
RZ 3344 (# 93390) 05/21/01
Computer Science 20 pages

Research Report

Optimistic Asynchronous Atomic Broadcast

Klaus Kursawe and Victor Shoup

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports
are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Optimistic Asynchronous Atomic Broadcast

Klaus Kursawe and Victor Shoup

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

This paper presents a new protocol for atomic broadcast in an asynchronous network with a
maximal number of Byzantine failures. It guarantees both safety and liveness without making
any timing assumptions or using any type of “failure detector,” and its amortized message and
computational complexity is essentially the same as that of a simple “Bracha broadcast.”
Under normal circumstances, the protocol runs in an “optimistic mode,” with extremely low
message and computational complexity — essentially, just performing a Bracha broadcast for
each request. In particular, no “expensive” public-key cryptographic operations are used. In
rare circumstances, the protocol may briefly switch to a “pessimistic mode,” where both the
message and computational complexity are significantly higher than in the “optimistic mode,”
but are still reasonable.

Keywords: Asynchronous Consensus, Byzantine Faults, Atomic Broadcast, State Machine
Replication

1 Introduction

Atomic Broadcast is a fundamental building block in fault tolerant distributed computing.
By ordering broadcast requests in such a way that two broadcast requests are received in the
same order by all honest recipients, a synchronization mechanism is provided that deals with
many of the most problematic aspects of asynchronous networks.

We present a new protocol for atomic broadcast in an asynchronous network with a maximal
number of Byzantine failures. It guarantees both safety and liveness without making any
timing assumptions or using any type of “failure detector,” and its amortized message and
computational complexity is essentially the same as that of a simple “Bracha broadcast.”

The FLP “impossibility” result [FLP85] implies that there is no protocol for Byzantine
agreement that runs in an a priori bounded number of steps, and guarantees both safety and
liveness. Moreover, it is fairly well known that Byzantine agreement and atomic broadcast are
equivalent, so that any protocol for solving atomic broadcast could be used to solve Byzantine
agreement, and vice versa. However, this impossibility result does not rule out randomized
protocols where the expected number of steps is bounded.

There are a few protocols for asynchronous Byzantine agreement. Canetti and Rabin [CR93]
present a polynomial-time protocol for asynchronous Byzantine agreement; however, their
protocol cannot be used in practice, because of its enormous message complexity. Cachin
et al. [CKS00] give a fairly practical protocol for asynchronous Byzantine agreement that
makes use of public-key cryptographic primitives that can be proven secure in the “random
oracle” model [BR93]. Building on [CKS00], the paper [CKPS01] presents a fairly practical
protocol for ataomic broadcast. While in some settings, the protocol in [CKPS01] may be
adequate, in other settings, it may not. In particular, because of its heavy reliance on public-
key cryptography, the protocol in [CKPS01] can easily become “compute bound.”

Our protocol is inspired by the innovative work of Castro and Liskov [CL99b, CL99a, Cas00].
Like their protocol, our protocol works in two phases: an optimistic phase and a pessimistic
phase. The optimistic phase is very “lightweight” — each request is processed using nothing
more than a “Bracha broadcast” ([Bra84]) — in particular, no public-key cryptography is
used. As long as the network is reasonably behaved, the protocol remains in the optimistic
phase — even if some number of parties, barring a designated leader, are corrupted. If there
are unexpected network delays, or the leader is corrupted, several parties may “time out,”
shifting the protocol into the pessimistic phase. The pessimistic phase is somewhat more
expensive than the optimistic phase — both in terms of communication and computational
complexity. Nevertheless, it is still reasonably practical, although certainly not as efficient as
the optimistic phase. The pessimistic phase cleans up any potential “mess” left by the current
leader, after which the optimistic phase starts again with a new leader.

The optimistic phase of our protocol is essentially the same as that of Castro and Liskov.
Therefore, we expect that in practice, our protocol is just as efficient as theirs. However, our
pessimistic phase is quite different, and makes use of randomized Byzantine agreement as well
as some additional public-key cryptographic operations. The pessimistic phase of Castro and
Liskov makes use of public-key cryptography as well, and it is not clear if their pessimistic
phase is significantly more or less efficient than ours — determining this would require some
experimentation.

Castro and Liskov’s pessimistic protocol is completely deterministic, and hence is subject
to the FLP impossibility result. Indeed, although their protocol guarantees safety, it does not

1

guarantee liveness, unless one makes additional timing assumptions. Our protocol is random-
ized, and it guarantees both safety and liveness without making any timing assumptions at
all, and without relying on any kind of “failure detector.” This is a not just a theoretical
issue: if the timing mechanism does not work properly in Castro and Liskov’s protocol, the
protocol may cycle indefinitely, without doing anything useful, whereas in our protocol, the
performance “gracefully” degrades.

1.1 Other Related Work

There is a rich literature on ordering broadcast channels, including several implementations
and a broad theoretical basis. However, most work in the literature is done in the crash-failure
model; much less work has been done in the Byzantine failure model.

Rampart [Rei94] and SecureRing [KMMS98] directly transfer crash-failure protocols into
the Byzantine world by using a modified failure detector along with digital signatures. The
disadvantage of this approach is that it is relatively expensive, as a large number of expensive
cryptographic operations need to be computed. Furthermore, there are attacks on the failure
detector [ACBMT95] that can violate the safety of these protocols.

The BFS system by Castro and Liskov [CL99b] addresses these problems. As already men-
tioned, they only require timing assumptions to guarantee liveness, while the safety properties
of the protocol hold regardless of timing issues. A similar approach is taken by Doudou et
al. [DGG00], but their protocol is described and analyzed in terms of a Byzantine failure
detector.

While both [CL99b] and [DGG00] still rely extensively on expensive public-key crypto-
graphic operations, the extension of BFS in [CL99a, Cas00] relies much less on public-key
cryptography.

2 System Model and Problem Statement

2.1 Formal System Model

Our formal system model and definitions of security are taken from [CKS00, CKPS01], which
models attacks by computationally bounded adversaries. We refer the reader to [CKPS01] for
complete details. We give only a brief summary here.

We assume a network of n parties P1, . . . , Pn, up to t < n
3

of which are corrupted and fully
controlled by an adversary. Informally, the adversary also has full control over the network;
the adversary may insert, duplicate, and reorder messages at will.

More formally, an attack proceeds in steps. In each step of the attack, the adversary delivers
a single message to an honest party, upon receipt of which the party updates its internal state
and generates one or more response messages. These response messages indicate their origin
and intended destination; however, the adversary is free to do with these messages what he
wishes: to deliver them when he wishes, in any order that he wishes; he may also deliver
them more than once, or not all. We do assume, however, that the adversary may not modify
messages or “fake” their origin. This assumption is reasonable, since this property can be
effectively enforced quite cheaply using message authentication codes.

We assume that the adversary’s corruptions are static: the set if corrupted parties is chosen
once and for all at the very beginning of the attack. Making this assumption greatly simplifies

2

the security analysis, and allows one to make use of certain cryptographic primitives that
could not otherwise be proven secure.

Although we have not done so, we believe it should be straightforward to prove that our
atomic broadcast protocol is secure in a dynamic corruption model, assuming all underlying
cryptographic primitives are secure in this model (in particular, the common coin as used in
[CKS00, CKPS01]).

Because we want to use cryptographic techniques, it does not make sense to consider “infi-
nite runs” of protocols, but rather, we only consider attacks that terminate after some bounded
amount of steps. The number of steps in the adversary’s attack, as well as the computational
complexity of the adversary, are assumed to be bounded by a polynomial in some security
parameter.

Our protocols are defined such that they are only guaranteed to make progress to the
extent to which the adversary actually delivers messages. In ensure that such a protocol
behaves well in practice, an implementation would have to resend messages until receiving
(secure) acknowledgments for them. We do not discuss any of these implementation details
any further in this paper.

In our formal model, there is no notion of time. However, in making the transition from
the optimistic phase to the pessimistic phase of our protocol, we need a way to test if an
unexpectedly large amount of time has passed since some progress has been made by the
protocol. That is, we need a “time out” mechanism. This is a bit difficult to represent in a
formal model in which there is no notion of time. Nevertheless, we can effectively represent
such a “time out” as follows: to start a timer, a party simply sends a message to itself, and
when this message is delivered to that party, the clock “times out.” By representing time outs
in this way, we effectively give the adversary complete control of our “clock.”

2.2 Some Technicalities

As already mentioned above, there is a security parameter λ = 0, 1, 2 . . . that is used to instan-
tiate a protocol instance. All adversaries and protocols can be modeled as Turing machines
that run in time bounded by a polynomial in λ. We make the convention that the parameter
n is bounded by a fixed polynomial in λ, independent of the adversary. We make a similar
assumption on the sizes of all messages in the protocol: excessively large messages are simple
never generated by or delivered to honest parties.

We define the message complexity of a protocol as the number of messages generated by all
honest parties. This is a random variable that depends on the adversary and λ. We denote it
by MC (ID), where ID identifies a particular protocol instance.

We say that a function ε, mapping non-negative integers to non-negative reals, is negligible
if for all c there exists k0(c) such that for all k ≥ k0(c), ε(k) ≤ k−c.

We say that some quantity is negligible, if it is bounded by a negligible function in λ.
For a given protocol, a protocol statistic X is a family of real-valued, non-negative random

variables {XA(λ)}, parameterized by adversary A and security parameter λ, where each XA(λ)
is a random variable on the probability spaced induce by A’s attack on the protocol with
security parameter λ. We call X a bounded protocol statistic if for all adversaries A, there
exists a polynomial pA such that for all λ ≥ 0, 0 ≤ XA(λ) ≤ pA(λ). The message complexity
MC (ID) is an example of a bounded protocol statistic.

A bounded protocol statistic X is called uniformly bounded (by p) if there exists a fixed

3

polynomial p such that for all adversaries A, there is a negligible function εA such that for all
λ ≥ 0, Pr[XA(λ) > p(λ)] ≤ εA(λ).

A bounded protocol statistic X is called probabilistically uniformly bounded (by p) if there
exists a fixed polynomial p and a fixed negligible function δ, such that for all adversaries A,
there is a negligible function εA such that for all k, λ ≥ 0, Pr[XA(λ) ≥ kp(λ)] ≤ δ(k) + εA(λ)].

If X is probabilistically uniformly bounded by p, then for all adversaries A, E[XA(λ)] =
O(p(λ)), where the big-‘O’ constant is independent of the adversary. Additionally, if Y is
probabilistically uniformly bounded by q, then X · Y is probabilistically uniformly bounded
by p · q, and X + Y is probabilistically uniformly bounded by p + q. Thus, probabilistically
uniformly bounded statistics are closed under polynomial composition, which makes them
useful for analyzing the composition of several protocols. The same observations apply to
uniformly bounded statistics as well.

2.3 Formal Definition of Atomic Broadcast

Our definition of atomic broadcast comes directly from [CKPS01], with some modification.
As we define it, an atomic broadcast primitive offers one or several broadcast channels,

specified by some channel identifier ID . It guarantees that if some – not necessarily honest –
parties broadcast requests, they arrive at all (honest) recipients in the same order. Further-
more, the channels are reliable, i.e., all honest parties receive the same set of messages.

At some point, the adversary may deliver the message (ID , in, a-broadcast,m) to some
honest party, where m is an arbitrary bit string (of bounded size). We say the party a-
broadcasts the request m at this point.

At some point, an honest party may generate an output message (ID , out, a-broadcast,m).
We say the party a-delivers the request m at this point.

As a matter of terminology, we adopt the following convention: a “request” is something
that is a-broadcast or a-delivered, while a “message” is something that is delivered in the
implementation of the protocol.

To give higher level protocols the option to block the atomic broadcast protocol, the de-
livering party waits for an acknowledgment after every delivery of a request. That is, the
number of a-delivered requests exceeds the number of acknowledgments by at most one. This
is necessary to allow higher level protocols to be efficient (according to the definition below);
without this ability to synchronize between protocol layers, a low-level atomic broadcast pro-
tocol could generate an arbitrary amount of network traffic without a higher-level protocol
ever doing anything useful.

At any point in time, for any honest party Pi, we define B(i) to be the set of requests that
Pi has a-broadcast, and we define D(i) to be the set of requests that Pi has a-delivered. At any
point in time, we also define D∗ = ∪honest PiD(i).

For an honest party Pi, we say that one request in B(i) is older than another if Pi a-broadcast
the first request before it a-broadcast the second request.

Recall that MC (ID) is the message complexity of a protocol.

Definition 1 (Atomic Broadcast). A protocol for atomic broadcast satisfies the following
conditions, for all channels ID and all adversaries, with all but negligible probability.

4

Agreement: If some honest party has a-delivered m on channel ID , then all honest parties
a-deliver m on channel ID , provided the adversary opens channel ID for all honest
parties, delivers all associated messages, and generates acknowledgments for every party
that has not yet a-delivered m on channel ID .

Total Order: Suppose an honest party Pi has a-delivered m1, . . . ,ms on channel ID , a dis-
tinct honest party Pj has a-delivered m′1, . . . ,m

′
s′ on channel ID , and s ≤ s′. Then

ml = m′l for 1 ≤ l ≤ s.

Integrity: Every honest party a-delivers a request m at most once on channel ID . Moreover,
if all parties are honest, then m was previously a-broadcast by some party on channel
ID .

Efficiency: At any point in time, the quantity MC (ID)/(|D∗| + 1) is probabilistically uni-
formly bounded.

Validity: There are at most t honest parties Pj with B(j)\D(j) 6= ∅, provided the adversary
opens channel ID for all honest parties, delivers all associated messages, and generates
all acknowledgments.

Fairness: There exist a quantity ∆, which is bounded by a fixed polynomial in the security
parameter (independent of the adversary), such that the following holds. Suppose that
at some time τ1 (i.e., just before the τ1-st time that an honest party a-broadcasts or
a-delivers a request), there is a set S of t + 1 parties, such that for all Pj ∈ S, the set
B(j)\D∗ is non-empty. Suppose that there is a later point in time τ2 such that the size
of D∗ increases by more than ∆ between time τ1 and τ2. Then there is some Pj ∈ S,
such that the oldest request in B(j)\D∗ at time τ1 is in D∗ at τ2.

These security requirements are the same as those in [CKPS01], except in two ways. First,
our validity condition is somewhat relaxed. Our notion of validity requires t+1 honest parties
to a-broadcast a request m, to ensure that m is eventually a-delivered, whereas the stronger
notion of validity in [CKPS01] requires only one party to do so.

We have chosen to achieve only this weaker notion of validity for several reasons. First, for
many applications, this condition is sufficient: a client who sends a request to all parties can
be sure that the request is eventually a-delivered by all honest parties. Second, our protocol
is simpler than it would have to be in order to ensure the stronger notion of validity. Third,
it is possible to transform any protocol that satisfies weak validity to one that satisfies the
stronger notion of validity, by layering a fairly simple protocol on top of the original protocol.

Second, our notion of fairness is somewhat stronger than in [CKPS01]. Our definition of
fairness allows one to analyze composed protocols more easily than those in [CKPS01]. Validity
and fairness complement one another: validity ensures that a request that is a-broadcast by
t + 1 parties is a-delivered provided all messages and acknowledgments are delivered, and
fairness implies that such a request is a-delivered reasonably quickly if is a-delivered at all.

Note that for the rest of the paper, the term efficiency will be used to refer to above
technical condition.

5

3 Validated Multivalued Byzantine Agreement

Our protocol builds on top of validated multivalued Byzantine agreement (i.e., the agreement is
not restricted to a binary value), as defined and implemented in [CKPS01]. Similarly to atomic
broadcast, every instance of such a protocol has a particular ID . As opposed to some protocols
in the literature [Rab83, TC84], the agreement protocol we need is not allowed to fall back on
a default value; the final agreement value must be legal according to some verification, which
guarantees that it is some “useful” value. To ensure this, validated multivalued Byzantine
agreement has a global, polynomial-time computable predicate QID known to all parties, which
is determined by a higher-level application (in this case, the atomic broadcast protocol). Each
party may propose a value v together with a proof π that should satisfy QID .

Definition 2 (Validated Multivalued Byzantine Agreement). A protocol solves vali-
dated Byzantine agreement it satisfies the following conditions for all adversaries, except with
negligible probability:

External Validity: Any honest party that terminates for ID decides v validated by π such
that QID(v, π) holds.

Agreement: If some honest party decides v for ID , then any honest party that terminates
decides v for ID .

Liveness: If all honest parties have been activated on ID and all associated messages have
been delivered, then all honest parties have decided for ID .

Efficiency: varMC(ID) is probabilistically uniformly bounded.

In the atomic broadcast protocol, we use the phrase

propose Xi for multivalued Byzantine agreement on X

to denote the invocation of a validated multivalued Byzantine agreement protocol, where Xi

is Pi’s initial proposal, and X the resulting agreement value. The definition of QID and π is
clear from the context.

4 Protocol conventions and notations

In this section, we give a brief description of a formal model of the internal structure of an
honest party, and introduce some notation for describing the behavior of an honest party.

Recall that with each step of an attack, the adversary delivers a message to an honest party;
the honest party then performs some computations, updating its internal state, and possibly
generating messages. Messages delivered to a party are appended to the rear of an incoming
message queue. When activated, the party may examine this queue, and remove any messages
it wishes.

There may be several threads of execution for a given party, but at any point in time, at
most one is active.

When a party is activated, all threads are in wait states. A wait state specifies a condition
defined on the incoming message queue and other local state variables. If one or more threads

6

are in a wait state whose condition is satisfied, one such thread is scheduled (arbitrarily, if
more than one) to execute, and this thread runs until it reaches another wait state. This
process continues until no threads are in a wait state whose condition is satisfied, and then
the activation of the party is terminated, and control returns to the adversary. Of course, we
restrict ourselves to polynomial-time protocols that always relinquish control to the adversary.

That completes the brief description of our formal model of the internal structure of an
honest party. We now introduce the pseudo-code notation we will use to describe how a thread
enters a wait state.

To enter a wait state, a thread may execute command wait until condition. Here, condition
may be an ordinary predicate on state variables. Upon executing this statement, a thread
enters a wait state with the given condition.

We also may specify a condition of the form receiving messages. In this case, messages
describes a set of of one or more messages satisfying a certain predicate, possibly involving
other state variables. Upon executing this statement, a thread enters a wait state, waiting for
the arrival of messages satisfying the given predicate; moreover, when this predicate becomes
satisfied, the matching messages are moved out of the incoming message queue, and into
local state variables. Unless otherwise specified, if there is a single message that satisfies the
predicate, then the first such (i.e., oldest) message in the incoming message queue is selected;
otherwise, no particular order is guaranteed.

We also may specify a condition of the form detecting messages. The semantics of this
are the same as for receiving messages, except that the matching messages are copied from
the incoming message queue into local state variables.

In addition to waiting on a single condition, a thread may wait on a number of conditions
simultaneously by executing the statement:

case upon condition1 : action1 ; · · · upon conditionk : actionk ; end case

Here, each condition i as a condition as above, and each action i is an action to be executed
when the condition is satisfied. If more than one condition is satisfied, then an arbitrary choice
is made.

We also define an abstract timeout mechanism. Each thread has a timer. One can view the
timer as a special state variable that takes on two values: stopped and running. Initially, the
timer is stopped. A thread may change this value by executing start timer or stop timer
commands. A thread may also simply inspect the value of the timer. A thread may also
execute a wait until or case statement with the condition timeout. Additionally, when the
adversary activates a party, instead of delivering a message, it may deliver a timeout signal to
a thread whose timer is running; when this happens, the timer is stopped, and if that thread
is waiting on a timeout, the thread is activated.

This abstract timer can be implemented quite easily in our formal system model in §2.1 that
does not include a timer mechanism. A start timer command is implemented by sending
a unique message to oneself, and the adversary delivers a timeout signal by delivering this
message.

Of course in a practical implementation, the timeout mechanism is implemented by using a
real clock. However, by giving the adversary complete control over the timeout mechanism in
our formal model, we effectively make no assumptions about the accuracy of the clock, except
that the clock runs forward.

7

5 Our New Protocol for Atomic Broadcast

The protocol operates in epochs, each epoch e = 1, 2, etc., consisting of an optimistic and a
pessimistic phase. In the optimistic phase, a designated leader is responsible to order incoming
requests by assigning sequence numbers to them and initiating a reliable broadcast a la [Bra84];
the protocol only ensures that a dishonest leader cannot violate total order. If enough parties
suspect that there is a threat to the validity or fairness of the protocol, they can shift the
protocol into the pessimistic phase. The pessimistic phase cleans up any potential “mess” left
by the current leader, after which the optimistic phase starts again with a new leader.

5.1 Overview and optimistic phase

In the optimistic phase of epoch e, when a party a-broadcasts a request m, it initiates the
request by sending a message of the form (ID , initiate, e,m) to the leader for epoch e.
When the leader receives such a message, it 0-binds a sequence number s to m by sending
a message of the form (ID , 0-bind, e,m, s) to all parties. Sequence numbers start at zero in
each epoch. Upon receiving a 0-binding of s to m, an honest party 1-binds s to m by sending a
message of the form (ID , 1-bind, e,m, s) to all parties. Upon receiving n−t such 1-bindings of
s to m, an honest party 2-binds s to m by sending a message of the form (ID , 2-bind, e,m, s)
to all parties. A party also 2-binds s to m if it receives t+ 1 2-bindings of s to m — this has
the effect of “amplifying” 2-bindings, which is used to ensure agreement. Upon receiving n− t
such 2-bindings of s to m, an honest a-delivers m, provided all messages with lower sequence
numbers were already delivered, enough acknowledgments have been received, and m was not
already a-delivered.

A party only sends or reacts to 0-, 1-, or 2-bindings for sequence numbers s in a “sliding
window” {w, . . . , w+ WinSize − 1}, where w is the number of requests already a-delivered in
this epoch, and WinSize is a parameter. Keeping the “action” bounded is necessary to ensure
efficiency and fairness.

The number of requests that any party initiates but has not yet a-delivered is bounded by a
parameter BufSize: a party will not initiate any more requests once this bound is reached. We
denote by I the set of requests that have been initiated but not a-delivered, and we call this
the initiation queue. If sufficient time passes without anything leaving the initiation queue,
the party “times out” and complains to all other parties. These complaints are “amplified”
analogously to the 2-bindings. Upon receiving n− t complaints, a party enters the pessimistic
phase of the protocol. This strategy will ensure validity. Keeping the size of I bounded is
necessary to ensure efficiency and fairness.

Also to ensure fairness, a party keeps track of the “age” of the requests in its initiation
queue, and if it appears that the oldest request is being ignored, i.e., many other requests are
being a-delivered, but not this one, then the party simply refuses to generate 1-bindings until
the problem clears up. If t+ 1 parties block in this way, they stop the remaining parties from
making any progress in the optimistic phase, and thus, the pessimistic phase will be entered,
where the fairness problem will ultimately be resolved.

We say that an honest party Pi commits s to m in epoch e, if m is the sth request (counting
from 0) that it a-delivered in this epoch, optimistically or pessimistically.

Now the details. The state variables for party Pi are as follows.

8

Epoch number e. The current epoch number, initially zero.

Delivered D. All requests that have been a-delivered by Pi. It is required to ensure that
requests are not a-delivered more than once; in practice, however, other mechanisms may
be employed for this purpose. Initially, D is empty.

Initiation Queue I. The queue of requests that Pi initiated but not yet a-delivered. Its size
is bounded by BufSize. Initially, I is empty.

Window pointer w. w is the number of requests that have been a-delivered in this epoch.
Initially, w = 0. The optimistic phase of the protocol only reacts to messages pertaining
to requests whose sequence number lies in the “sliding window” {w, . . . , w+WinSize−1}.
Here, WinSize is a fixed system parameter.

Echo index sets BIND1 and BIND2. The sets sequence numbers which Pi has 1-bound or
2-bound, respectively. Initially empty.

Acknowledgment count acnt. Counts the number of acknowledgments received for a-delivered
requests. Initially zero.

Complaint flag complained . Set if Pi has issued a complaint. Initially false.

Initiation time it(m). For each m ∈ I, it(m) is equal to the value of w at the point in time
when m was added to I. Reset to zero across epoch boundaries. These variables are used
in combination with a fixed parameter Thresh to ensure fairness.

Leader index l. The index of the leader in the current epoch; we simply set l = (e mod n)+1.

Scheduled request set SR. Only maintained by the current leader. It contains the set of
messages which have been assigned sequence numbers in this epoch. Initially, it is empty.

Next available sequence number scnt. Only maintained by the leader. Value of the next
available sequence number. Initially, it is zero.

The protocol for party Pi consists of two threads. The first is a trivial thread that simply
counts acknowledgments:

loop forever
wait until receiving an acknowledgment: increment acnt .

end loop

The main thread is as follows:

loop forever
case

MainSwitch
end case

end loop

where the MainSwitch is a sequence of upon clauses we now describe.

9

/* Initiate m. */
upon receiving a message (ID , in, a-broadcast,m) for some m such that m /∈ I ∪ D

and |I| < BufSize:
Send the message (ID , initiate, e,m) to the leader.
Add m to I.
Set it(m)← w.

/* 0-bind scnt to m. */
upon receiving a message (ID , initiate, e,m) for some m, such that i = l and w ≤

scnt < w + WinSize and m /∈ D ∪ SR:
Send the message (ID , 0-bind, e,m, scnt) to all parties.
Increment scnt and add m to SR.

/* 1-bind s to m. */
upon receiving a message (ID , 0-bind, e,m, s) from the current leader for some m, s

such that w ≤ s < w + WinSize and s /∈ BIND1 and ((I = ∅) or (w ≤ min{it(m) :
m ∈ I}+ Thresh)):

Send the message (ID , 1-bind, e,m, s) to all parties.
Add s to BIND1.

/* 2-bind s to m. */
upon receiving n−t messages of the form (ID , 1-bind, e,m, s) from distinct parties that

agree on s and m, such that w ≤ s < w + WinSize and s /∈ BIND2:
Send the message (ID , 2-bind, e,m, s) to all parties.
Add s to BIND2.

/* Amplify a 2-binding of s to m. */
upon detecting t+1 messages of the form (ID , 2-bind, e,m, s) from distinct parties that

agree on s and m, such that w ≤ s < w + WinSize and s /∈ BIND2:
Send the message (ID , 2-bind, e,m, s) to all parties.
Add s to BIND2.

/* Commit s to m. */
upon receiving n−t messages of the form (ID , 2-bind, e,m, s) from distinct parties that

agree on s and m, such that s = w and acnt ≥ |D| and m /∈ D and s ∈ BIND2:
Output (ID , out, a-deliver,m).
Increment w.
Add m to D, and remove it from I (if present).
stop timer.

/* Start timer. */
upon (timer not running) and (not complained) and (I 6= ∅) and (acnt ≥ |D|):

start timer.
/* Complain. */
upon timeout:

if not complained then:
Send the message (ID , complain, e) to all parties.
Set complained ← true.

/* Amplify complaint. */
upon detecting t + 1 messages (ID , complain, e) from distinct parties, such that not

complained :

10

Send the message (ID , complain, e) to all parties.
Set complained ← true.
stop timer.

/* Go pessimistic. */
upon receiving n−tmessages (ID , complain, e) from distinct parties, such that complained :

Execute the procedure Recover below.

5.2 Fully Asynchronous Recovery

The recovery protocol tidies up all requests that where initiated under a (potentially) faulty
leader. We distinguish between three types of requests:

• Requests for which it can be guaranteed that they have been a-delivered by an honest
party.

• Requests that potentially got a-delivered by an honest party.

• Requests for which it can be guaranteed that they have not been a-delivered by an honest
party.

For the first two kinds of requests, an order of delivery might already be defined, and has
to be preserved. The other requests have not been a-delivered at all, so the recovery protocol
has complete freedom on how to order them. They can not be left to the next leader, however,
as an adversary can always force this leader to be thrown out as well. To guarantee efficiency,
the recovery procedure has to ensure that some request is a-delivered in every epoch. This
is precisely the property that Castro and Liskov’s protocol fails to achieve: in their protocol,
without imposing additional timing assumptions, the adversary can cause the honest parties
to generate an arbitrary amount of messages before a single request is a-delivered.

According to the three types of requests, the recovery protocol consists of three parts.

Part 1. In the first part, a watermark ŝe is jointly computed such that all requests with
sequence numbers up to this ŝe have been a-delivered by some honest party. The watermark
has the property that at least one honest party a-delivered request ŝe, and no honest party
a-delivered a request higher than ŝe + 2 ·WinSize.

The watermark is determined as follows. When Pi enters the pessimistic phase of the
protocol, it sends out a signed statement to all parties that indicates its highest 2-bound
sequence number. Then, Pi waits for t + 1 signatures on sequence numbers s′ such that s′

is greater than or equal to the highest sequence number s that Pi committed during the
optimistic phase. Let us call such a set of signatures a a strong consistent set of signatures for
s. Since Pi already received n− t 2-bindings for s, it is assured that at least t+1 of these came
from honest parties, and so it will eventually receive a strong consistent set of signatures for
s. Any party that is presented with such a set of signatures can conclude the following: one
of these signatures is from an honest party, therefore some honest party sent a 2-binding for
a sequence number at least s, and therefore, because of the logic of the sliding window, that
honest party committed (s−WinSize) in its optimistic phase.

Once Pi has obtained its own strong consistent set for s, it signs it and sends this signed
strong consistent set to all parties, and collects a setMi of n− t signed strong consistent sets
from other parties. Then Pi runs a multivalued Byzantine agreement protocol with inputMi,

11

obtaining a common set M of n− t signed strong consistent sets. The watermark computed
as ŝe = (s̃ −WinSize), where s̃ is the maximum sequence number s̃ for which M contains a
strong consistent set for s̃. We will show that no honest party commits a sequence number
higher than ŝe + (2 ·WinSize) in its optimistic phase. And as already argued above, at least
one honest party commits ŝe in its optimistic phase.

After computing the watermark, all parties “catch up” to the watermark, i.e., commit all
sequence numbers up to ŝe, by simply waiting for t+ 1 consistent 2-bindings for each sequence
number up to the watermark. By the logic of the protocol, since one of these 2-bindings must
come from an honest party, the correct request is a-delivered. Since one honest party has
already committed s in its optimistic phase, at least t + 1 honest parties have already sent
corresponding 2-bindings, and these will eventually arrive.

Part 2. In the second part, we deal with the requests that might or might not have been a-
delivered by some honest party in the optimistic phase of this epoch. We have to ensure that
if some honest party has a-delivered a request, then all honest parties do so. The sequence
numbers of requests with this property lie in the interval ŝe + 1 . . . ŝe + 2 ·WinSize. Each
party makes a proposal that indicates what action should be taken for all sequence numbers
in this critical interval. Again, multivalued Byzantine agreement is used to determine which
of possibly several valid proposals should be accepted.

To construct such a proposal for sequence number s, each party Pi does the following.
Party Pi sends out a signed statement indicating if it sent a 2-binding for that s, and if so, the
corresponding request m. Then Pi waits for a set of n− t “consistent” signatures for s, such
that the set does not contain conflicting requests. By the logic of the protocol, an honest party
will eventually obtain such a consistent set, which we call a weak consistent set of signatures
for s. If all signatures in this set are on statements that indicate no 2-binding, then we say the
set defines no request; otherwise, we say it defines request m, where m is the unique request
appearing among the signed statements in the set. Pi’s proposal consists of a set of weak
consistent set of signatures for s. Any party that is presented with such a set can conclude
the following: if the set defines no request, then no party optimistically commits s; if the set
defines m, then if any honest party optimistically commits s to some m′, then m = m′. Note
that if the set defines some request m, this does not imply that s was committed optimistically,
and indeed, if s was not optimistically committed, then the adversary can construct sets that
define different requests.

Part 3. In the third part, we use a multivalued Byzantine agreement protocol to agree on a set
of additional requests that should be a-delivered this epoch. This set will include the (possibly
empty) initiation queues of at least n− 2t distinct honest parties. This property will be used
to ensure fairness. Also, this set is guarantee to be non-empty if no requests were previously
a-delivered (optimistically or otherwise) in this epoch. This property will be used to ensure
efficiency.

5.2.1 The recovery procedure

We begin with some terminology.
For any party Pi, and any message α, we denote by {α}i a signed form of the message, i.e.,

α concatenated with a valid signature under Pi’s public key on α.
For any s ≥ −1, a strong consistent set Σ for s is a set of t + 1 correctly signed messages

from distinct parties, each of the form {(ID , s-2-bind, e, s′)}j for some j and s′ ≥ s

12

A valid watermark proposal M is a set of n − t correctly signed messaged from distinct
parties, each of the form {(ID , watermark, e,Σj, sj)}j for some j, where Σj is a strong consis-
tent set of signatures for sj. The maximum value sj appearing in these watermark messages
is called the maximum sequence number of M.

For any s ≥ 0, a weak consistent set Σ′ for s is a set of n− t correctly signed messages from
distinct parties — each of the form {(ID , w-2-bind, e, s,mj)}j for some j — such that either
all mj = ⊥, or there exists a request m and all mj are either m or ⊥. In the former case, we
say say Σ′ defines ⊥, and in the latter case, we say Σ′ defines m.

For a setQ of requests and an integer k ≥ 0, a (Q, k)-valid recover proposal P is a set of n−t
correctly signed messages from distinct parties each of the form {(ID , recover-request, e,Qj)}j
for some j, where Qj is a set of at most BufSize requests with Qj ∩Q = ∅; moreover, if k = 0,
we require that some Qj is non-empty. We define the request set for P as the set of all requests
that appear in any of the sets Qj.

/* Part 1: Recover Potentially delivered Requests */
Send a the signed message {(ID , s-2-bind, e,max(BIND2 ∪ {−1}))}i to all parties.
wait until receiving a strong consistent set Σi for w − 1.
Send the signed message {(ID , watermark, e,Σi, w − 1)}i to all parties.
wait until receiving a valid watermark proposal Mi.
Propose Mi for multivalued Byzantine agreement on a valid watermark proposal M.
Set ŝe ← s̃−WinSize, where s̃ is the maximum sequence number of M.
while w ≤ ŝe do:

wait until receiving t + 1 messages of the form (ID , 2-bind, e,m,w) from
distinct parties that agree on m, such that acnt ≥ |D|.

Output (ID , out, a-deliver,m).
Increment w.
Add m to D, and remove it from I (if present).

/* Part 2: Recover potentially delivered Requests */
For s← ŝe + 1 to ŝe + (2 ·WinSize) do:

If Pi sent the message (ID , 2-bind, e,m) for some m, set m̃← m; otherwise, set
m̃← ⊥.

Send the signed message (ID , w-2-bind, e, s, m̃) to all parties.
wait until receiving a weak consistent set Σ′i for s.
Propose Σ′i for multivalued Byzantine agreement on a weak consistent set Σ′ for

s.
Let Σ′ define m.
If (s ≥ w and m ∈ D) or m = ⊥, exit the for loop and go to Part 3.
If m /∈ D then:

wait until acnt ≥ |D|.
Output (ID , out, a-deliver,m).
Increment w.
Add m to D, and remove it from I (if present).

/* Part 3: Recover undelivered Requests */
Send the signed message {(ID , recover-request, e, I)}i to all parties.

13

wait until receiving a valid (D, w)-recover proposal Pi.
Propose Pi for multivalued Byzantine agreement on a valid (D, w)-recover proposal P.
Sequence through the request set of P in some deterministic order, and for each such

request m, do the following:
wait until acnt ≥ |D|.
Output (ID , out, a-deliver,m).
Increment w.
Add m to D, and remove it from I (if present).

/* Start New Epoch */
Set e← e+ 1.
Set l← (e mod n) + 1.
Set SR ← BIND1 ← BIND2 ← ∅.
Set complained ← false.
Set w ← scnt ← 0.
For each m ∈ I:

Send the message (ID , initiate, e,m) to the leader.
Set it(m)← 0.

6 Analysis

If honest party Pi enters epoch e, let D(i)
e denote the sequence of requests that honest party

Pi a-delivered at the point in time where it entered this epoch. We say consensus holds on
entry to epoch e if for any two honest parties Pi and Pj that enter epoch e, D(i)

e = D(j)
e . If

consensus holds on entry to epoch e, and any honest party does enter epoch e, we denote by
De the common value of the D(i)

e , and we denote by Ne the length of De.
Recall that we say that an honest party Pi commits s to m in epoch e, if m is the sth

request (counting from 0) that it a-delivered in this epoch, optimistically or pessimistically. If
this occurs in the optimistic phase, we say Pi optimistically commits s to m.

Lemma 1. In any epoch, if two honest parties 2-bind a sequence number s, then they 2-bind
s to the same request.

Moreover, if for some s,m,m′, one honest party receives a set of t + 1 2-bindings of s to
m and one honest party (possible the same one) receives a set of t + 1 2-bindings of s to m′,
then m = m′.

Proof. This is a fairly standard argument. If some honest party 2-binds s to m, then some
honest party (not necessarily the same one) has receives n− t 1-bindings of s to m. But since
any two sets of n − t parties must contain a common honest party, and no party 1-binds a
sequence number more than once, if one honest party receives n− t 1-bindings of s to m, and
another receives n− t 1-bindings of s to m′, then m = m′. That proves the first statement.

The second statement follows from the first, and the fact that any set of t+ 1 parties must
contain an honest party. 2

Lemma 2. If all all honest parties have entered epoch e, and all messages and timeouts have
been delivered, and one honest party enters the pessimistic phase of the protocol in this epoch,
then all honest parties have gone pessimistic in epoch e.

14

Proof. An honest party enters the pessimistic phase of an epoch if it receives n− t complaint
messages. This implies that at least t+ 1 honest parties have sent a complaint message, thus
every honest party will eventually receive at least t + 1 complaint messages. This will cause
all honest parties to send out complaint messages, thus all honest parties eventually receive
at least n− t complaints and thus will go pessimistic. 2

Lemma 3. Suppose that consensus holds on entry to some epoch e, that some honest party
has entered this epoch, and that no honest party has gone pessimistic in this epoch. The the
following conditions hold.

local consistency: If some honest party commits s to m, any honest party that also commits
s, also commits s to m.

local completeness: If some honest party commits s to m, and all messages and timeouts
have been delivered, and all honest parties have entered epoch e and received Ne + s
acknowledgments, then all honest parties have committed s.

local validity: If all messages, timeouts, and acknowledgments have been delivered, and all
honest parties have entered epoch e, then at most t honest parties have non-empty initi-
ation queues.

local unique delivery: Any honest party a-delivers each request at most once in this epoch.

Proof. If some honest party commits s to m, then it has received n − t 2-bindings of s to
m. At least t + 1 of these are from honest parties. Moreover, by Lemma 1, any set of t + 1
consistent 2-bindings for s that an honest party receives are 2-bindings to s.

Local consistency is now immediate.

If local completeness does not hold, let us choose s to be the minimal s for which this it
does not hold.

Consider any honest party Pi. We want to show that in fact, Pi has committed s, yielding
a contradiction.

By the minimality of s, it is easy to verify that the local value of w for any honest party Pj
is at least s. Since t+ 1 honest parties have 2-bound s to m, these 2-bindings will be received
at a point in time where s lies in Pj’s window. So if Pj will itself 2-bind s to m. Therefore
all honest parties have 2-bound s to m, and Pi has received these 2-bindings while s was in its
sliding window. Because consensus holds on entry to epoch e, and by the consistency part of
this lemma, and by the minimality of s, it follows that all honest parties’ D sets are equal at
the point in time when w = s (locally), and in particular m /∈ D at this point in time, and so
is not “filtered out” as a duplicate. Also, Pi has received sufficient acknowledgments, and so
commits s to m.

Suppose local validity does not hold. Then the t + 1 honest parties would certainly have
sent complaint messages, and it is easy to verify that this would eventually cause all parties to
complain, and hence go pessimistic. This contradicts our assumption that no party has gone
pessimistic.

Unique delivery is clear from inspection, as duplicates are explicitly “filtered” in the opti-
mistic phase. 2

15

Lemma 4. If all honest parties have entered the pessimistic phase of epoch e, and all messages
and timeouts have been delivered, then all honest parties have agreed on a watermark ŝe.

Proof. When an honest party Pi enters Part 1 of the pessimistic phase in some epoch, it will
eventually obtain a strong consistent set Σi for w− 1. To see this, observe that when Pi waits
for strong consistent set Σi, it has already a-delivered sequence number w − 1, and hence has
received n − t 2-bindings for w − 1. Of these, at least t + 1 came from honest parties who,
when they eventually enter the pessimistic phase for this epoch, will send an s-2-bind message
with a sequence number at least w−1. These t+1 s-2-bind messages form a strong consistent
set for w − 1.

Thus, all honest parties eventually obtain strong consistent sets, and send corresponding
watermark messages. Thus, all honest parties eventually obtain valid watermark proposals,
and enter the multivalued Byzantine agreement with these proposals, and so by the live-
ness property of Byzantine agreement, all parties eventually agree on a common watermark
proposal M with maximum sequence number s̃ = ŝe + WinSize. 2

Lemma 5. If some honest party has computed ŝe, then

(i) some honest party has optimistically committed ŝe, and

(ii) no honest party has optimistically committed a sequence number ŝe + 2 ·WinSize + 1.

Proof. Let s̃ = ŝe + WinSize. To prove (i), note thatM contains a strong consistent set for s̃.
The existence of a strong consistent set for s̃ implies that at least one honest party 2-bound s̃,
which implies that this party has optimistically committed ŝe, because of the sliding window
logic.

To prove (ii), suppose some honest party Pj optimistically commits ŝe + 2 ·WinSize + 1 =
s̃+ WinSize + 1. Then by the logic of the optimistic protocol, Pj must have received n− t 2-
bindings for s̃+WinSize +1, and so there must be a set S of t+1 honest parties who sent these
2-bindings. By the logic of the sliding window, each party in S has optimistically committed
s̃ + 1, and so has sent out a strong consistent set for a sequence number greater than s̃. By
a standard counting argument, M must contain a contribution from some member of S, and
therefore the maximum sequence number ofM is greater than s̃, which is a contradiction. 2

Lemma 6. Suppose ŝe has been computed by some honest party. Let s be in the range ŝe +
1 . . . ŝe + 2 ·WinSize.

(i) If all honest parties generate w-2-bind messages for s, these messages form weak con-
sistent set for s.

(ii) If one honest party optimistically commits s to m, then any weak consistent set for s
defines m.

Proof. Part (i) follows directly from Lemma 1.
To prove (ii), if an honest party optimistically committed s to m in epoch e, then he received

t+1 2-bindings of s to m from honest parties. Any set of n−t w-2-bind messages must contain
a contribution from one of these t+ 1 parties, and hence defines m. 2

16

Lemma 7. Suppose that consensus holds on entry to some epoch e, and that some honest
party has entered the pessimistic phase in this epoch.

local consistency: If some honest party commits s to m, any honest party that also commits
s, also commits s to m.

local completeness: If some honest party commits s to m, and all messages and timeouts
have been delivered, and all honest parties have entered epoch e and received Ne + s
acknowledgments, then all honest parties have committed s.

local validity: If all messages, timeouts, and acknowledgments have been delivered, and all
honest parties have entered epoch e, then all parties have entered epoch e+ 1.

boundary consistency: If some honest party Pi commits s in epoch e, and some honest
party Pj has entered epoch e+ 1, then Pj commits s in epoch e.

e+ 1 consensus: Consensus holds on entry to epoch e+ 1.

boundary completeness: If some honest party enters epoch e + 1, and all messages and
timeouts have been delivered, and all honest parties have entered epoch e and received
Ne+1 − 1 acknowledgments, then all honest parties have entered epoch e+ 1.

at least one delivery: If some party enters epoch e + 1, then Ne+1 > Ne (i.e., at least one
request is delivered in epoch e).

local unique delivery: Any honest party a-delivers each request at most once in this epoch.

Proof (sketch). The same proof in the local consistency part of Lemma 3 implies in this case
as well that any two parties that optimistically commit s, commit s to the same request.

If one honest party goes pessimistic, then by Lemma 2, all honest parties eventually go
pessimistic. By Lemma 4, all honest parties eventually compute a common watermark ŝe.

By Lemma 5, part (i), all parties will eventually move through the loop in Part 1 of the
pessimistic phase. To see this, note that since some honest party has optimistically committed
s for all s up to ŝe, t+ 1 honest parties have 2-bound s to m, and so when these 2-bindings are
delivered to any honest party, that party can commit s. Note also that these commitments are
consistent, and no party a-delivers a request twice, since we are only delivering requests that
have been optimistically a-delivered, and these are guaranteed to be consistent and duplicate-
free.

By Lemma 6, part (i), all parties will eventually move through the loop in Part 2 of the
pessimistic phase, since all of the weak consistent sets that they need will eventually be
available. Lemma 5, part (ii), and Lemma 6, part (ii), together imply that any request that is
optimistically a-delivered by some honest party will be a-delivered in Part 2 of the pessimistic
phase in the same order by all honest parties.

Note that on entry to Part 3, consensus holds: all honest parties have exactly the same
value D as they reach this point. If no requests were a-delivered either optimistically or in
Parts 1 or 2, then all honest parties will expect a recover proposal in Part 3 containing a
non-empty recover request. This will ensure that at least one request is a-delivered in this
epoch, but one has to check that all honest parties will eventually receive a non-empty recover
request in this case. To see why this is so, note that one honest party, say Pi, must have

17

timed out while holding a non-empty initiation queue (otherwise, no party could have gone
pessimistic). But since no requests were a-delivered prior to Part 3, Pi’s recover request is
non-empty. Thus, all honest parties move through Part 3 of the pessimistic phase consistently
and without obstruction.

All of the claims in the lemma can be easily verified, given the above discussion. 2

Lemma 8. The fairness condition of Definition 1 holds with ∆ = WinSize + Thresh + 2 ·
PBound, where PBound = 2 ·WinSize + (n− t) · BufSize.

Proof. Observe that PBound is an upper bound on the number of requests that can be
a-delivered by any honest party in Parts 2 and 3 of the pessimistic phase of the protocol.

At any time τ , let us define D∗(τ) to be the value of D∗ at time τ . Also, define emax (τ) to
be the maximum value of e for any honest party at time τ .

Suppose that at some time τ0, there is a set S of t + 1 honest parties such that for all
Pj ∈ S, the sets B(j)\D∗ are non-empty at time τ0. For each Pj in S, let mj denote the oldest
request in B(j)\D∗ at time τ0.

Clearly, either mj lies in Pj’s initiation queue at time τ1, or Pj is currently in the pessimistic
phase of some epoch, its initiation queue is empty, and mj will enter its initiation queue as
soon as Pj enters its next epoch.

Consider any point in time τ1 > τ0 such that |D∗(τ1) − D∗(τ0)| = PBound . If some mj is
in D∗(τ1), we are done; so we assume from now on that no mj is in D∗(τ1).

If some honest party is in the pessimistic phase of epoch emax (τ0) at time τ0, then since
|D∗(τ1) − D∗(τ0)| = PBound , we must have emax (τ1) > emax (τ0). Therefore, for all parties in
Pj ∈ S such that Pj is in epoch emax (τ1) at time τ1, it must hold that mj is in Pj’s initiation
queue at time τ1.

At any point in time after τ1, if mj lies in Pj’s initiation queue, the value of it(mj) is the
minimum among all requests in its initiation queue.

We define the quantity itmax as follows: if no party in S is in epoch emax (τ1) at time τ1,
then itmax is 0; otherwise, itmax is the maximum value of it(mj) for any party Pj in S that is
in epoch emax (τ1) at time τ1.

An honest party that a-delivers “too many” requests, none of which lie in its initiation
queue, will refuse to send 1-bindings. The precise statement of this is as follows.

Consider any point in time τ2 > τ1. For any party Pj ∈ S, if Pj has not a-delivered mj at
time τ2, then Pj has not generated any 1-bindings in in epoch emax (τ1) for sequence numbers
itmax + WinSize + Thresh or above at time τ2.

Further suppose that at time τ2, no mj is in D∗(τ2). Then we claim that no party has
entered epoch emax (τ) + 1. To see this, note that in Part 3 of the pessimistic phase, since a
valid recover proposal must contain contributions from n− t parties, one of these must come
from a party Pj in S, who would have contributed a recover request containing mj. Also, since
no party Pj in S issued 1-bindings for sequence numbers itmax + WinSize + Thresh or above,
no honest party could have optimistically committed such a sequence number. Therefore,
|D∗(τ2)−D∗(τ1)| ≤WinSize + Thresh + PBound .

That proves the lemma. 2

We now state and prove our main theorem.

Theorem 9. Our protocol satisfies the properties in our Definition 1 for atomic broadcast.

18

Proof. We first define some auxiliary notions.
Let us say that an honest party Pi globally commits a sequence number s to a request m, if

m is the sth request (counting from zero) a-delivered by Pi.
We then define consistency, completeness, and unique delivery as follows.

consistency: If some honest party globally commits s to m, any honest party that also
globally commits s, also globally commits s to m.

completeness: If some honest party globally commits s to m, and all messages and timeouts
have been delivered, and all honest parties have received s acknowledgments, then all
honest parties have globally committed s.

unique delivery: Any honest party a-delivers each request at most.

It is clear that consistency and completeness hold if and only if agreement and total order
(from Definition 1) hold.

One can prove by a completely routine induction argument, using Lemmas 7 and 3, that
consistency, completeness, validity, unique delivery hold.

Integrity trivially follows from unique delivery and by simple inspection of the protocol.
Efficiency is also follows from the at least one delivery property in Lemma 7, and by simple

inspection of the protocol.
Fairness follows from Lemma 8. 2

References

[ACBMT95] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal spec-
ification of group membership services. Technical Report TR95-1534, Cornell
University, Computer Science Department, August 25, 1995.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In First ACM Conference on Computer and Com-
munications Security, pages 62–73, Fairfax, 1993. ACM.

[Bra84] G. Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In Proceed-
ings of the Third Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 154–162, Vancouver, B.C., Canada, 27–29 August 1984.

[Cas00] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts
Institute of Technology, November 2000.

[CKPS01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols. Research Report RZ 3317, IBM Research, 2001.

[CKS00] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople:
Practical Asynchronous Byzantine Agreement using Cryptography. In ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages
123–132, 16–19 2000.

19

[CL99a] M. Castro and B. Liskov. Authenticated byzantine fault tolerance without public-
key cryptography. Tech. Memo MIT/LCS/TM-589, MIT Laboratory for Com-
puter Science, June 1999.

[CL99b] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. Third
Symp. Operating Systems Design and Implementation, 1999.

[CR93] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In STOC93, pages 42 – 51, 1993.

[DGG00] Doudou, Guerraoui, and Garbinato. Abstractions for devising byzantine-resilient
state machine replication. In SRDS: 19th Symposium on Reliable Distributed
Systems. IEEE Computer Society Press, 2000.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April
1985.

[KMMS98] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing protocols
for securing group communication. In 31st Hawaii International Conference on
System Sciences, pages 317–326, Kona, Hawaii, January 1998. IEEE.

[Rab83] M. O. Rabin. Randomized Byzantine generals. In 24th Annual Symposium on
Foundations of Computer Science, pages 403–409, Tucson, Arizona, 7–9 Novem-
ber 1983. IEEE.

[Rei94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multi-
cast in Rampart. In Proceedings of the 2nd ACM Conference on Computer and
Communication Security, pages 68–80, November 1994.

[TC84] R. Turpin and B. A. Coan. Extending binary Byzantine Agreement to multival-
ued Byzantine Agreement. Information Processing Letters, 18(2):73–76, Febru-
ary 1984.

20

