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Abstract

Approximations to the union bound performance of sequence detection in the presence of colored
noise and an algorithm to compute bit error and error event probabilities are presented and com-
pared to bit-by-bit simulation results. These computations, which are very accurate at bit error
probabilities

��� �����
, are then used to analyze the performance of standard and reverse concatenated

Reed-Solomon(RS)/modulation coding schemes for generalized partial-response channels corrupted
by colored noise. The analysis is used to determine the optimum RS code rate for recording systems
that are of current interest.
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1 Introduction

Partial-response class 4 (PR4) and extended PR4 channels (see [1] and references therein) have been
the state of the art in disk drives until quite recently. At high linear densities, generalized partial-
response polynomials with real coefficients provide a better match to the discrete-time response of
the recording channel than monic polynomials with integer coefficients do. This class of polyno-
mials, when combined with sequence detection, gives rise to noise-predictive maximum likelihood
(NPML) systems [2], [3]. Currently, 16-state NPML detectors for generalized partial-response chan-
nels with a first-order null at DC operating at rates close to 1 Gbit/s represent the state of the art in
the disk-drive industry.

Error control coding has played an important role in the design of recording systems. In disk
drives the usual coding scheme for partial-response recording channels is concatenated coding with
an outer Reed-Solomon (RS) code and an inner modulation/parity code [4]. In this type of coding
scheme, known also as standard concatenation, the use of high-rate modulation codes with large
block sizes leads to weak code constraints or an increase of error propagation at the modulation
decoder. This fact, coupled with the desire to perform soft-decision decoding, has led to renewed
interest in reverse concatenation [5]. For a PR4 sequence detector and a concatenated coding scheme
based on RS codes with 8-bit symbols and rate-16/17 modulation codes, reverse concatenation per-
mits the use of three interleaved RS codewords per sector, whereas standard concatenation requires
at least four interleaved RS codewords per sector to achieve good overall performance [6].

Union bounds for intersymbol interference channels that estimate the performance of a sequence
detector in the presence of white and colored Gaussian noise have been derived in [7] and [8],
respectively. An exact computation of these union bounds using generating-function methods similar
to those employed in [7] and [8] is possible only in the case of white Gaussian noise because the noise
variance associated with an error event in the presence of colored noise depends on the particular
error event under consideration. Here we present approximations to the union bound in [8] and an
algorithm to compute bit error and error event probabilities for sequence detection in the presence
of colored noise. These probabilities are used to evaluate the overall performance of a recording
system by following an analytic approach similar to that given in [6].

In Section II, the recording system model is described and the equivalent discrete-time model of
the recording channel is introduced in the form of a generalized partial-response channel impaired
by colored noise. In Section III, methods of computing approximations to the bit error and error
event probabilities at the output of a Viterbi detector are developed and compared to results ob-
tained by computer simulation. In Section IV, the performance of standard and reverse concatenated
RS/modulation coding schemes for generalized partial-response channels corrupted by colored noise
is analyzed.

2 Recording System Model

A block diagram of the recording system model is shown in Fig. 1. The outer RS code operates on
8-bit symbols (bytes) and can correct up to

�
bytes per codeword. A 512-byte sector is encoded into

�����
or 4 RS codewords that are byte-interleaved and fed to the modulation encoder. The inner

code is a high-rate modulation code that imposes constraints to aid timing/gain recovery and avoid
quasicatastrophic error propagation at the output of the sequence detector.

The binary outputs of the modulation encoder are mapped into bipolar symbols +1 and � 1, writ-
ten onto the disk in the form of a positive or negative magnetization along a circular track. The data
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Figure 1: Recording system model.

sequence is read back from the head/disk assembly as an analog signal. After low-pass filtering and
sampling, the signal is shaped into a partial-response signal format by the equalizer. The power of the
total distortion at the output of the equalizer is reduced by noise prediction [2], [9]. Adopting a linear
model for the read/write process, the chain of signal-processing functions including read/write heads,
preamplifier, automatic gain control, low-pass filtering, sampling, equalization and noise whitening
is modeled by the generalized partial-response polynomial

��� ��� � ���	��
�  ��� � � � , where � is the
channel memory and � � are real coefficients.

Figure 2 depicts the equivalent discrete-time model of the recording channel extending from the
output of the modulation encoder to the input of the sequence detector. The input data sequence

� ���
�

to the generalized partial-response channel is bipolar, i.e.,
����� �

�
��� � � � . The sequence of colored

noise samples
� � �
� at the input of the sequence detector is generated by passing the sequence of

white noise samples
� � �
� through an equivalent filter � � ��� that represents the combination of the

low-pass filter, the equalizer and the whitening filter. Finally, the sequence detector provides delayed
estimates

������
� of the bipolar symbols fed to the recording channel.

Figure 2: Equivalent discrete-time channel model.
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3 Detector Performance in the Presence of Colored Noise

Let
�

be an error event of length � characterized by the input error sequence � � � ��� � � � ��� � �� � ���
of length � . As the generalized partial-response channel is linear and time-invariant, the output error
sequence can be expressed as � � � ��� � � � � ��� ��� ��� . The squared Euclidean distance associated
with a particular error event

�
of length � is defined as the energy of the corresponding output error

sequence of length � � � , i.e., � � � � � ��� � � � � � � � (1)

At the output of a sequence detector, let 	 � denote the set of all error events of length � , and 
 �
the probability that an error burst of length � starts at a particular time instant. The union bound
states that the probability of a union of events is less than or equal to the sum of their individual
probabilities. Hence, 
 � � Pr

� 	 � � ����� ��� Pr
� � � �

(2)

Similarly, an upper bound on the probability of bit error ��� at the output of the sequence detector
is given by � � � � � ��� � � � Pr

� � �
(3)

where � � � � is the Hamming weight of the error event
�

, which is defined as the number of nonzero
coefficients in the corresponding input error sequence, Pr

� � �
is the probability of the error event

�
,

and 	 is the set of all possible error events.
In the following we classify the error events by their Euclidean distance. Let

��� � � ���
be the � -th

error event with distance
� � . Furthermore, � � � � denotes the Hamming weight of the error event��� � � ���

, and
� �  � � � denotes the length of the corresponding output error sequence. Now we define

the vector ! � � � as the column vector corresponding to the normalized output error sequence, i.e.,

! � � � �"� � � ��� � � ��� �� � � � � � � � � ��� � � � � (4)

We now reformulate the bit error and error event probability results derived in [8] by using the
error event classification introduced above. For this purpose the modified variance # �� � � associated
with an error event

��� � � ���
is defined as the variance along the vector ! � � � . The modified variance is

given by the quadratic form # �� � � � !%$� � ��& ! � � � � (5)

where & is the
� �  � � ��' � �  � � � covariance matrix associated with the sequence of colored noise

samples
� ���
� . The bit error probability of the sequence detector is then bounded by� � � � � � � � � � �)(+*

� �, # � � �.- , ��/�0 1 2 � (6)

where ( � 3 � represents the tail integral of the zero-mean, unit variance normal distribution, and � � � �denotes the Hamming weight of the � -th error event with distance
� � . Similarly, the error burst

distribution 
 � can be bounded by
 � �4� � � � ( *
� �, # � � �.- , ��/�0 1 2 � (7)

where now only error events
� � � � ��� � 	 � that have distance

� � and length � are considered.
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3.1 Approximations to the Union Bound

For maximum-likelihood sequence detection in the presence of white Gaussian noise it is common
practice to obtain first-order approximations to union bounds by considering only error events with
minimum distance. In the case of colored noise, the upper bounds on bit error and error event
probabilities in Eqs. (6) and (7) are also obtained as a sum over infinitely many terms. However,
the contribution of each term in Eqs. (6) and (7) is mainly determined by the ratio

� 0� � 0 1 2 associated
with an error event rather than just the Euclidean distance of an error event, as in the case of white
noise. Consequently, the following approximations to the union bound consider only error events
that satisfy the criterion � �, # � � � ��� ��� ��� (8)

where
� �	� � is a predetermined quantity that should be selected judiciously. We remark that, whereas

the selection of error events according to their distance can be done efficiently in the white-noise
case by exploring error flow graphs associated with the channel polynomial [7], [8], there is no
simple solution for evaluating the modified variance. Therefore, to further simplify the selection
of error events, an upper bound on the modified variance that depends on the length of the output
error sequence is obtained. It can be shown that the following upper bound on the modified variance
results from applying Schwarz’s inequality to the quadratic form in (5)# �� � � � # � � �  � � � � � � � � � � (9)

where # � is the variance of the white noise
� � � � . The first sum in Eq. (6) can now be restricted only

to error events that satisfy the condition� � � � ��� � � , � ��� � # 
 � �  � � � � � � � � � (10)

and the resulting approximate bound on the probability of bit error is

� � � �� � � 0 � � �� � � � � � � � ( *
� �, # � � �.- , � / 0 1 2 � (11)

Similarly, the burst error distribution 
 � can be approximated as


 � � �� � � 0 � � �� � � � (+*
� �, # � � �.- , � / 0 1 2 � (12)

where again only error events
�)� � � ���

with distance
� � and length � are considered.

Summation over � in the above equations may involve an infinite number of terms with the same
distance because of the presence of one or more zero-cycles [10]. A zero-cycle is a subevent � � � ���
that can be repeated any number of times without accumulating Euclidean distance. There may be
many zero-cycles in an error event. In general, the zero-cycles occur if the frequency response of
the channel has spectral nulls. Magnetic recording channels have a spectral null at dc and therefore
exhibit zero-cycles.

In the following we will call error events without zero-cycles elementary error events. Let us as-
sume that

��� � �
zero-cycles are inserted between elementary error events, i.e. the input error sequence

is � � ��� � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �
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where � � � � is an elementary subevent and
�� � � � is a subevent made of the repetition of a zero-cycle.

As the filter � � ��� has finite length
��� �

, 	�� ��� � � � � � , for
� �
� � �	�
��� � � therefore � & � � �  � � for� �

��� ���
� � � . Now, if the output error sequence is zero between the time instants
� � and

� � due to
the presence of zero cycles, and

� � � � � ��� � � , the modified variance of the noise can be expressed
as

# �� � � �

� �� �  �
� ��   � � ! � � � � � � ! � � � �  � & � � �  (13)

� ��� � � �����  � � � � � � ����
  � � � ! � � � � � � ! � � � �  � & � � �  �

and this expression is independent of
� � � � � � � , the length of the zero-cycle. Therefore, if there is a

sufficient number of zero-cycles, the argument of ( � 3 � in the above equations does not change.
Now let

�� � � � denote the Hamming weight of a zero-cycle and # � � � denote the modified variance
of an elementary error event with Hamming weight � � � � . Furthermore, we define

�� � � � � , ���/�0 1 2
and � � � � � , � / 0 1 2 . Finally, let � be the set of all two-tuples

�  � � � such that
�  � � � is associated

with an elementary error event with Euclidean distance
� � � � ��� � . Then, the summation in (11) can

be rewritten as follows � � � �� � � ��� � � (+*
� �, # � � �.- * � � � � � � � ��

�
�� � � �

�
�� � � � � � � � �� � � �� �
�
�� � � � � � - � (14)

Similarly, the burst error distribution can be expressed as
 � � �� � � ��� � � (+*
� �, # � � �.- * � � � �

�
�
�� � � �.- � (15)

where the summation is over elementary error events with distance
� � � � ��� � and length � .

3.2 A Search Algorithm for Evaluating Detector Performance

Here we give an algorithm that performs a modified depth-first search in an error flow graph. The
search procedure identifies the error events that will be used to compute bit error and error event
probabilities. Search algorithms for characterizing error events with specified distance at the output
of partial-response channels of the form

� �
�
��� � � � � ��� �

, � � ��� � have been presented in [10].
The error flow graph is a directed graph that may be constructed as follows. The states are defined

as the difference between the actual state of the generalized partial-response channel and the state
estimated by the sequence detector. The edges connect nodes such that the first � � � elements of
the initial state coincide with the last � � � elements of the terminal state. Each edge going from
state � � � � � � � � � � � � � � , � � � � � � � � � � � � � � to state � � � � � � � � � � � � � � � � � � � � � � � � � � � � � is weighted
with distance

� � � � � � � 
�
�  � � � � � � � � � � � � �

It is well known that the error flow graph is symmetric, i.e., the distance associated with an edge
going from state � � � � � � � � � � � � � � , � � � � � � � � � � � � � � to state � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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is the same as that of the edge going from state � �%� � � � � � � � �%� � � � � , � � � � � � ��� � � � � � � � to state� �%� � � � � � ��� � � � � � � � � � � � �%� � � � � � � � � � . This property of error flow graphs can be used to simplify
the computations.

The algorithm starts from the zero state [0, 0, . . . , 0] and gradually extends the paths considering
the successors of the zero state and then the successors of the successors and so on. Let us refer
to the current path as the temporary path. The condition

� 0 � � 0 1 � � �� � 0 1 2 � � ��� �
is checked on each path

extension, where
� � � � � � is the minimum distance of the subpath going from the ending state of the

temporary path to the zero state and # �� � � is the modified variance associated with the temporary
path. The computation of

� � � � � � is performed at the beginning of the algorithm, using a modified
version of Dijkstra’s algorithm [11]. Not all the temporary paths are considered and in particular the
process of exploration of the successors stops when one of the following conditions is satisfied:

1. If the zero state is reached, the path is used for the computation of ��� from Eq. (14) and 
 �
from Eq. (15).

2. If the condition on the distance-to-modified variance ratio is not satisfied, the temporary path
is discarded.

3. If the length of a zero-cycle repetition at the end of the temporary path exceeds
� � �

,
�� and

��
are computed and no more cycles are allowed to grow at the end of the temporary path.

3.3 Simulation Results
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Figure 3: Bit error probability as a function of SNR for � ��� �	� 
 � , � � .
The search algorithm presented above is used to compute the bit error probability at the output

of a Viterbi detector for a degree-4 generalized partial-response channel corrupted by colored noise.
The channel is characterized by the polynomial

� � ��� � � �
�
� � � � ����� � � ��� � � � � , where the
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target of the 10-coefficient equalizer has been assumed to be
� �
�
� � �

and the predictor has two
coefficients that have been optimized to minimize the noise power at the input of the detector. The
read/write process extending from the output of the modulation encoder to the input of the lowpass
filter has been modeled as a Lorentzian channel corrupted by additive white Gaussian noise. Thus,
the noise at the 16-state detector input can be represented as filtered white noise where the filter
corresponds to the combination of the lowpass filter, the 10-coefficient equalizer and the whitening
filter

� ��� � � � � � � � � � with two predictor coefficients.
Figure 3 shows the bit error probability as a function of the signal-to-noise ratio (SNR) for a

Lorentzian channel with normalized linear density � ��� � � 
 � , � � . The bit-by-bit simulation re-
sults agree well with the computed bit error probabilities. The results demonstrate that the computed
approximations to the union bound are accurate for ��� � � ����� . It is well known that union bounds
are not tight at bit error probabilities ��� � � ����� . Similarly, Fig. 4 shows the bit error probability
as a function of the normalized linear density � ��� �	� 
 for SNR = 14 dB. Again we observe good
agreement between the analytical results and bit-by-bit simulations.
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Figure 4: Bit error probability as a function of � ��� � � 
 for
����� � � �

dB.

4 Recording System Performance

The performance of concatenated RS/modulation coding has been analyzed in [6] as a function of
the code parameters and the polynomial

�
 � � � � �

� �  � 
 � � �  � 
 � � � (16)

that characterizes the burst error distribution at the input of the modulation decoder. This analysis
applies to both standard and reverse concatenation and employs the sector error probability �	� � � 
 � � as
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the performance measure. Furthermore, � � � � 
 � � can be accurately estimated using the union bound
� � � � � � � � � , where � � � � � � � � is the sum of the probability of decoder error and the probability of decoder
failure.

The performance of concatenated RS/modulation coding (standard and reverse) for generalized
partial-response channels will be analyzed based on the algorithm for computing the polynomial�
 � � � discussed above. Specifically, we will compute the probability [6]

� � � � � � � � � ��� � � � � ��
�  � * � � �

�

 � �� - 
 � � � � 
 � ��� � � � � � � �����	 �
 � � � � � � � � � 	 � � (17)

where 
 � � �  � 
 � , � � � � 
 � � is the total number of recorded bits per sector and
� � � �

is a polynomial
that can be expressed as a function of

�
 � � � . The subscript notation
� � � � � � � 	 indicates that the  -th

coefficient of the polynomial
� � � � �

is used.
In the following we assume that the degree-4 generalized partial-response channel described in

Section IIIC is used. Furthermore, a rate-16/17 modulation code is employed in standard concate-
nation where it is assumed that errors at the input of the modulation decoder cause two bytes to
be in error. For reverse concatenation the same modulation code is used to encode user bytes,
whereas a rate-8/9 modulation code is used to encode RS parity bytes. At a normalized user density� ��� �	� 
 � � , � � � Fig. 5 compares the performance of standard and reverse concatenation schemes
for
� � �

and 4 interleaves per sector, where each interleave can correct
� � �

bytes. After ac-
counting for the rate increase due to RS and modulation coding, the normalized channel density� ��� �	� 
 is about 3. It can be seen that reverse concatenation permits the use of three interleaved
RS codewords per sector, whereas standard concatenation requires at least four interleaved RS code-
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Figure 5: Performance comparison for
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Figure 6: Optimum RS code rate for � ��� � � 
  � , � � .
words per sector to achieve good overall performance. Finally, Fig. 6 shows � � � � 
 � � as a function
of
�

for standard and reverse concatenation schemes with
� � �

and 4 interleaves per sector where� ��� �	� 
 � � , � � and SNR is fixed for each curve. The SNR values have been selected such that the
minimum of � � � � 
 � � is about

� ��� � � �
It can be seen that in all four cases the optimum RS code rate is

about 0.86.

5 Conclusions

The bit error and error event probabilities of Viterbi detectors for generalized partial-response chan-
nels that are corrupted by colored noise have been computed using approximations to union bounds
and a modified depth-first search algorithm. The performance of standard and reverse concatenated
RS/modulation coding schemes for generalized partial-response channels has been analyzed using
the sector error probability as the performance measure. Computations have shown that the optimum
RS code rate for current disk drive designs is about 0.86.
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