1 valid decryption shares, the algorithm outputs the cleartext m. Otherwise
it returns a special symbol 1.

The interaction takes place in the basic system model according to Section 3.1.1.
During the initialization phase, the dealer runs the key generation algorithm and gives
each party the global public key and its private key share.

Any party may run the encryption algorithm with the public key and a cleartext
message to produce a ciphertext.

For decryption, a party sends the ciphertext together with the label to each party P;,
who returns a decryption share. Upon receiving enough decryption shares, the decryptor
can combine them in order to obtain the cleartext.

The algorithms ensure that if a ciphertext c of a cleartext m was produced correctly
by the encryption algorithm, then the recovery algorithm yields m with all but negligible
probability, even if at most ¢ decryption shares were not produced by the decryption
algorithm with inputs as specified above. This property is called robustness.

To define security against adaptive chosen ciphertext attacks, consider the follow-
ing game, played by the adversary in our basic system model with ¢ statically corrupted
parties; the keys generated by the dealer and given to the corrupted parties are seen by
the adversary.

Al. The adversary interacts with the uncorrupted parties in an arbitrary fashion, feeding
them ciphertext/label pairs and obtaining decryption shares.

A2. The adversary chooses two cleartexts, mg and m;, and gives them to an “encryption
oracle.” The oracle chooses a bit b at random, encrypts my, and returns the resulting
ciphertext ¢ and label / to the adversary.

A3. The adversary continues to interact with the uncorrupted parties, feeding them ci-
phertext/label pairs (¢, ¢') and receiving decryption shares, with the restriction that

(¢, 0) # (¢, 0).
A4. The adversary outputs a bit b.

The threshold cryptosystem is called secure against adaptive chosen ciphertext at-
tack if for any polynomial-time bounded adversary the probability that b = b exceeds 1/2
only by a negligible quantity.

37

A practical threshold cryptosystem according to the above definition has been pre-
sented by Shoup and Gennaro [60]. Its security is based on the computational Diffie-
Hellman problem [22], and it works in the random-oracle model; a variation of it is based
on the decisional Diffie-Hellman problem.

3.1.3.4 Threshold Coin-Tossing

We also need an (n,t+ 1)-threshold coin-tossing scheme. The basic idea is the same
as for the other threshold primitives, but here the parties hold shares of a pseudorandom
function F. It maps a bit string N, the name of a coin, to its value F(N) € {0,1}*". We
use a generalized coin that produces k" random bits simultaneously; such a coin is also
called a distributed pseudo-random function [50]. The parties may generate shares of a
coin value F(N) and ¢t + 1 shares of the same coin are both necessary and sufficient to
construct the value of that coin. The generation and verification of coin shares are also
non-interactive and we work in the basic system model of Section 3.1.1.

During initialization the dealer generates a global verification key, a local verification
key for each party, and a secret key share for each party. The initial state information for
each party consists of its secret key share and all verification keys. The secret keys implicitly
define a function F' mapping names to k”-bit strings.

After the initialization phase, the adversary submits reveal requests to the honest
parties for coins of his choice. Upon receiving such a request, a party outputs a coin share
for the given coin computed from its secret key.

The coin-tossing scheme also specifies two algorithms:

e The share verification algorithm takes as input the name of a coin, a share of this
coin from a party P;, along with the global verification key and the verification key
of P;, and determines if the coin share is valid.

e The share combining algorithm takes as input a the name N of a coin and ¢ + 1
valid shares of N, along with (perhaps) the verification keys, and (hopefully) outputs
F(N).

The security requirements are robustness and pseudorandomness. Robustness means
that it is computationally infeasible for an adversary to produce a name N and x valid

shares of coin N such that the output of the share combining algorithm is not F'(N). To
define pseudorandomness, consider the following game, played in the basic system model.

D1. The adversary interacts with the uncorrupted parties in an arbitrary fashion, obtaining

38

shares for arbitrary coins.

D2. The adversary chooses a coin N for which it has not yet requested a coin share, and
gives it to an “F-oracle.” The oracle chooses a bit b at random, and returns F(N) if
b =0 and a uniformly random £"-bit string otherwise.

D3. The adversary continues to interact with the uncorrupted parties and may obtain
shares for arbitrary coins, except for N.

D4. The adversary outputs a bit b.

The threshold coin-tossing scheme is pseudorandom if for any polynomial-time
bounded adversary the probability that b = b exceeds 1/2 only by a negligible quantity.

An efficient threshold coin-tossing scheme in the random-oracle model has been
presented by Cachin, Kursawe, and Shoup [12]. Although their implementation produces
single-bit outputs, it can be trivially modified to generate k"-bit strings, just by using a
k"-bit hash function to compute the final value. Its security is based on the computational
Diffie-Hellman problem in the random-oracle model. A related scheme for a distributed
pseudo-random function, with security based on the decisional Diffie-Hellman problem, has
also been proposed by Naor, Pinkas, and Reingold [50].

3.2 Broadcast Primaitives

In this section, we introduce two broadcast primitives, reliable broadcast and con-
sistent broadcast, and present communication-efficient protocols for both. In terms of our
definitions, reliable broadcast (the Byzantine generals problem) appears as an extension of
consistent broadcast; but we introduce reliable broadcast first because it is a well-known
primitive. We also introduce the notion of a verifiable broadcast.

3.2.1 Reliable Broadcast

Reliable broadcast provides a way for a party to send a message to all other parties.
It requires that all honest parties deliver the same set of messages and that this set includes
all messages broadcast by honest parties, without guaranteeing anything about the order
in which messages are delivered. In the context of arbitrary faults, reliable broadcast is
also known as the Byzantine generals problem [41].

39

3.2.1.1 Definition

Broadcasts are parameterized by a tag ID, which can also be thought of as identi-
fying a broadcast “channel.” Since many parties can potentially broadcast several payload
messages with the same /D, we augment the tag in a reliable broadcast by the identity
of the sender, j, and by a sequence number s. Then, we restrict the adversary to submit
a request for reliable broadcast tagged with ID|j|s to P; only if i = j and at most once
for every sequence number. These requirements are easily satisfied in practice by main-
taining a message counter. Instances of reliable broadcast are always identified by ID|j|s
so that the simple tag ID alone represents a “virtual channel” for reliable broadcast; its
implementation uses one independent protocol instance per payload message.

A reliable broadcast protocol is activated when the adversary delivers a message to
P; of the form
(ID|j|s, in, r-broadcast, m),

with m € {0,1}* and s € N. When this occurs, we say P; reliably broadcasts m tagged
with ID|j|s, or simply P; r-broadcasts m. Note that only P; is activated like this. The
other parties are activated when they perform an explicit open action for instance ID|j|s
in their role as receivers; according to our convention, this occurs for instance when they
wait for an output tagged with ID|j|s.

A party terminates a reliable broadcast of m tagged with ID|j|s by generating an
output message of the form

(ID|j|s, out,r-deliver,m).
In this case, we say P; reliably delivers m tagged with ID|j|s (or r-delivers for brevity).

We say that all protocol messages which are generated by honest parties have tags
with prefix ID|j|s are associated to the broadcast of m by P; with sequence number s.
Recall that this defines also the messages contributing to the communication complexity
of the protocol instance ID|j|s.

Definition 3 (Reliable Broadcast). A protocol for reliable broadcast satisfies the fol-
lowing conditions except with negligible probability:

Validity: If an honest party has r-broadcast m tagged with ID|j|s, then all honest parties
r-deliver m tagged with ID|j|s, provided all honest parties have been activated on
ID|j|s and the adversary delivers all associated messages.

Consistency: If some honest party r-delivers m tagged with ID|j|s and another honest
party r-delivers m' tagged with ID|j|s, then m = m/.

40

Totality: If some honest party r-delivers a message tagged with ID|j|s, then all honest
parties r-deliver some message tagged with ID|j|s, provided all honest parties have
been activated on ID|j|s and the adversary delivers all associated messages.

Integrity: For all ID, senders j, and sequence numbers s, every honest party r-delivers
at most one message m tagged with ID|j|s. Moreover, if all parties are honest, then
m was previously r-broadcast by P; with sequence number s.

Efficiency: For any ID, sender j, and sequence number s, the communication complexity
of instance ID|j|s is polynomially bounded.

Some remarks on the above definition. Recall the implicit quantification over all polynomial-
time adversaries.

1. Validity ensures the liveness of a protocol, and rules out trivial protocols that do
not generate any messages. One could use an equivalent, but simpler definition here,
requiring that only the sender (and not all honest parties) r-deliver the message; but
then one would have to modify this again to the present form for defining consistent
broadcast below.

2. The agreement condition found in traditional definitions is split into consistency and
totality. The reason for separating them is not only that they are distinct properties,
but also that a reliable broadcast without a totality guarantee is a useful notion, as
shown later.

3. The provision that the “adversary delivers all associated messages” is our quantita-
tive counterpart to the traditional “eventual” delivery assumption. It can be ensured
for an arbitrary adversary as follows. Suppose the adversary halts and there are yet
undelivered protocol messages among honest parties (these can be inferred from a
transcript of the adversary’s interactions). Then using a “benign” scheduler deliver-
ing all the undelivered messages and the newly generated ones, the protocol is run
until no more undelivered protocol messages exist, whereby termination in polyno-
mial time is guaranteed by efficiency and validity.

4. Integrity may seem weak, since our model assumes authenticated links and we could
hope to get the guarantee in the second clause also with ¢ actually corrupted parties.
Indeed, most reliable broadcast protocols implicitly also authenticate the sender of a
message. It is possible to define the corresponding notion of an authenticated reliable
broadcast by replacing the integrity condition above by the following.

Authenticity: For all ID, senders j, and sequence numbers s, every honest party
r-delivers at most one message m tagged with ID|j|s. Moreover, if P; is honest,
then m was previously rbroadcast by P; with sequence number s.

41

However, we will not use authenticity in the standard definitions below because only
some of our protocols provide authenticity. In particular, the protocols for reliable
and for consistent broadcast provide authenticity, but not the atomic broadcast pro-
tocol.

We should note that an actual implementation of reliable broadcast is not needed
by any of our protocols below. However, we build on the definition of reliable broadcast for
defining other forms of broadcast. Nevertheless, we give a protocol for reliable broadcast in
the next section—for completeness and to illustrate the system model and our definitions.

3.2.1.2 A Protocol for Reliable Broadcast

A message-efficient, reliable broadcast protocol, denoted RBC, is given in Figure 1; it re-
sults from a small modification of Bracha’s reliable broadcast protocol [10] to reduce the
communication complexity.

Protocol RBC uses the hash of a payload message as a short, but unique represen-
tation for the potentially much longer message. The idea is that the payload is sent only
once by the sender to all parties (similar to [54]). When a party is ready to deliver a
payload message but does not yet know it, it asks an arbitrary subset of 2¢ 4+ 1 parties for
its contents and at least one of them will answer with the correct value.

In the description of the protocol, recall the global wait for condition for any
message with a matching tag. Let | denote a special value that cannot be broadcast. To
implement the condition that a particular message from a party is processed only the first
time it is received, one has to maintain the corresponding flags and counters, indexed by
the contents of the message.

Theorem 4. Assuming H is a collision-free hash function, Protocol RBC provides authen-
ticated reliable broadcast for n > 3t.

Proof. Validity is clear for honest senders by inspection of the protocol because all parties
receive the initial r-send message and also 2¢ + 1 r-ready messages from honest parties,
provided all associated messages are delivered. It may not hold for faulty senders, though.

For consistency, suppose an honest party P; has r-delivered m and another honest
party Py has r-delivered m' # m with tag ID|j|s. Then P; must have received r-ready
messages containing d = H(m) from at least ¢t + 1 honest parties; the same holds for Py
with d = H(m'). If d = d', the adversary has created a collision in H. We assume no such
collisions occur in the rest of the proof.

42

Protocol RBC for party P, and tag ID|j|s

INITIALIZATION:
m«— L;d+ L
eqg < 0;7qg« 0 (d € {0,1}*)

UPON RECEIVING MESSAGE (ID|j|s, in, r-broadcast, m):
send (r-send,m) to all parties

UPON RECEIVING MESSAGE (r-send, m) FROM P;:
if j =l and m = L then
m+<—m
send (r-echo, H(m)) to all parties
UPON RECEIVING MESSAGE (r-echo, d) FROM P, FOR THE FIRST TIME:
eq—eq+1
ife;=n—tand r; <tthen
send (r-ready, d) to all parties

UPON RECEIVING MESSAGE (r-ready,d) FROM P, FOR THE FIRST TIME:
Tg < Tqg+1
ifry=t+1and e; <n—1t then
send (r-ready, d) to all parties
else if r; = 2¢ + 1 then

d+d

if H(m) # d then
send (r-request) to Py,..., Py
wait for a message (r-answer,m) such that H(m) = d
m<—m

output (ID|j|s, out,r-deliver, m)

UPON RECEIVING MESSAGE (r-request) FROM P, FOR THE FIRST TIME:
if m # L then
send (r-answer,m) to P,

Figure 1: Protocol RBC for authenticated reliable broadcast (or the Byzantine generals
problem) adopted from Bracha [10].

43

An honest party generates an r-ready message for d only if it has received n — ¢
r-echo messages containing d or ¢t + 1 r-ready messages already containing d. Thus, at
least one honest party has sent an r-ready message containing d upon receiving n — t
r-echo messages; at most ¢ of them are from corrupted parties. Similarly, some honest
party must have received n — t r-echo messages containing d’. Thus, there are at least
2(n —t) > n+t+ 1 r-echo messages with tag ID|j|s and at least n — ¢ + 1 among them
from honest parties. But no honest party generates more than one such message by the
protocol.

To establish totality, note that if some honest P; delivers m, then it has received
the message (r-ready,d) from 2t + 1 different parties. Therefore, at least ¢ 4+ 1 honest
parties have sent r-ready with ID|j|s and d = H (), which will be received by all honest
parties (assuming the adversary delivers all messages). Thus, all honest parties will send
the corresponding r-ready message and any other party P, will receive 2¢ + 1 of them. If

P, already knows m' with H(m') = d, it outputs that.

Otherwise, P, will send an r-request to 2t + 1 parties and wait for an r-answer
satisfying H(m') = d. Observe that there is at least one honest party who has sent an
r-ready message containing d upon receiving n —t corresponding r-echo messages. Thus,
there are at least n — 2¢ honest parties who sent r-echo and know some m' such that
H(m') = d. Sending the r-request to 2¢ + 1 parties ensures that at least one of them
receives and answers it, provided all messages are delivered.

For integrity, the uniqueness of the r-delivered message is clear from the protocol.
If the sender P; of message with sequence number s is honest, then at most ¢ parties will
send r-echo messages for tag ID|j|s with m' # m. Thus, no uncorrupted party generates
an r-ready message with d different from H(m) and no uncorrupted party outputs m'.
Actually, the protocol also satisfies authenticity because honest parties process r-send
messages only from the sender indicated by the r-echo message.

It is easy to see that the protocol satisfies efficiency for any sender. O

Note that collecting n—t r-echo messages is needed for totality (because r-request
messages are sent to only 2¢ 4+ 1 parties), but for consistency alone, this could be relaxed
to [2t1] r-echo messages.

The message complexity of Protocol RBC is O(n?). If messages are delivered faith-
fully by a “benign” scheduler and no faults occur, then its communication complexity is
only O(n?k’ + n|m|) for broadcasting a single message m, where k' is the length of a hash
value. However, the adversary can delay the r-send messages for some parties and in-
crease the communication complexity. Since there are at most ¢ honest parties who issue
an r-request by the argument above to establish totality, m is transmitted O(¢?) times
and the overall communication complexity is O(n?k’ + n|m/| + t2|m|), or O(n?lm|) with

44

maximal resilience.

Contrast this with the standard form of Bracha’s broadcast that requires bit com-
plexity Q(n?/m|), even in executions without faults. Under optimal circumstances, Proto-
col RBC needs to transmit m only once per party in the system.

3.2.2 Verifiable Broadcast

A party P; that has delivered a payload message using reliable broadcast may want
to inform another party P; about this. Such information might be useful to P; if it has not
yet delivered the message, but can exploit this knowledge somehow, in particular since P;
is guaranteed to deliver the same message later by the agreement property. In a standard
reliable broadcast, such as the protocol from the previous section, however, this knowledge
cannot be transferred in a verifiable way.

We formalize this property of a broadcast protocol here because it is useful in our
application below, and call it verifiability. Informally, it means this: when P; claims that
it is not yet in a state to deliver a particular payload message m, then P, can reply with
a single protocol message and when P; processes this, it will deliver m immediately and
terminate the corresponding broadcast.

Definition 4 (Verifiability). A broadcast protocol is called verifiable if the following
holds, except with negligible probability: When an honest party has delivered m tagged
with ID, then it can produce a single protocol message M that it may send to other parties
such that any other honest party will deliver m tagged with ID upon receiving M (provided
the other party has not already delivered m).

We call M the message that completes the verifiable broadcast. This notion implies
that there is a predicate Vip that the receiving party can apply to an arbitrary bit string
for checking if it constitutes a message that completes a verifiable broadcast tagged with
ID.

Protocol RBC could be made verifiable by adding a digital signature to the r-ready
messages (this idea goes back to Pease, Shostak, and Lamport [51]). But verifiability is
more useful in connection with weaker protocols than reliable broadcast; for example, in
the consistent broadcast introduced next.

45

3.2.3 Consistent Broadcast

The totality property of reliable broadcast is rather expensive to satisfy; it is the
main reason why most protocols for reliable broadcast need on the order of n? messages.
For some applications, however, totality is not necessary and can be ensured by other
means, as long as consistency and integrity are satisfied. We call the resulting notion
consistent broadcast and discuss it in this section.

Several protocols for consistent broadcast have been proposed by Reiter et al. [54,
45]. To ensure agreement (i.e., totality) for delivered messages, these protocols are comple-
mented by an external stability mechanism from which parties learn about the existence
of messages they have not yet delivered. No such general mechanism is assumed here, but
the parties may learn that also from an application.

3.2.3.1 Definition

The same restrictions on the adversary apply as for reliable broadcast. A consistent
broadcast protocol is activated when the adversary delivers a message to P; of the form

(ID|j]s, in, c-broadcast, m),

with m € {0,1}* and s € N. When this occurs, we say P; consistently broadcasts m tagged
with ID|j|s.

A party terminates a consistent broadcast of m tagged with ID|j|s by generating
an output message of the form

(ID|jl|s, out, c-deliver,m).

In this case, we say P; consistently delivers m tagged with ID|j|s. To distinguish consistent
broadcast from other forms of broadcast, we will sometimes use the terms c-broadcast and
c-deliver.

All protocol messages generated by honest parties and tagged with ID|j|s are asso-
ciated to the broadcast of m by P; with sequence number s.

Definition 5 (Consistent Broadcast). A protocol for consistent broadcast is a protocol
for reliable broadcast that does not necessarily satisfy totality.

In other words, consistent broadcast makes no provisions that two parties do deliver
the payload message, but maintains consistency among the actually delivered messages
with the same senders and sequence numbers.

46

The notion of an authenticated consistent broadcast can be defined similarly to
authenticated reliable broadcast, replacing the integrity condition by authenticity.

3.2.3.2 A Protocol for Verifiable Consistent Broadcast

Protocol VCBC implements verifiable consistent broadcast and is described in Fig-
ure 2. It uses a non-interactive (n, [2t2],¢)-dual-threshold signature scheme S; with
verifiable shares according to Section 3.1.3.2. Recall that all messages are authenticated

according to our basic system model.

The protocol is based on the “echo broadcast” of Reiter [54], but uses a threshold
signature to decrease the communication complexity. The idea behind it is that the sender
broadcasts the message to all parties and hopes for [%t“] parties to sign it as “witnesses”
to guarantee consistency. The signature shares are then collected by the sender and com-
bined to a threshold signature on the message; it then sends the signature all parties. After
receiving the message together with a valid signature, a party delivers it immediately.

Because a party may forward the message and the signature to other parties, the
protocol is also verifiable according to Definition 4. The corresponding interface is imple-
mented by the c-request and c-answer messages, which are not otherwise used by the
protocol.

The consistency property of the protocol is based on the following lemma.

Lemma 5. For all senders j, sequence numbers s, and strings ID, it is infeasible for the
adversary in Protocol VCBC to create valid S;-signatures on the strings (ID|j|s, c-ready, m)
and (ID|j|s, c-ready, m') with m # m/.

Proof. Suppose not. Then, assuming S; is secure, there are at least — t signature
shares from distinct honest parties on a message containing ID|j|s and m and at least as
many from honest parties on the message containing ID|j|s and m'. In total, there are
n+t+1—2t=n—1t+1 or more shares generated by honest parties containing ID|j|s.
Since there are only n —t honest parties, at least one honest party has signed two different
messages with the same sender j and sequence number s, which is impossible according to
the protocol. O

|’n+§+1‘|

Theorem 6. AssumingS; is a secure (n, [2H42],t)-dual-threshold signature scheme, Pro-
tocol VCBC provides verifiable and authenticated consistent broadcast for n > 3t.

Proof. Validity for an honest sender is obvious from the construction of the protocol since
all honest parties generate a signature share on m as soon as they receive an c-send

47

Protocol VCBC for party P; and tag ID|j|s

INITIALIZATION:
m+ Lyp+ L
Wy 0;7q 0 (d € {0,1}*)
UPON RECEIVING MESSAGE (ID|j|s, in, c-broadcast, m):

send (c-send,m) to all parties

UPON RECEIVING MESSAGE (c-send, m) FROM P:
if j =1l and m = L then
m < m
compute an S;-signature share v on (ID|j|s, c-ready, H(m))
send (c-ready, H(m),v) to P;

UPON RECEIVING MESSAGE (c-ready, d,v;) FROM P, FOR THE FIRST TIME:

if 7 = j and y; is a valid S;-signature share then
Wd — Wd U {l/l}
TgTqg+1
if ry = [2F41] then
combine the shares in W,; to an S;-threshold signature p
send (c-final,d, 1) to all parties

UPON RECEIVING MESSAGE (c-final, d, y1):
if Him) =d and = L and p is a valid S;-signature then
P
output (ID|j|s, out,c-deliver, m)

Implementation of verifiability property

UPON RECEIVING MESSAGE (c-request) FROM F:
if p # L then
send (c-answer,m, i) to P,

UPON RECEIVING MESSAGE (c-answer,m,) FROM Fj:
if 7= 1 and p is a valid S;-signature on (ID|j|s, c-ready, H(m)) then
B
m < m
output (ID|j|s, out, c-deliver,m)

Figure 2: Protocol VCBC for verifiable and authenticated consistent broadcast.

48

message containing m. Since at least [%t“} honest parties return them to the sender, it
can combine them to a valid signature and c-deliver the message.

The consistency property follows directly from Lemma 5 because an honest party
c-delivers a payload message only after verifying the corresponding threshold signature.

Integrity follows directly from Lemma 5 together with the logic of the protocol,
where 1 # L is used to represent the state in which m has already been c-delivered. The
protocol provides also authenticity because honest parties process c-send messages only
from the sender indicated by the message.

Finally, efficiency is straightforward to verify and verifiability is ensured by the
c-answer protocol message, which is generated upon receiving a suitable c-request. [

The message complexity of Protocol VCBC is O(n) and its bit complexity is O(n(|m|+
K)), assuming the length of a threshold signature and a signature share is at most K bits.

3.3 Validated Byzantine Agreement

The standard notion of Byzantine agreement implements a binary decision and can
guarantee a particular outcome only if all honest parties propose the same value. We
introduce in this section a weaker validity condition, called external validity, which relaxes
the standard validity condition and generalizes to decisions on a value from an arbitrarily
large set. It requires that the decided value satisfies a global predicate that is determined
by the particular application and known to all parties. Each party adds some validation
data to the proposed value, which serves as the proof for its validity. Typically, this
consists of a digital signature that can be verified by all parties. The agreement protocol
then returns to the caller not only the decision value, but also the corresponding validation
data—the caller might need this information if it did not know it before. The standard
validity condition is the special case of a trivially true predicate.

Validated Byzantine agreement generalizes the primitive of agreement on a core
set [6, 7], which is used in the information-theoretic model for a similar purpose. Vali-
dated Byzantine agreement also generalizes the notion of interactive consistency [26] to
the Byzantine model, which requires agreement on a vector of n values, one from each

party.

Another related problem is set agreement [17], in which the agreement condition
is relaxed so that the output of each party is contained in a small, global set. Although
there exists a considerable literature on this problem, it cannot be used for our applications
because it gives only an approximation of agreement.

49

3.3.1 Definition

Suppose there is a global polynomial-time computable predicate QQ;p known to all
parties, which is determined by an external application. Each party may propose a value
v together with a proof 7 that should satisfy QQ;p. The agreement domain is not restricted
to binary values.

A validated Byzantine agreement protocol is activated by a message of the form
(ID, in, v-propose, v,),

where v € {0,1}* and 7 € {0,1}*. When this occurs, we say P; proposes v validated by
for transaction ID. We assume the adversary activates all honest parties on a given ID at
most once and, w.l.o.g., honest parties propose values with proofs that satisfy Qp.

A party terminates a validated Byzantine agreement protocol by generating a mes-
sage of the form
(ID, out,v-decide, v,).

In this case, we say P; decides v validated by 7 for transaction ID.

We say that any protocol message with tag ID that was generated by an honest
party is associated to the validated Byzantine agreement protocol for ID. An agreement
protocol may also invoke sub-protocols for low-level broadcasts or for Byzantine agreement;
in this case, all messages associated to those protocols that are started on behalf of the
validated agreement protocol are associated to ID as well (such messages have tags with
prefix ID|...).

Definition 6 (Validated Byzantine Agreement). A protocol solves validated Byzan-
tine agreement with predicate @);p if it satisfies the following conditions except with neg-
ligible probability:

External Validity: Any honest party that terminates for ID decides v validated by w

such that Qp (v,) holds.

Agreement: If some honest party decides v for ID, then any honest party that terminates
decides v for ID.

Liveness: If all honest parties have been activated on ID and all associated messages have
been delivered, then all honest parties have decided for ID.

Efficiency: For every ID, the communication complexity for ID is probabilistically poly-
nomially bounded.

a0

In other words, honest parties may propose all different values and the decision
value may have been proposed by a corrupted party, as long as honest parties obtain the
corresponding validation during the protocol. Note that agreement, liveness, and efficiency
are the same as in the definition of ordinary, binary Byzantine agreement.

Another variation of the validity condition is that an application may prefer one
decision value over others. Such an agreement protocol may be biased and always output
the preferred value in cases where other values would have been valid as well.

For binary validated agreement, we will need a protocol that is biased towards 1
below. Its purpose is to detect whether there is a validation for 1, so it suffices to guarantee
termination with output 1 if £ + 1 honest parties know the corresponding information at
the outset. A binary validated Byzantine agreement protocol biased towards 1 is a protocol

for validated Byzantine agreement on values in {0,1} such that the following condition
holds:

Biased External Validity: If at least ¢ + 1 honest parties propose 1, then any honest
party that terminates for ID decides 1.

We describe two related protocols for multi-valued validated Byzantine agreement
below: Protocol VBA, described in Section 3.3.3, needs O(n) rounds and invokes O(n)
binary agreement sub-protocols; this can be improved to a constant expected number of
rounds, resulting in Protocol VBAconst, which is described in Section 3.3.4. But first we
discuss the binary case.

3.3.2 Protocols for Binary Agreement

Binary asynchronous Byzantine agreement protocols can easily be adapted to ex-
ternal validity. For example, in the protocol of Cachin, Kursawe, and Shoup [12] one has
to “justify” the pre-votes of round 1 with a valid m. The logic of the protocol guarantees
that either a decision is reached immediately or the validations for 0 and for 1 are seen by
all parties in the first two rounds.

Furthermore, the protocol can be biased towards 1 by modifying the coin such that
it always outputs 1 in the first round.

51

3.3.3 A Protocol for Multi-valued Agreement

We describe Protocol VBA that implements multi-valued validated Byzantine agree-
ment.

The basic idea of the validated agreement protocol is that every party proposes
its value as a candidate value for the final result. One party whose proposal satisfies the
validation predicate is then selected in a sequence of binary Byzantine agreement protocols
and this value becomes the final decision value. More precisely, the protocol consists of
the following steps (see Figure 3).

Echoing the proposal (lines 1-4): Each party P, c-broadcasts the value that it pro-
poses to all other parties using verifiable authenticated consistent broadcast. This
ensures that all honest parties obtain the same proposal value for any particular
party, even if the sender is corrupted. Then P, waits until it has received n — ¢
proposals satisfying ();p before entering the agreement loop.

Agreement loop (lines 5-20): One party is chosen after another, according to a fixed
permutation IT of {1,...,n}. Let a denote the index of the party selected in the
current round (P, is called the “candidate”). Each party P; carries out the following
steps for P,:

1. Send a v-vote message to all parties containing 1 if P, has received P,’s proposal
(including the proposal in the vote) and 0 otherwise (lines 6-11).

2. Wait for n — ¢t v-vote messages, but do not count votes indicating 1 unless
a valid proposal from P, has been received—either directly or included in the
v-vote message (lines 12-13).

3. Run a binary validated Byzantine agreement biased towards 1 to determine
whether P, has properly broadcast a valid proposal. Vote 1 if P; has received a
valid proposal from P, and validate this by the protocol message that completes
the verifiable broadcast of P,’s proposal. Otherwise, if P, has received n — t
v-vote messages containing 0, vote 0; no validation data is needed here. If the
agreement decides 1, exit from the loop (lines 14-20).

Delivering the chosen proposal (lines 21-24): If P, has not yet c-delivered the broad-
cast by the selected candidate, obtain the proposal from the validation returned by
the Byzantine agreement.

The full protocol is shown in Figure 3.

An obvious optimization of Protocol VBA is based on the observation that in most
cases, adding P,’s proposal in p to a v-vote message is not necessary. If this is omitted,

52

Protocol VBA for party P;, tag ID, and validation predicate Q;p

LET Vip|a(v, p) BE THE FOLLOWING PREDICATE:

Vipe(v,p) = (v=0) or

(v =1 and p completes the verifiable authenticated c-broadcast of a message
(v-echo, w,, m,) with tag ID|a|0 such that Qp(w,, m,) holds)

UPON RECEIVING MESSAGE (ID, in, v-propose, w, 7):

1: verifiably authenticatedly c-broadcast message (v-echo,w,n) tagged with

ID|vcbeli|0

2: wj < Lymy L (1<j<n)

@

10:
11:
12:
13:

14:
15:
16:
17:
18:

19:
20:
21:
22:

wait for n — ¢t messages (v-echo, w;, ;) to be c-delivered with tag ID|vcbc|j|0

from distinct P; such that @Q;p(w;, 7;) holds

l+0
repeat

I 1+1;a<« II(])
if w, = L then
send the message (v-vote, a,0, L) to all parties
else
let p be the message that completes the c-broadcast with tag ID|vcbc|a|0
send the message (v-vote,a, 1, p) to all parties
Uj<—J_;7‘j(—J_ (1§]§n)
wait for n — t messages (v-vote, a, u;, p;) from distinct P; such
that ‘/]D‘Q(Uj, p]) holds
if there is some u; =1 then
v 1; ppj
else
v0;p L
propose v validated by p for ID|a in binary validated Byzantine agreement
biased towards 1, with predicate Vip,
wait for the agreement protocol to decide some b validated by o for ID|a

until b =1
if w, = L then

use o to complete the verifiable authenticated c-broadcast with tag ID|vcbe|a|0
and c-deliver (v-echo, w,, ;)

23: output (ID, out,v-decide, w,, ;)
24: halt

Figure 3: Protocol VBA for multi-valued validated Byzantine agreement.

93

then the code for P; to receive v-vote messages has to be modified as follows. If a v—-vote
from P; indicates 1 but P; has not yet received P,’s proposal, ignore the vote and ask
P; to supply P,’s proposal (by sending it the message (ID|vcbc|al0, c-request)). The
v-vote by P; is only taken into account after (v-echo,w,,7,) has been c-delivered with
tag ID|vcbelal0 such that Qp(wg,m,) holds; however, it may still be that enough votes
indicating 0 from other parties are received before that.

Lemma 7. In Protocol VBA, the adversary can cause at most 2t iterations of the agree-
ment loop.

Proof. The proof works by counting the total number A of v-vote messages containing 0
that are generated by honest parties (over all iterations of the agreement loop).

Since every honest party has received a valid proposal from n — ¢ parties in the
v-echo broadcasts, it will generate v-vote messages containing 0 for at most ¢ proposing
parties. Thus, A < t(n —t).

Note that for the binary Byzantine agreement protocol to decide 0 for a particular a
and to cause one more iteration of the loop, at least n— 2t honest parties must propose 0 for
the binary agreement (otherwise, there would be ¢ + 1 or more honest parties proposing 1
and the binary agreement protocol would terminate with 1, as it is biased towards 1).
Since honest parties only propose 0 if they have received n —t¢ v-vote messages containing
0, there must be at least n — 2¢ honest parties who have generated a v-vote message
containing 0 in this iteration.

Let R denote the number of iterations of the loop where the binary agreement
protocol decides 0. From the preceding argument, we have A > R(n — 2t).

Combining these two bounds on A, we obtain R(n — 2t) < (n — t)t, or equivalently,

t2
R <t .
st n—2t
Using n — 2t > ¢t + 1, this can be simplified to R < ¢ + ti—i and further to R < 2t. Thus,
the binary agreement decides 1 at the latest in iteration R + 1 of the loop and the lemma

follows. O

Theorem 8. Given a protocol for biased binary validated Byzantine agreement and a pro-
tocol for verifiable authenticated consistent broadcast, Protocol VBA provides multi-valued
validated Byzantine agreement for n > 3t.

Proof. We have to establish external validity, agreement, liveness, and efficiency.

o4

External validity follows because every honest party that proposes 1 in the agree-
ment on party P, has verified that (Q;p holds for w, and m,. Thus, by the standard validity
condition for the binary Byzantine agreement, the decision is 0 if QQ;p does not hold.

For agreement, note that the properties of the binary validated Byzantine agreement,
protocol ensure that all parties terminate the loop with the same a. By the consistency
property of consistent broadcast, all honest parties obtain the same values w, and 7, from
the broadcast tagged with ID|vcbc|a|0. Thus, they output the same w,.

Liveness holds by inspection of the protocol.

Efficiency follows from Lemma 3 together with Lemma 7 because there are at most
2t binary agreement sub-protocols invoked for a particular ID. O

The message complexity of Protocol VBA is O(tn?) if Protocol VCBC is used for ver-
ifiable consistent broadcast and the binary validated Byzantine agreement is implemented
according to Section 3.3.2.

If all parties propose v and 7 that are together no longer than L bits, the communi-
cation complexity in the above case is O(n?(tK + L)), assuming the length of a threshold
signature and a signature share is at most K bits. For a constant fraction of corrupted par-
ties, however, both values are cubic in n. As shown next, the expected message complexity
can be reduced to a quadratic expression in n.

3.3.4 A Constant-round Protocol for Multi-valued Agreement

In this section we present Protocol VBAconst, which is an improvement of the
protocol in the previous section that guarantees termination within a constant expected
number of rounds. The drawback of Protocol VBA above is that the adversary knows the
order II in which the parties search for an acceptable candidate, i.e., one that has broadcast
a valid proposal. Although at least one third of all parties are guaranteed to be accepted,
as shown above, the adversary can choose the corruptions and schedule messages such that
none of them is examined early in the agreement loop.

The remedy for this problem is to choose II randomly during the protocol after
making sure that enough parties are already committed to their votes on the candidates.
This is achieved in two steps. First, one round of commitment exchanges is added before
the agreement loop. Each party must commit to the votes that it will cast by broadcasting
the identities of the n — ¢ parties from which it has received valid v-echo messages (using
at least authenticated consistent broadcast). Honest parties will later only accept v-vote
messages that are consistent with the commitments made before. The second step is to

95

determine the permutation IT using a threshold coin-tossing scheme that outputs a random,
unpredictable value after enough votes are committed. Taken together, these steps ensure
that the fraction of parties which are guaranteed to be accepted are distributed randomly
in II, causing termination in a constant expected number of rounds.

The details of Protocol VBAconst are described in Figure 4 as modifications to
Protocol VBA.

Protocol VBAconst for party P;, tag ID, and validation predicate Q;p
Modify Protocol VBA for party P;, tag ID, and validation predicate @);p as follows:

1. Initialize and distribute the shares for an (n,t 4 1)-threshold coin-tossing scheme C;
with k”-bit outputs during system setup. Recall that this defines a pseudorandom
function F. Let G be a pseudorandom generator according to Section 3.1.3.

2. Include the following instructions between lines 3 and 4 of Protocol VBA, before
entering the agreement loop:

1 ifw; #L
1: ¢j + lef (1<j<n)
0 otherwise

C <+ e, ..,

authenticatedly c-broadcast the message (v-commit, C) tagged with ID|cbc|i|0

Cj+ L (1<j<n)

wait for n — ¢ messages (v-commit, C;) to be c-delivered with tag ID|cbc|j[0

such that at least n — ¢ entries in C; are 1

6: generate a coin share «y of the coin ID|vba and send the message (v-coin,)
to all parties

7: wait for ¢t + 1 v-coin messages containing shares of the coin ID|vba and

combine these to get the value S = F(ID|vba) € {0,1}*"

8: choose a random permutation II, using the pseudorandom generator G' with seed
S.

3. Modify the condition for accepting v-vote messages (line 13) inside the agreement
loop such that (v-vote, a,0, L) from P, is accepted only if C; is known and Cj[a] = 0.
(This involves also waiting for additional messages (v-commit, C;) to be c-delivered
as above.)

Figure 4: Protocol VBAconst for multi-valued validated Byzantine agreement.

To analyze the protocol, we consider the state of the system at the point in time
when the first honest party P, reveals its coin share. The crucial observation is that
n —t “early committing” parties are committed to their O-votes at this point because P,
has delivered the corresponding broadcasts. We are now going to investigate the number

26

of candidates that can be rejected by the adversary, by making the binary Byzantine
agreement decide 0, and the number of iterations of the agreement loop.

Lemma 9. Let A C {1,...,n} denote the set of parties that garner less than n — 2t
commitments to 0-votes from the early commaitters, and suppose Il is an ideal, random
permutation of {1,...,n}. Then, except with negligible probability,

1. for every a € A, the binary agreement protocol on ID|a will decide 1;
2. |A| >n—2t;

3. there exists a constant 3 > 1 such that for all f > 1,

Pr|(I1(1) € A) A=A (1I(f) ¢ A)| < 577

Proof. In order for the binary agreement on ID|a to decide 0, there must be some honest
party who proposes 0. By the instructions for computing v, it must have received n — ¢
v-vote messages containing 0 that are consistent with the commitments made by their
issuers. But since there are only n distinct parties, at least n — 2¢ of those 0-votes must
come from early committers, which is not the case for any a € A. This proves the first
claim.

To establish the second claim, let A denote the total number of commitments to 0-
votes cast by early committers. Since every early committer may commit to voting 0 for at
most ¢ parties, we have A < t(n—t). On the other hand, observe that A > (n—|A|)(n—2t)
by the definition of A.

Observe that these bounds on A are the same as in Lemma 7 with R = n — | A|.
Using the same argument, it follows |A| > n — 2t.

The third claim follows now because |A| is at least a constant fraction of n and
thus, there is a constant $ > 1 such that Pr[II(7) ¢ A] < 1/8 for all 1 <4 < f. Since the
probability of the f first elements of II jointly satisfying the condition is no larger than for
f independently and uniformly chosen values, we obtain

Pr|(I(1) € A) A=A (1I(f) ¢ A)| < B,
[

Lemma 10. Assuming Cy is a secure threshold coin-tossing scheme and G is a pseudo-
random generator, there is a constant B > 1 such that for all f > 1, the probability of any
honest party performing f or more iterations of the agreement loop is at most B~/ + €,
where € is negligible.

o7

Proof. This can be shown by a standard hybrid argument, where one makes a series of
small modifications to transform an idealized system into the real system, argues that each
change affects the adversary only with negligible probability, and then concludes that the
real system behaves just like the idealized system with all but negligible probability.

The “hybrid systems” are defined by running the system

(1) with a truly random permutation II,
(2) with the output of G replaced by truly random bits, and II computed from that,

(3) with F(ID|vba) replaced by a random bit string, but G being a pseudorandom gener-
ator according to the protocol, and II computed from the output of G,

(4) with F, G, and II computed according to the protocol.

In all cases, we define a statistical test by letting the adversary run the system until the
first honest party is about to release its share of the coin ID|vba, and then F', G, and II are
determined. Note that the set of early committers is defined and the set A (of Lemma 9)
can be computed at this point. The statistical test simply outputs 0 if I1(i) ¢ A for all
1 <7< f and 1 otherwise.

We now analyze the behavior of the statistical test.

Case (1) above corresponds to the idealized system in Lemma 9, which implies that
the test outputs 0 at most with probability 37/.

In case (2) above, the permutation is generated from truly random bits with uniform
distribution. This can be done using an algorithm that always terminates in a polynomial
number of steps such that the output permutation is statistically close to a random per-
mutation. The behavior of any polynomial-time adversary will not be changed by this,
except with negligible probability.

Cases (2) and (3) above can be mapped to the definition of a pseudorandom gen-
erator. But if G is secure, the statistical test will not be able to distinguish between them
with more than negligible probability.

Finally, the difference between (3) and (4) corresponds to game C1-C4 in the defini-
tion of the coin F'. Assuming F'is pseudorandom, this cannot induce more than a negligible
difference in the behavior of the statistical test.

In conclusion, we obtain that no polynomial-time statistical test can distinguish
between (1) and (4) and therefore the conclusions of Lemma 9 apply also to the real
protocol except with negligible probability. Since honest parties go through more than

o8

f iterations of the agreement loop only if the first f elements of II are not in A, this
probability is at most 3~/ plus some negligible quantity. O

Theorem 11. Given a protocol for biased binary validated Byzantine agreement and a
protocol for verifiable consistent broadcast, Protocol VBAconst provides multi-valued vali-
dated Byzantine agreement for n > 3t and invokes a constant expected number of binary
Byzantine agreement sub-protocols.

Proof. Since we have not changed the way in which binary agreement sub-protocols are
invoked from Protocol VBA, we only have to show liveness and efficiency for the modified
protocol.

Liveness holds because all n — t honest parties broadcast correctly constructed
commitments and therefore, enough valid v-commit and v-vote messages are guaranteed
to be received in line 13 of the original protocol.

Efficiency follows from Lemma 3 together with Lemma 10 above, because honest
parties generate a polynomial number of messages in each iteration of the agreement loop.
]

The expected message complexity of Protocol VBAconst is O(n?) if Protocol VCBC
is used for consistent verifiable broadcast and the binary validated Byzantine agreement is
implemented according to Section 3.3.2.

If all parties propose v and 7 that are together no longer than L bits, the expected
communication complexity in the above case is O(n® + n*(K + L)), assuming a digital
signature is K bits. The n3-term, which results from broadcasting the commitments, has
actually a very small hidden constant because the commitments can be represented as bit
vectors.

For a constant fraction of corrupted parties, the message complexity is quadratic
in n and essentially optimal. We do not know whether the communication complexity can
be lowered to a quadratic expression in n as well.

3.4 Atomic Broadcast

Atomic broadcast guarantees a total order on messages such that honest parties
deliver all messages with a common tag in the same order. It is well known that protocols
for atomic broadcast are considerably more expensive than those for reliable broadcast
because even in the crash-fault model, atomic broadcast is equivalent to consensus [16]

29

and cannot be solved by deterministic protocols. The atomic broadcast protocol given
here builds directly on multi-valued validated Byzantine agreement from the last section.

3.4.1 Definition

Atomic broadcast ensures that all messages broadcast with the same tag ID are
delivered in the same order by honest parties; in this way, ID can be interpreted as the
name of a broadcast “channel.” The total order of atomic broadcast yields an implicit
labeling of all messages. Assuming some honest party has atomically delivered s distinct
messages, the global sequence of the first s delivered messages is well-defined. Thus, an
explicit sequence number is not needed. Since the sender of a payload message is not
necessarily identifiable (without requiring explicit authenticity instead of integrity), the
sender name is also omitted, and an unstructured tag ID suffices.

An atomic broadcast is activated when the adversary delivers an input message to
P; of the form
(ID,in,a-broadcast, m),

where m € {0, 1}*. When this occurs, we say P; atomically broadcasts m with tag ID. “Ac-
tivation” here refers only to the broadcast of a particular payload message; the broadcast
channel ID must be opened before the first such request.

A party terminates an atomic broadcast of a particular payload by generating an
output message of the form
(ID, out,a-deliver,m).

In this case, we say P; atomically delivers m with tag ID. To distinguish atomic broadcast
from other forms of broadcast, we will also use the terms a-broadcast and a-deliver.

For the composition of atomic broadcast with other protocols, we need a synchro-
nized output mode, where a-delivering a payload may block the protocol and prevent it
from delivering more payloads until the consumer is ready to accept them. We introduce
an acknowledgment mechanism for output messages for this purpose, i.e., the adversary
should acknowledge every a-delivered payload message to the delivering party. In practice,
the a-delivery operation could be implemented by a blocking upcall to the higher-level pro-
tocol. In terms of the formal model, an acknowledgment is modeled as an input message
(ID,in, a-acknowledge) from the adversary. When a party receives such a message, it
means that its most recently a-delivered payload message with tag ID has been acknowl-
edged. We will say that the adversary generates acknowledgments if it acknowledges every
a-delivered message.

Again, the adversary must not request an a-broadcast of the same payload message

60

from any particular party more than once for each ID (however, several parties may a-
broadcast the same message).

Atomic broadcast protocols should be fair so that a payload message m is scheduled
and delivered within a reasonable (polynomial) number of steps after it is a-broadcast by
an honest party. But since the adversary may delay the sender arbitrarily and a-deliver an
a priori unbounded number of messages among the remaining honest parties, we can only
provide such a guarantee when at least ¢t + 1 honest parties become “aware” of m. Our
definition of fairness requires actually that only after ¢ + 1 honest parties have a-broadcast
some payload, it is guaranteed to be delivered within a reasonable number of steps. It can
be interpreted as a termination condition for the broadcast of a particular payload m. This
is also the reason for allowing multiple parties to a-broadcast the same payload message—a
client application might be able to satisfy this precondition through external means and
achieve guaranteed fair delivery in this way.

The efficiency condition (which ensures fast termination) for atomic broadcast dif-
fers from the protocols discussed so far because the protocol for a particular tag cannot
terminate on its own. It merely stalls if no more undelivered payload messages are in the
system and must be terminated externally. Thus, we cannot define efficiency using the
absolute number of protocol messages generated. Instead we measure the progress of the
protocol with respect to the number of messages that are a-delivered by honest parties.
In particular, we require that the number of associated protocol messages does not exceed
the number of a-delivered payload messages times a polynomial factor, independent of the
adversary.

We say that a protocol message is associated to the atomic broadcast protocol with
tag ID if and only if the message is generated by an honest party and tagged with ID
or with a tag ID|... starting with ID. In particular, this encompasses all messages of
the atomic broadcast protocol with tag ID generated by honest parties and all messages
associated to basic broadcast and Byzantine agreement sub-protocols invoked by atomic
broadcast.

Fairness and efficiency are defined using the number of payload messages in the
“queues” of honest parties. We say that a payload message m is in the queue of a party P,
if P; has a-broadcast m with tag ID, but not a-delivered m tagged with ID. The system
queue contains any message that is in the queue of some honest party, but has not yet
been a-delivered by any honest party.

Definition 7 (Atomic Broadcast). A protocol for atomic broadcast satisfies the follow-
ing conditions except with negligible probability:

Validity: If an honest party has a-broadcast m tagged with ID, then it a-delivers m tagged
with ID, provided the adversary opens channel ID for all honest parties, delivers all

61

associated messages, and generates acknowledgments.

Agreement: If some honest party has a-delivered m tagged with ID, then all honest
parties a-deliver m tagged with ID, provided the adversary opens channel ID for all
honest parties, delivers all associated messages, and generates acknowledgments for
every party that has not yet a-delivered m tagged with ID.

Total Order: Suppose an honest party P; has a-delivered my,..., ms; with tag ID, a
distinct honest party P; has a-delivered mf, ..., m!, with tag ID, and s < s’. Then
my =mj for1 <[] <s.

Integrity: For all ID, every honest party a-delivers a payload message m at most once
tagged with ID. Moreover, if all parties are honest, then m was previously a-broadcast
by some party with tag ID.

Fairness: Fix a particular protocol instance with tag ID. For any m consider the system
at the time when the (¢ + 1)st honest party a-broadcasts m with tag ID. Let Sy,
denote the number of distinct messages a-delivered by honest parties up to that time,
and let V,, denote the total number of distinct payload messages in the queues of
those ¢+ 1 parties who have a-broadcast m (all with tag ID). Suppose the adversary
causes some honest party to a-deliver m as the W,,-th message. Then the random
variable (W,,, — Sp,)/ Vi is polynomially bounded.

Efficiency: For a particular protocol instance with tag ID, let X denote its communication
complexity and let ¥ be the maximum number of distinct payload messages that
have been a-delivered by some honest party with tag ID. Then the random variable
X/(Y + 1) is probabilistically polynomially bounded.

Some remarks on the above definition:

1. Validity, agreement, and integrity are analogous to reliable broadcast; only total order
and fairness are new. Validity ensures liveness of a protocol and rules out trivially
empty protocols. It is stated in the canonical form (only the sender should a-deliver
the message).

2. The agreement condition combines the consistency and totality of reliable broadcast;
there is no need to distinguish these two aspects here, but they could also be sepa-
rated. In particular, only totality requires that messages and acknowledgments are
delivered.

3. In the fairness condition, note that V,, > 1 by definition. One could define a weaker
version of fairness and start counting only if f honest parties a-broadcast a request
fort+1< f<n-—t.

62

4. The efficiency condition counts only the payload messages delivered by the “fastest”
honest party. This party will usually be synchronized within one round with at least
n — 2t — 1 other honest parties, but it seems impossible to synchronize it with the
“slowest” honest party. Moreover, there seems to be no easy way to provide a fixed
bound on a suitable statistic (such as communication complexity) until all honest
parties have delivered a particular payload. This is because the adversary can always
drive forward system with only n — 2¢ honest parties and leave the others behind.
The “fast” parties might generate an a priori unbounded amount of work until the
“slow” omes finally a-deliver a particular payload, if at all. (Adding 1 to the divisor
covers the state until the first payload is delivered.)

3.4.2 A Protocol for Atomic Broadcast

We now present a protocol for atomic broadcast based on validated Byzantine agree-
ment. Its overall structure is similar to the protocol of Hadzilacos and Toueg [37] for the
crash-fault model, but we need to take additional measures to tolerate Byzantine faults.

Our Protocol ABC for atomic broadcast proceeds as follows. Each party maintains a
FIFO queue of not yet a-delivered payload messages. Messages received to a-broadcast are
appended to this queue whenever they are received. The protocol proceeds in asynchronous
global rounds, where each round r consists of the following steps:

1. Send the first payload message w in the current queue to all parties, accompanied by
a digital signature ¢ in an a-queue message.

2. Collect the messages of n — ¢ distinct parties and store them in a vector W, store

the corresponding signatures in a vector S, and propose W for Byzantine agreement
validated by S.

3. Perform multi-valued Byzantine agreement with validation of a vector W = [wy, .. ., w,]
and proof S = [0y, ..., 0,] through the predicate Qp apc), (W, S) which is true if and
only if for at least n —t distinct indices j, the vector element o; is a valid S-signature
on (ID,a-queue,r, j, w;) by P;.

4. After deciding on a vector V of messages, deliver the union of all payload messages
in V according to a deterministic order; proceed to the next round.

In order to ensure liveness of the protocol, there are actually two ways in which
the parties move forward to the next round: when a party receives an a-broadcast input
message (as stated above) and when a party receives an a-queue message of another party
pertaining to the current round. If either of these two messages arrive and contain a yet

63

undelivered payload message, and if the party has not yet sent its own a-queue message
for the current round, then it enters the round by appending the payload to its queue and
sending an a-queue message to all parties.

The detailed description of Protocol ABC is found in Figure 5. The FIFO queue ¢
is an ordered list of values (initially empty). It is accessed using the operations append,
remove, and first, where append(q, m) inserts m into ¢ at the end, remove(q, m) removes m
from ¢ (if present), and first(q) returns the first element in ¢. The operation m € g tests
if an element m is contained in gq.

A party waiting at the beginning of a round simultaneously waits for a-broadcast
and a-queue messages containing some w ¢ d in line 2. If it receives an a-broadcast request,
the payload m is appended to ¢. If only a suitable a-queue protocol message is received,
the party makes w its own message for the round, but does not append it to ¢. It should
be clear from the protocol that no honest party is ever blocked waiting for some payload
message to process if some honest party has a-broadcast one and all associated messages
have been delivered.

The term n — ¢ in line 9 of the protocol and in the validation predicate Q;pabc)r
could be replaced by any f’ between ¢t + 1 and n — ¢ if the fairness condition is changed
such that f =n — f' + 1 parties instead of £ + 1 must have a-broadcast the message.

The protocol in Figure 5 is formulated using a single loop that runs forever after
initialization; this is merely for syntactic convenience and can be implemented by decom-
posing the loop into the respective message handlers.

Theorem 12. Given a protocol for multi-valued validated Byzantine agreement and as-
suming S is a secure signature scheme, Protocol ABC provides atomic broadcast for n > 3t.

Proof. We first prove wvalidity. Towards a contradiction, suppose that some honest party
has a-broadcast a payload message m, but not a-delivered it and yet, all associated protocol
messages and acknowledgments have been delivered. Since the sender has a-broadcast but
not a-delivered m, its queue contains at least m and it can no longer be waiting in line 2.
Thus, it has proceeded and sent a-queue messages to all parties in line 8. Since these have
been delivered, every honest party has received an a-queue message containing m ¢ d and
therefore has also entered the same round (by condition for waiting in line 2). Thus, all
n —t honest parties have sent valid a-queue messages and every honest party has received
all of them and subsequently started and terminated Byzantine agreement. Since also the
a-delivered payloads have been acknowledged, the sender must be waiting in line 2 with
g = []. But then m has been removed from ¢ and this occurs only if it was a-delivered, a
contradiction.

We now establish agreement. Towards a contradiction, suppose that some honest

64

Protocol ABC for party P, and tag ID

LET Qp|abc|, BE THE FOLLOWING PREDICATE:

QID|abC|r([w1’ e Wyl o1, 00]) = (for at least n — ¢ distinct j, o; is a valid

S-signature by P; on (ID,a-queue, 7, j, wj).)

INITIALIZATION:
q <+ || {FIFO queue of messages to a-broadcast}
d+« 0 {set of a-delivered messages}
r <0 {current round}

UPON RECEIVING MESSAGE (ID, in, a-broadcast, m):
if m ¢ d and m ¢ ¢q then

append(q, m)

FOREVER:

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:

s wj 4 Lioj L (1<j<n)

wait for ¢ # [] or a message (a-queue,r, [, w;, 0;) received from P,
such that w; € d and o, is a valid signature from P,

if ¢ # [| then
w < first(q)

else
W <— Wy

compute a digital signature o on (ID, a-queue, r,i, w)

send the message (a-queue,r,7,w, o) to all parties

wait for n — ¢t messages (a-queue,r, j, w;, 0;) such that o; is a valid
signature from P; (including the message from P, above)

W« [wy,...,wy]; S < [01,...,00]

propose W validated by S for multi-valued validated Byzantine agreement
on ID[abc|r with predicate Qpabc,

wait for the validated Byzantine agreement protocol to decide some
V =[v1,...,v,] for ID|abc|r

b Uj_1 v

for m € (b\ d), in some deterministic order do
output (ID,out,a-deliver,m)
wait for an acknowledgment
d <+ duU{m}
remove(q, m)

rér+1

Figure 5:
ment.

Protocol ABC for atomic broadcast using multi-valued validated Byzantine agree-

65

P; has a-deliwered a payload message m, but an honest P; has not a-delivered it and
yet, all associated protocol messages have been delivered and acknowledgments have been
generated for all parties who have not yet a-delivered m. Assume P; a-delivered m in
round r. Since no party who has not a-delivered m is blocked waiting for messages or
acknowledgments under these conditions, it is easy to see from inspection of the protocol
and from the liveness condition of the Byzantine agreement sub-protocol that P; must have
received all messages belonging to any round up to and including r. But then it cannot be
waiting for an acknowledgment either—unless it has already a-delivered m.

The total order condition follows from the agreement property of the validated
Byzantine agreement primitive since all honest parties decide on the same proposal and
then a-deliver all payload messages contained in the proposal in a deterministic order.
This implies also that the set d of a-delivered messages is the same for all honest parties.

Integrity is immediate from the protocol by induction on the construction of d,
using the properties of Byzantine agreement. Even if corrupted parties include messages
that have already been delivered, they are not delivered again.

To show fairness, consider the system when W,, has been defined. We have to
provide a polynomial bound on (W,, — S;,)/V;n, independent of the adversary. Note that
the decided vector of payloads in every round contains n — ¢ values of which at least
n — 2t > t+ 1 are the first elements in the queues of honest parties. Thus, at least one of
the initially V,,, elements in the respective ¢t 4+ 1 queues has been a-delivered in every round
henceforth. But there are at most n distinct payloads that are a-delivered per round, which
implies that W,,, — S,, is bounded by nV,,.

For efficiency, we have to relate the communication complexity of the protocol to
the payload messages that were actually a-delivered. Note that honest parties generate
messages only when they make progress in the round structure—either by sending an
a-queue message or by invoking the Byzantine agreement sub-protocol. But an honest
party enters the next round only if it is aware of some payload message that it has not
yet a-delivered. Since at least one payload message from the system queue is delivered
in every round, all protocol messages generated during that round can be related to that
payload. There are a fixed polynomial number of protocol messages generated directly by
the protocol in every round and the length of each one is at most n times the length of a
payload. The communication complexity of the Byzantine agreement sub-protocol is prob-
abilistically polynomially bounded by its efficiency condition. Thus, the communication
complexity per round is probabilistically polynomially bounded. O

The message complexity of Protocol ABC to broadcast one payload message m is
dominated by the number of messages in the multi-valued validated Byzantine agreement;
the extra overhead for atomic broadcast is only O(n?) messages. The same holds for the

66

communication complexity, but the proposed values have length O(n(|m|+ K)), assuming
digital signatures of length K bits.

With Protocol VBAconst from Section 3.3.4, the total expected message complexity
is O(n?) and the expected communication complexity is O(n?/m|) for an atomic broadcast
of a single payload message.

3.4.3 Equivalence of Byzantine Agreement and Atomic Broadcast

For the sake of completeness, we state the equivalence of atomic broadcast to Byzan-
tine agreement in the cryptographic model. It is the analogue to the equivalence between
consensus and atomic broadcast in the crash-fault model shown by Chandra and Toueg [16].

Corollary 13. (Binary) Byzantine agreement and atomic broadcast are equivalent in the
basic system model of Section 3.1.1, assuming a secure signature scheme and provided
n > 3t.

Proof. To implement Byzantine agreement from an atomic broadcast protocol, a party
uses the following algorithm:

1. To propose v € {0, 1} for transaction ID, compute a digital signature o on (ID,v)
and a-broadcast the message (ID,v,0).

2. Wait for a-delivery of the first 2¢ + 1 messages of the form (ID,v;,0;) from distinct
parties that contain valid signatures. Decide for the simple majority of all received
values v.

The other direction follows from Theorems 8 and 12. O

Note that using an appropriately defined notion of authenticated atomic broadcast,
this could also be implemented without the additional digital signatures in the reduction.
However, Protocol ABC would have to be modified in order to provide authentication.

3.5 Secure Causal Atomic Broadcast

Secure causal atomic broadcast (SC-ABC) is a useful protocol for building secure
applications that use state machine replication in a Byzantine setting. It provides atomic
broadcast, which ensures that all recipients receive the same sequence of messages, and also

67

guarantees that the payload messages arrive in an order that maintains “input causality,”
a notion introduced by Reiter and Birman [56]. Informally, input causality ensures that a
Byzantine adversary may not ask the system to deliver any payload message that depends
in a meaningful way on a yet undelivered payload sent by an honest client. This is very
useful for delivering client requests to a distributed service in applications that require the
contents of a request to remain secret until the system processes it. Input causality is
related to the standard causal order (going back to Lamport [40]), which is a useful safety
property for distributed systems with crash failures, but is actually not well defined in the
Byzantine model [37].

Input causality can be achieved if the sender encrypts a message to broadcast with
the public key of a threshold cryptosystem for which all parties share the decryption
key [56]. The ciphertext is then broadcast using an atomic broadcast protocol; after
delivering it, all parties engage in an additional round to recover the message from the
ciphertext.

In our description of secure causal atomic broadcast, one of the parties acts as the
sender of a payload message. If SC-ABC is used by a distributed system to broadcast
client requests, then encryption and broadcasting is taken care of by the client. In this
case, additional considerations are needed to ensure proper delivery of the replies from the
service (see [56] for those details).

3.5.1 Definition

Associated with any instance of a secure causal atomic broadcast protocol with tag
ID is an encryption algorithm E;p. It should be possible to infer this algorithm from
the dealer’s public output. Ejp is a probabilistic algorithm that maps a message m to a
ciphertext c¢. We call ¢ = Ejp(m) an encryption of m (with tag ID). Since the encryption
algorithm is probabilistic, there will in general be many different encryptions of a given
message; indeed, this will necessarily be the case if the system is to be secure.

An application that wants to securely broadcast a payload message should first
encrypt it using E;p and invoke the broadcast protocol with the resulting ciphertext.
Since E;p is publicly known, also clients from outside the group Pi,..., P, can produce
ciphertexts.

A secure causal atomic broadcast protocol is activated when P; receives an input
message of the form

(ID, in, s-broadcast, c).

We say P; s-broadcasts ¢ with tag ID.

68

Unlike atomic broadcast, delivery consists of two distinct steps: the first is the
generation of an output message of the form

(ID, out, s-schedule, ¢),
and the second is the generation of an output message of the form

(ID, out, s-reveal,m).

We shall require that honest parties generate sequences of such pairs of output
messages—there must never be two consecutive s-schedule or s-reveal messages. When
the s-schedule message is generated, we will say that P; s-schedules the ciphertext c
(with tag ID). When the s-reveal message is generated, we will say that P; s-delivers
the ciphertext ¢ (with tag ID), where c is the most recently s-scheduled ciphertext; we call
m the associated cleartext.

Definition 8 (Secure Causal Atomic Broadcast). A secure causal atomic broadcast
protocol satisfies the properties of an atomic broadcast protocol, where the s-broadcast and
s-delivery of ciphertexts in the secure causal atomic broadcast protocol play the role of the
a-broadcast and a-delivery of payload messages in an atomic broadcast protocol.

Additionally, the following conditions hold.

Serialization: Honest parties strictly alternate between generating s-ready and s-deliver
output messages with the same tag. Moreover, if some honest party outputs an
s-ready message containing a bit string ¢, then the next s-deliver output contains
a pair (m, ¢) where m results from the threshold-decryption of a ciphertext identified
by c.

Message Secrecy: According to the basic system model, the parties run an atomic broad-
cast protocol (and possibly other broadcast protocols), and the adversary plays the
following game:

B1. The adversary interacts with the honest parties in an arbitrary way.

B2. The adversary chooses two messages my and m; and a tag ID; it gives them to
an “encryption oracle.” The oracle chooses a bit B at random and computes an
encryption ¢ of mp with tag ID, and gives this ciphertext to the adversary.

B3. The adversary continues to interact with the honest parties subject only to the
condition that no honest party s-schedules ¢ with tag ID.

B4. Finally, the adversary outputs a bit B.

Then, for any adversary the probability that B = B must exceed % only by a negligible
amount.

69

Message Integrity: According to the basic system model, the parties run an atomic
broadcast protocol (and possibly other broadcast protocols), and the adversary plays
the following game:

C1. The adversary interacts with the honest parties in an arbitrary way.

C2. The adversary chooses a message m and a tag ID, and gives it to an “encryption
oracle.” The oracle computes an encryption ¢ of m with tag ID, and gives this
ciphertext to the adversary.

C3. The adversary continues to interact with the honest parties in an arbitrary way.

We say the adversary wins the game if at some point an honest party s-delivers ¢ with
tag ID, but corresponding cleartext m' is not equal to m. Then, for any adversary,
the probability that it wins this game is negligible.

Message Consistency: If two parties honest parties s-deliver the same ciphertext ¢ with
tag ID, then with all but negligible probability, the associated cleartexts are the same.

It is easy to verify that this definition implies input causality in the sense of Re-
iter and Birman [56], i.e., that a cleartext remains hidden from the adversary until the
corresponding ciphertext is s-scheduled. But the cleartext may be revealed to the adver-
sary before the first honest party outputs it in a s-reveal message, and this is also the
reason for introducing our two-step delivery process. Although this is necessary for the
proper definition of security, s-scheduling a ciphertext might be omitted in a practical
implementation.

The message integrity condition gives clients access to the broadcast protocol for
cleartext payload messages, and implies that payloads contained in correctly encrypted
ciphertexts are actually output by the honest parties.

3.5.2 A Protocol for Secure Causal Atomic Broadcast

Protocol SC-ABC in Figure 6 implements secure causal atomic broadcast. It uses
an (n,t —+ 1)-threshold cryptosystem &; that is secure against adaptive chosen ciphertext
attacks (see Section 3.1.3.3) for which the parties share the decryption key. It also uses an
atomic broadcast protocol according to Section 3.4.

During initialization, the dealer generates a public key for &, together with the
corresponding private key shares, and distributes them according to the initialization al-
gorithm of &;.

70

For a tag ID, Erp(m) is computed by applying the encryption algorithm of &; to
m with label ID, using the generated public key of the cryptosystem.

We emphasize that all instances of the secure causal broadcast protocol share the
same public key for £, and so the use of labeled ciphertexts is essential to properly “isolate”
different instances of the protocol from one another.

To s-broadcast a ciphertext ¢, we simply a-broadcast c. Upon a-delivery of a cipher-
text ¢, a party s-schedules c. Then it computes a decryption share ¢ and sends this to all
other parties in an s-decrypt message containing c. It waits for £+ 1 s-decrypt messages
pertaining to ¢. Once they arrive, it recovers the associated cleartext and s-delivers c.
After receiving the acknowledgment, the party continues processing the next a-delivery by
generating the corresponding acknowledgment. The details are in Figure 6. For ease of no-
tation, the protocol in Figure 6 is formulated using a FOREVER loop; it can be decomposed
into the respective message handlers in straightforward way.

Protocol SC-ABC for party P, and tag ID

INITIALIZATION:
open an atomic broadcast channel with tag ID|scabc

UPON RECEIVING (ID, in, s-broadcast, ¢):
a-broadcast ¢ with tag ID|scabc

FOREVER:

wait for the next message c that is a-delivered with tag ID|scabc

compute an & -decryption share ¢ for ¢ with label ID

output (ID, out,s-schedule, c)

send the message (s-decrypt,c,d) to all parties

0; +— L (1<j<n)

wait for ¢ 4+ 1 messages (s-decrypt, ¢, d,) from distinct parties that contain valid
decryption shares for ¢ with label ID

combine the decryption shares 41, ...,d, to obtain a cleartext m

output (ID, out,s-reveal,m)

wait for an acknowledgment

acknowledge the last a-delivered message with tag ID|scabc

Figure 6: Protocol SC-ABC for secure causal atomic broadcast.
Theorem 14. Given an atomic broadcast protocol and assuming & is a (n,t+1)-threshold

cryptosystem secure against adaptive chosen-ciphertext attacks, Protocol SC-ABC provides
secure causal atomic broadcast for n > 3t.

71

Proof. We have to show that the protocol implements atomic broadcast and satisfies mes-
sage secrecy and message integrity conditions.

We first show walidity. Suppose an honest party P; has s-broadcast ¢ and all asso-
ciated messages have been delivered and all acknowledgments have been generated. Thus,
P; has a-broadcast c. By the validity of the atomic broadcast protocol and because the
messages associated to the secure broadcast contain also all those associated to the atomic
broadcast, ¢ has been a-delivered. According to the agreement condition of atomic broad-
cast, all honest parties have therefore generated decryption shares for c and sent s-decrypt
messages to all parties. Thus, P; has received at least ¢t + 1 valid shares for ¢. But then P,
has also s-delivered c.

It is perhaps interesting to note that the above proof of validity made essential use
of both the validity and agreement properties of the underlying atomic broadcast protocol.

For agreement, suppose that an honest P; has s-delivered c and P; has not, and yet,
all associated messages have been delivered and acknowledgments have been generated for
those parties who have not s-delivered c. By the agreement condition of the underlying
atomic broadcast, all other honest parties must also have a-delivered c. Thus, they have
generated decryption shares and also P; has received at least ¢t + 1 valid shares for c.
Therefore, P; must have s-delivered c, a contradiction.

To show efficiency, we must bound the amount of work done (as measured by
communication complexity) per s-delivered message. But since the s-delivery messages
is synchronized with the a-delivery of ciphertexts in Protocol SC-ABC, the number of a-
delivered messages exceeds the number of s-delivered ones by at most one, and efficiency
follows from the efficiency condition of the atomic broadcast protocol.

Note that without this synchronization, we could not achieve efficiency, since the
lower level atomic broadcast protocol could “run ahead” of the higher level secure causal
atomic broadcast protocol—lots of messages would be generated, but very few messages
would be s-delivered.

It is easy to see that the remaining broadcast properties (total order, integrity,
and fairness) hold as well, using the corresponding properties of the underlying atomic
broadcast.

Message secrecy, integrity, and consistency follow easily from the properties of the
underlying threshold encryption scheme. O

72

4 Applications

Our distributed trusted services are based on secure state machine replication in
the Byzantine model. Requests to the services are delivered by the broadcast protocols
mentioned in the previous chapter. A broadcast is started when the client sends a message
containing the request to a sufficient number of servers. In general, the client must send
the request to more than ¢ servers or a corrupt server could simply ignore the message;
alternatively, one could postulate that one server acts as a gateway to relay the request to
all servers and leave it to the client to resend its message if it receives no answer within
the expected time.

Depending on whether it needs to maintain causality among client requests, a service
may use atomic broadcast directly or secure causal atomic broadcast otherwise. If the client
requests commute, reliable broadcast suffices.

Each server returns a partial answer to the client, who must wait for at least 2¢ + 1
values before determining the proper answer by majority vote. Since atomic broadcast
guarantees that all servers process the same sequence of requests, the client will obtain
the same answer from all honest servers. If the application returns a digital signature,
the answers may contain signature shares from which the client can recover a threshold
signature.

Four applications of our protocols to distributed trusted third-party services are
described here: a digital notary, a trusted party for optimistic fair exchange, a certification
authority, and a basic authentication server.

4.1 Digital Notary Services

One of the simplest state machines is a single counter. Despite this simplicity,
there are a number of applications in which a single counter provided by a trusted central
authority is of fundamental importance. We will describe in moderate detail one such
service—a digital notary service—and then briefly mention others.

In its most basic form, a digital notary service receives documents, assigns a se-
quence number to them and certifies this by its signature. In order to focus on the needed
security and verification features of such a service, it is convenient to think of the exam-
ple of a patent office: individuals or organizations in the research community create new
intellectual property and wish to protect that property by applying to the patent office.
This office must in turn assign each application a sequence number—essentially a logical
timestamp—so that as the review process takes place, an application which treads too

73

close to one with an earlier acceptance number can be denied, while the earlier one is given
priority and that applicant owns the resulting patent.

When the patent office is a single physical location, the applications can simply be
given consecutive numbers as they come in the front door and the community at large must
simply trust that what happens inside that building is honest and reliable; something not
much different can also be done when the office moves to a single server on the Internet. It
is, however, wise to distribute such a service among n > 1 hosts running different software
under separate system administration and in separate physical locations, in order to remove
the single point of failure and to provide a more robust service. Another situation in which
such a distributed patent office might arise would be if several nations agreed to cooperate
in the issuing of patents, so that all applications would be made simultaneously to all
national offices, which would all agree on an ordering of these submissions.

As we have argued elsewhere, a reasonable model then to apply for the distributed
servers is one of processes communicating asynchronously over a network which is presumed
to be in the hands of the adversary, who is also presumed to have corrupted up to t < n/3
of the servers. Several security concerns must be satisfied if the distributed patent office is
to continue to function:

e the documents must be processed atomically, i.e., despite asynchronous communica-
tion, each document must be given a unique sequence number, and all honest hosts
must agree on the number assigned to a given application;

e documents must be processed securely, in that the contents of a document should not
be readable by corrupt servers until the protocols have finished and the document
have been given their sequence number—otherwise the adversary in the patent appli-
cation example could insert an application for a similar invention into the sequencing
protocol ahead of the legitimate applicant;

e the resulting sequence numbers should be signed in such a way that the client can
be confident that her number is provably legitimate, and not merely the result of
deceptive messages from the adversary.

It should then be clear that the essential tool to realize this task in a reliable and
efficient manner is the secure causal atomic broadcast (SC-ABC) of Chapter 3, in its parallel
activation mode, with a minor addition to produce the desired signatures. In particular:

1. The dealer should create keys for an (n,t + 1,¢)-threshold signature scheme Sy and
give them to the notary servers, and the initialization phase of each server should
Z€ero a counter seqnum.

74

2. Notary servers wait for the s-delivery of a message with tag notarize, whose payload
m contains the document to be notarized.

3. When such a message is s-delivered, each server should increment the segnum counter,
create an Sy-signature share o on the message (m, seqnum) and transmit (seqgnum, o)
to the original client.

The client uses this service by

1. computing an & -encryption c of its document m containing also information which
names the client and her internal reference number for this notary request,

2. s-parallel-broadcasting payload ¢ with tag notarize to all notary servers,

3. waiting for ¢ 4+ 1 distinct servers to reply with a sequence number and valid So-
signature share and then

4. assembling the shares into a S,-signature on the message (m, seqgnum).

One inelegant aspect of the notary service just described is that it seems to put
some of the onus of dealing with the distributed service on the individual clients, in that
the client must herself assemble the signature shares at the end of the process. This could
be avoided, at the cost of an additional round of communication among the servers, by
having each one broadcast its Ss-signature share to its peers and then wait for enough
such shares to come back from other servers so that it could assemble the signature itself.
However, the client’s initial step of encrypting her message before broadcasting it to all
servers cannot be avoided, as she cannot trust any other party with the cleartext of her
submission until the distributed notary service has issued a signed sequence number for
that request. In practice, the encryption of the client’s outgoing message and the assembly
of a signature from the incoming server messages would be handled by routines in the
communications software library, so these internals would not be the concern of the client
application at all.

Several other distributed services with a similar need of a synchronized and signed
sequence number created by processing, until the last step, an encrypted form of the client
request can all fall under the rubric of a digital bidding service. Here we are imagining
a valuable item for which the order of arrival of the bids as well as the details of the
bids themselves are used to allocate the good or goods to (some of) the clients. Stocks,
where both the order in which the offers are made as well as the offered purchase price, or
government contracts, where again the priority of the bid as well its specific terms are used
to assign the contract, are both items which would benefit from such a service. In individual
applications, the details of the small programs which use the SC-ABC protocol may vary,

75

such as particular requirements of client authentication or creation of a mechanism to
terminate a bidding process, but the general outline would be very similar to the above
example. (For a discussion of some of these and related issues and examples, see [56].)

4.2 Fawr Exchange TTPs

Commercial interactions between two actors over the Internet must all deal, in some
way, with the fair exchange problem: how the participants can exchange two valuable
tokens in such a way that either both get the item they bargained for or neither does.
Many protocols have appeared in the literature to solve this problem, and they all use
the mechanism of a trusted third party in some way (at least all potentially practical
protocols do so). Perhaps the most efficient algorithms are those which go under the name
of optimistic fair exchange, where the third party is only involved when the transaction
fails, either to abort a transfer when the initiating party is not releasing her valuable item,
or to force a conclusion of the transaction if the first party has released her good but the
second is trying to avoid the promised payment—or simply if some of the protocol messages
are lost or deleted by a malicious network.

Several very nice algorithms for optimistic fair exchange are given by Asokan, Shoup
and Waidner in [2] for the exchange of digital signatures. They have the advantage of being
extremely flexible, so they can operate on all commonly used signature schemes and can
be easily adapted for the exchange of digital content or certified e-mail, for example. It is
very convenient for our current setting that the model in [2] is the same as our present one,
with asynchronous communication on an untrusted network. We shall describe here the
special case from [2] of a protocol for the electronic signing of contracts, because it is one
that can very easily take advantage of the communication primitives we have developed.

Let us denote by [a]x the bit string « concatenated with a signature on « under
X’s public key. Then the protocol for optimistic fair exchange of digital signatures on a
contract m between two parties Alice and Bob, with dispute resolution by Tom, proceeds
as follows (we use A as an abbreviation for “Alice” where convenient, and likewise with B
and 7T):

1. Alice sends Bob [m, A, B, T 4.

2. Bob receives and verifies this signature, replying with [m, A, B, T if successful and
quitting otherwise.

3. Alice receives and verifies this reply, sending him o4 = [m, A, B]4 if successful and
requesting an abort from Tom if not.

76

4. Bob receives o4 from Alice, sending her o = [m, A, B]p if he was able to verify o4
or else requesting resolve from Tom.

5. Alice receives and checks this o from Bob, outputting the (04, 0p) if satisfied or
otherwise requesting Tom to resolve the exchange.

In this scheme, a valid contract is a string of the form
([m, A, B]a,[m, A, B])
or, in the case that Tom has had to intervene,
[[m, A, B,T)4,[m, A, B,T|g]r;

the latter is called a prozy signature, and we are assuming that the social infrastructure is
in place to enforce it legally as completely as a normal contract.

There are two requests the trustworthy Tom must be able to handle: an abort from
Alice and resolves from Alice or Bob. The abort is essentially a request from Alice that all
future resolves from Bob on the contract m be disallowed. If, however, Bob has already
resolved, Tom can and does directly deliver the proxy signature to Alice.

Either Alice or Bob may attempt to resolve by sending Tom the message
Myresolve = ([ma Aa Ba T]Aa [ma A: Ba T,]B)a
to which Tom replies with [myesoe|r if N0 abort has yet been processed.

In this optimistic protocol, it is expected that Alice and Bob will only turn to the
TTP for conflict resolution—in which case Tom must always be able to respond reliably.
To increase the robustness of this TTP service, it is again natural to distribute it among
several hosts on the Internet with, as usual, as varied a configuration as possible. In
the course of normal, friendly interactions, Alice and Bob will not go to the TTP at all,
and hence there need be no change whatsoever in the above protocol for their personal
communication.

What must change for a distributed T'TP is the handling of the abort and resolve
sub-protocols. In particular, Tom has some state information which must be maintained
in a consistent fashion across the separate servers. Also, the order of processing of requests
must be the same at all instances of the TTP, since abort and resolve do not commute.
These basic consistency requirements are amply met by the atomic broadcast (ABC) prim-
itive described in Chapter 3, whose validity, agreement, integrity and total order properties
are designed exactly for this kind of state machine replication problem.

A possible alternative is to use Chapter 3’s secure causal atomic broadcast (SC-
ABC), which differs from ABC mostly in that it keeps communications regarding a certain

7

request encrypted until that request is committed, i.e., s-delivered. This can be useful in
our present context because we are explicitly assuming, in order for our new model to
be more robust than the single TTP scenario, that some of the TTP servers are corrupt.
While the dishonest TTP servers cannot forge a proxy contract or abort receipt, since these
require a threshold signature which they do not have sufficient shares to assemble, they
can influence the outcome of the ordering negotiations which make up the ABC protocol,
and decide to do so based on whether the requests are for abort or resolve. Since it is our
philosophy that the adversary should not be able to squeeze any possible advantage in any
imaginable situation from peeking inside the secure envelope of our system communications
(so that, for example, we use only cryptographic primitives which are secure against chosen-
ciphertext attacks), we will present here the version of distributed fair exchange protocols
which use the more secure SC-ABC channel, despite it’s increased overhead.

Therefore Alice and Bob must issue their various abort or resolve requests to the
distributed TTP via the pre-encrypted s-parallel-broadcast channel, as follows. Let ¢ be
a bit string agreed upon by Alice and Bob to uniquely identify their transaction (such as
a hash of the contract itself, £ = H(m)) and assume that all the TTP servers have key
shares for an (n,t + 1,t)-threshold signature scheme S, as well as a state variable S, for
each such /.

Assuming that Alice, Bob and the TTP servers {Tom;}? ; have opened a secure
causal atomic broadcast channel with tag fair-exchange, here are (some of) the details
of the TTP sub-protocols:

Sub-protocol abort:
1. Alice computes an £;-encryption ¢ of £ and the string mgpors = [m, A, B, abort]4 and
transmits the message
(fair-exchange, s-parallel-broadcast, c)
to all TTP servers.

2. Each TTP server Tom; runs the SC-ABC protocol until it achieves the s-delivery of
a message containing ¢ and M.+ With tag fair-exchange.

3. Tom,; verifies Alice’s signature in mgp,r, terminating if it is invalid.

4. He next checks if his S, contains a string beginning with an myesoe. If not, he
generates an Sp-signature share Sgport ON Maport and sets Sy = (Maport, Sabort)-

5. Finally, he sends whatever is in his S, to Alice.

6. Alice waits for 2¢ 4+ 1 servers to reply with a message and valid S;-signature share
and sees which message, an mgport O AN Myesoive, 18 the majority response.

78

7. She assembles the signature shares on that majority and now has either a TTP-signed
receipt for her abort request or a TTP-signed proxy contract which she can try to
enforce.

Sub-protocol resolve for party X =Alice or Bob:

1. X computes an &£-encryption ¢ containing ¢ and the string
Miresotwve = ([My A, B, T a,[m, A, B,T|5)
and transmits the message
(s-parallel-broadcast,c)
with tag fair-exchange to all TTP servers.

2. Each TTP server Tom; runs the SC-ABC protocol until it achieves the s-delivery of
a message containing ¢ and myesope With tag fair-exchange.

3. Tom; verifies both Alice and Bob’s signatures in myesopwe, terminating if either is
invalid.

4. He next checks if his S, contains a string beginning with an mgpe-¢- If not, he generates
an 52-Signat111"e share Sresolve OI1 TMyresolye and sets SZ = (mresolvea sresolve)-

5. Finally, he sends whatever is in his S, to X.

6. X waits for 2¢ 4+ 1 servers to reply with a message and valid Ss-signature share and
sees which message, an My esoipe O AN Mgpors, i the majority response.

7. He or she then assembles the signature shares on that majority and now has either
a TTP-validated proof that the transaction was aborted or a TTP-signed proxy
contract.

The description we have given here appears to be synchronous, but this is merely an
artifact of the way we have presented it (for clarity). In fact the actions of the participants
Alice and Bob do proceed in a linear fashion as explained above. The various Tom;’s instead
spend most of their time running the SC-ABC protocol and then reply to the appropriate
exchange partner with the appropriate message, based on their state and whichever message
was finally s-delivered, an abort or resolve.

Finally, let us mention that Asokan, Shoup and Waidner point out a nice feature of
the above fair exchange protocol is that the TTP can be held accountable for its actions;
that is, a dishonest TTP can have its perfidy exposed (essentially by using the signed abort

79

receipt). In our model, we are already assuming that ¢ of the Tom;’s are corrupt, but
we are also requiring that n — ¢ are honest. Hence there are always enough honest TTP
servers around to provide a sufficient number of threshold signature shares and in fact it
is unnecessary ever to hold accountable a corrupt server Tom;, although in practice it may
be useful to notice when a particular TTP server has proven itself to be corrupt.

4.3 Certification Authority and Directory Service

A certification authority (CA) is a service run by a trusted organization that verifies
and confirms the validity of public keys. The issued certificates usually also confirm that
the real-world user defined in a certificate is in control of the corresponding private key. A
certificate is simply a digital signature under the CA’s private signing key on the public
key and the identity (ID) claimed by the user.

The CA has published its own public key of a digital signature scheme. When a
user wants to obtain a certificate for his public key, he sends it together with his ID and
credentials to the CA. The ID might consist of name, address, email, date of birth, and
other data to uniquely identify the holder. Then the CA verifies the credentials, produces
a certificate if they pass, and sends the answer back to the user. The user can verify his
certificate with the public key of the CA. For its certificates to be meaningful, the CA
must have a clearly stated and publicized policy that it follows for validating public keys
and IDs; this policy might change over time.

A secure directory service maintains a database of entries, processes lookup queries,
and returns the answers authenticated by a signature under its private signing key. The
corresponding signature verification key is available to all clients. Several examples of
secure directories exist in distributed systems today and more are need in the future, like
authentication for the Internet’s domain name system [25].

Internally, a secure directory works much like a CA: It receives a query, retrieves
some values from the stored database, generates a digital signature on the result, and sends
both back to the client. Additional functionality is needed for updating the database.

Both services can be implemented in our distributed system architecture. Requests
must be delivered by atomic broadcast to ensure that all servers return the same answers.
Updates to the database must be treated in the same way. The digital signature scheme
of the service is replaced by the corresponding threshold signature scheme, which requires
minimal changes to the clients in the case of [59]. In the server code, computing the digital
signature is replaced by generating a signature share.

Note that atomic broadcast is crucial for delivering any request that changes the

80

global state; only if a CA never changes its policy and all of its certificates are independent
of each other, it suffices to use reliable broadcast.

4.4 Authentication Service

An authentication service verifies the claimed identity of a user or of a process acting
on behalf of a user. The user must present secret information that identifies her or carry
out a zero-knowledge identification protocol. If verification succeeds, the service will take
some action to grant the request, like establish a session or return a cryptographic token for
later use; this depends on the context in which the service is used. If the answer contains a
freshly generated, random session key, as in of Kerberos [61], such an authentication server
is also called a key distribution center (KDC). Communication between the authentication
service and clients may be encrypted and signed with the public key of the service.

The security assumption about the authentication service is that it acts honestly
when verifying a password or an identification protocol and never grants a request without
having seen the proper identification. The reference data against which the verification
occurs is assumed to be public but immutable; this is the case for Unix-style password
authentication and for zero-knowledge identification protocols, for instance. But a KDC
based on symmetric-key cryptography must also protect the corresponding master secret
key.

A distributed authentication service consists of several authentication servers that
are initialized by a trusted dealer and have access to the public reference data. Client
requests are distributed by atomic broadcast to all servers. If the request contains sufficient
information to authorize the user, the service must produce a suitable cryptographic token.

We distinguish two cases for this, depending on whether the cryptographic token
uses public-key techniques or not:

e In a public-key scenario, the response of the authentication service is a digitally signed
message, which can be thought of as a specialized certificate. Thus, the threshold
signature protocols for a CA are used as described in Section 4.3.

o If symmetric-key cryptography is used, the servers maintain a shared master key and
the response consists of an encryption under the master key, just as in Kerberos. An
efficient non-interactive protocol to realize a distributed KDC was presented by Naor,
Pinkas, and Reingold [50]. The cryptographic mechanism underlying their protocol
is in fact the same as used for realizing the distributed common coin in our Byzantine
agreement protocol [12] and integrates nicely with our architecture.

81

As in the general approach, a client can assemble the cryptographic token from the answers
of all servers that authorizes her. Existing authorization protocols that use this token
require some minimal changes in the cryptographic algorithms.

82

5 Extensions

We mention some extensions and improvements of our architecture. Although we
have strived for a secure and fault-tolerant system in the given environment, the security
could be strengthened by using “proactive” protocols, allowing for dynamic group changes,
or using hybrid failure structures (not to be confused with generalized ones). Our atomic
broadcast protocols involve a considerable overhead, in particular for large n, because se-
curity has been our primary design principle. Among the various possible optimizations,
it seems most promising to design “optimistic” protocols, which run very fast if no corrup-
tions occur but may fall back to slower protocols if necessary.

Proactive Protocols. Proactive security is a method to protect threshold-cryptographic
schemes against a mobile adversary that can corrupt all parties during the lifetime of the
system, but never more than ¢ at once (see [13] for a survey). Proactive protocols divide
time into epochs. All parties “reshare” their cryptographic secret keys between two epochs
and delete all old key material. The model assumes an external mechanism for detecting
corruptions and “cleaning up” a party. Because all secrets that the adversary has seen in
the past become useless by resharing, the adversary never knows enough secret information
to compromise the whole system.

Proactively secure protocols for our asynchronous system model are currently not
known. One issue to be addressed first is how to integrate epochs into the asynchronous
system model.

Dynamic Groups. The static nature of our system model may pose a problem for
practical systems. Real systems evolve over time and grow or shrink together with the
organizations that use them. Every such change would require a fresh setup of the complete
system by a trusted dealer. Ideally, a system should reconfigure itself and dynamically
increase or decrease the group size and the thresholds. However, special care is needed to
ensure the safety of all keys during the changes; thus, at least some resharing of keys will
be needed as in proactive protocols.

Note that similar motivation has led to the important idea of view-based group
communication systems that tolerate crash failures. But dynamically changing the group
seems much harder in the Byzantine model when cryptographic secrets are involved; this is
currently an open problem. The recent work of Alvisi et al. [1] considers dynamic changes
for Byzantine quorum systems, but their model does not involve confidentiality or any
cryptographic techniques.

83

Hybrid Failure Structures. Another interesting direction is to treat crash failures
separately from corruptions and adapt the protocols to such hybrid failure structures.
After all, crashes are more likely to occur than intrusions and they are much easier to
handle than Byzantine corruptions. For coping with transient server outages, the crash-
recovery model seems also plausible (see references in [36]). Protocols in hybrid failure
models have been investigated before [31, 49] so that we expect this to be feasible.

Optimistic Protocols. Optimistic protocols run very fast if no malicious adversary
is at work and all messages are delivered promptly. If a problem is detected (typically
because liveness is violated), they may switch into a more secure mode using protocols
that guarantee progress. This idea is quite common in the literature [52, 15]. In our
Byzantine context, one has to make sure that safety is never violated, though.

84

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, “Dynamic Byzan-
tine quorum systems,” in Proc. International Conference on Dependable Systems and
Networks (FTCS-30/DCCA-8), pp. 283-292, 2000.

N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signa-
tures,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 591-610,
Apr. 2000.

R. Baldoni, J.-M. Helary, and M. Raynal, “From crash fault-tolerance to arbitrary-
fault tolerance: Towards a modular approach,” in Proc. International Conference on
Dependable Systems and Networks (FTCS-30/DCCA-8), pp. 273-282, 2000.

M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing
efficient protocols,” in Proc. 1st ACM Conference on Computer and Communications
Security, 1993.

M. Ben-Or, “Another advantage of free choice: Completely asynchronous agreement
protocols,” in Proc. 2nd ACM Symposium on Principles of Distributed Computing
(PODC), 1983.

M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), 1993.

M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computation with opti-
mal resilience,” in Proc. 15th ACM Symposium on Principles of Distributed Computing
(PODC), 1994.

J. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in
Advances in Cryptology: CRYPTO ’88 (S. Goldwasser, ed.), vol. 403 of Lecture Notes
in Computer Science, pp. 27-35, Springer, 1990.

D. Boneh and M. Franklin, “Efficient generation of shared RSA keys,” in Advances in
Cryptology: CRYPTO °97 (B. Kaliski, ed.), vol. 1233 of Lecture Notes in Computer
Science, pp. 425-439, Springer, 1997.

G. Bracha, “An asynchronous [(n — 1)/3]-resilient consensus protocol,” in Proc. 3rd
ACM Symposium on Principles of Distributed Computing (PODC), pp. 154-162, 1984.

G. Bracha and S. Toueg, “Asynchronous consensus and broadcast protocols,” Journal
of the ACM, vol. 32, pp. 824-840, Oct. 1985.

85

[12] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople: Prac-
tical asynchronous Byzantine agreement using cryptography,” in Proc. 19th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 123-132, 2000.
Full version available from Cryptology ePrint Archive, Report 2000/034, http:
//eprint.iacr.org/.

[13] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term
protection against break-ins,” RSA Laboratories’ CryptoBytes, vol. 3, no. 1, 1997.

[14] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with optimal
resilience,” in Proc. 25th Annual ACM Symposium on Theory of Computing (STOC),
pp- 42-51, 1993.

bl

[15] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,’
Operating Systems Design and Implementation (OSDI), 1999.

in Proc. Third Symp.

[16] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed
systems,” Journal of the ACM, vol. 43, no. 2, pp. 225267, 1996.

[17] S. Chaudhuri, “More choices allow more faults: Set consensus problems in totally
asynchronous systems,” Information and Computation, vol. 105, no. 1, pp. 132-158,
1993.

[18] B. Chor and C. Dwork, “Randomization in Byzantine agreement,” in Randomness and
Computation (S. Micali, ed.), vol. 5 of Advances in Computing Research, pp. 443-497,
JAI Press, 1989.

[19] R. Cramer, I. B. Damgard, and U. Maurer, “General secure multi-party computation
from any linear secret sharing scheme,” in Advances in Cryptology: EUROCRYPT
2000 (B. Preneel, ed.), vol. 1087 of Lecture Notes in Computer Science, Springer,
2000.

[20] Y. Desmedt, “Threshold cryptography,” FEuropean Transactions on Telecommunica-
tions, vol. 5, no. 4, pp. 449-457, 1994.

[21] Y. Deswarte, L. Blain, and J.-C. Fabre, “Intrusion tolerance in distributed computing
systems,” in Proc. 12th IEEE Symposium on Security & Privacy, pp. 110-121, 1991.

[22] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. 22, pp. 644—654, Nov. 1976.

[23] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” SIAM Journal on
Computing, vol. 30, no. 2, pp. 391-437, 2000.

86

[24]

[25]
[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

A. Doudou, B. Garbinato, and R. Guerraoui, “Abstractions for devising Byzantine-
resilient state machine replication,” in Proc. 19th Symposium on Reliable Distributed
Systems (SRDS 2000), pp. 144-152, 2000.

D. E. Eastlake, “RFC 2535: Domain name sytstem security extensions,” Mar. 1999.

M. J. Fischer, “The consensus problem in unreliable distributed systems (a brief sur-
vey),” in Foundations of Computation Theory (M. Karpinsky, ed.), vol. 158 of Lec-
ture Notes in Computer Science, Springer, 1983. Also published as Tech. Report
YALEU/DCS/TR-273, Department of Computer Science, Yale University.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus
with one faulty process,” Journal of the ACM, vol. 32, pp. 374-382, Apr. 1985.

M. Fitzi and U. Maurer, “Efficient Byzantine agreement secure against general ad-
versaries,” in Proc. 12th International Symposium on Distributed Computing (DISC),
vol. 1499 of Lecture Notes in Computer Science, pp. 134-148, Springer, 1998.

Y. Frankel, P. MacKenzie, and M. Yung, “Robust efficient distributed rsa key gen-
eration,” in Proc. 80th Annual ACM Symposium on Theory of Computing (STOC),
pp. 663-672, 1998.

J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and
retrieval.” Proc. 11th International Workshop on Distributed Algorithms (WDAG),
1997.

J. A. Garay and K. J. Perry, “A continuum of failure models for distributed com-
puting,” in Proc. 6th International Workshop on Distributed Algorithms (WDAG),
1992.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure key generation for
discrete-log based cryptosystems,” in Advances in Cryptology: EUROCRYPT 99
(J. Stern, ed.), vol. 1592 of Lecture Notes in Computer Science, pp. 295-310, Springer,
1999.

O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge University Press,
2001. To appear.

O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
Journal of the ACM, vol. 33, pp. 792-807, Oct. 1986.

S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against
adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17, pp. 281-308,
Apr. 1988.

87

[36] R. Guerraoui, M. Hurfin, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper,
“Consensus in asynchronous distributed systems: A concise guided tour,” in Advances
in Distributed Systems (S. Krakowiak and S. Shrivastava, eds.), vol. 1752 of Lecture
Notes in Computer Science, pp. 33-47, Springer, 2000.

[37] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,” in
Distributed Systems (S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley,
1993. An expanded version appears as Technical Report TR94-1425, Department of
Computer Science, Cornell University, Ithaca NY, 1994.

[38] M. Hirt and U. Maurer, “Player simulation and general adversary structures in perfect
multi-party computation,” Journal of Cryptology, vol. 13, no. 1, pp. 31-60, 2000.

[39] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing protocols
for securing group communication,” in Proc. 31st Hawaii International Conference on
System Sciences, pp. 317-326, IEEE, Jan. 1998.

[40] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munications of the ACM, vol. 21, pp. 558-565, July 1978.

[41] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382—401, July 1982.

[42] N. Lynch and M. R. Tuttle, “Hierarchical correctness proofs for distributed al-
gorithms,” in Proc. 6th ACM Symposium on Principles of Distributed Computing
(PODC), 1987.

[43] N. A. Lynch, Distributed Algorithms. San Francisco: Morgan Kaufmann, 1996.

[44] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,” CWI
Quaterly, vol. 2, pp. 219-246, Sept. 1989.

[45] D. Malkhi, M. Merritt, and O. Rodeh, “Secure reliable multicast protocols in a WAN;,”
Distributed Computing, vol. 13, no. 1, pp. 19-28, 2000.

[46] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,” Distributed Computing,
vol. 11, no. 4, pp. 203-213, 1998.

[47] D. Malkhi and M. K. Reiter, “An architecture for survivable coordination in large
distributed systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 12,
no. 2, pp. 187-202, 2000.

[48] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography. Boca Raton, FL: CRC Press, 1997.

88

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

L. E. Moser and P. M. Melliar-Smith, “Byzantine-resistant total ordering algorithms,”
Information and Computation, vol. 150, pp. 75-111, 1999.

M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random functions and
KDCs,” in Advances in Cryptology: EUROCRYPT 99 (J. Stern, ed.), vol. 1592 of
Lecture Notes in Computer Science, Springer, 1999.

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,”
Journal of the ACM, vol. 27, pp. 228234, Apr. 1980.

F. Pedone and A. Schiper, “Optimistic atomic broadcast,” in Proc. 12th International
Symposium on Distributed Computing (DISC), 1998.

D. Powell (Guest Ed.), “Group communication,” Communications of the ACM, vol. 39,
pp- 50-97, Apr. 1996.

M. Reiter, “Secure agreement protocols: Reliable and atomic group multicast in Ram-
part,” in Proc. 2nd ACM Conference on Computer and Communications Security,
1994.

M. K. Reiter, “Distributing trust with the Rampart toolkit,” Communications of the
ACM, vol. 39, pp. 71-74, Apr. 1996.

M. K. Reiter and K. P. Birman, “How to securely replicate services,” ACM Transac-
tions on Programming Languages and Systems, vol. 16, pp. 986-1009, May 1994.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120-126,
Feb. 1978.

V. Shoup, “Why chosen ciphertext security matters,” Research Report RZ 3076, IBM
Research, Nov. 1998.

V. Shoup, “Practical threshold signatures,” in Advances in Cryptology: EUROCRYPT
2000 (B. Preneel, ed.), vol. 1087 of Lecture Notes in Computer Science, pp. 207-220,
Springer, 2000.

V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen cipher-
text attack,” in Advances in Cryptology: EUROCRYPT 98 (K. Nyberg, ed.), vol. 1403
of Lecture Notes in Computer Science, Springer, 1998.

J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication service for
open network systems,” in Useniz Conference Proceedings, pp. 191-202, Mar. 1988.

D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 1995.

89

[63] P. Verissimo, A. Casimiro, and C. Fetzer, “The timely computing base: Timely ac-
tions in the presence of uncertain timeliness,” in Proc. International Conference on
Dependable Systems and Networks (FTCS-30/DCCA-8), pp. 533-542, 2000.

[64] P. Verissimo and N. F. Neves, eds., Service and Protocol Architecture for the MAFTIA
Middleware. Deliverable D23, Project MAFTIA IST-1999-11583, Jan. 2001.

90

