
RZ 3363 (#93409) 08/27/01
Computer Science 9 pages

Research Report

Storage management using CIM and JMX

Christian Hörtnagl

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

hoe@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some
reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home..

IBM Research
Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson• Tokyo • Zurich

Storage management using CIM and JMX

Christian Hörtnagl

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

We present a transparent CIM-to-JMX gateway for combining complementary advantages of
two partly competing management technologies, the Common Information Model (CIM) and
and Java Management Extensions (JMX), namely a rich data model and straightforward
language binding. We include overviews of both technologies and discuss how this
combination in particular enables quick prototyping of CIM provider code for a storage
management application.

Keywords: management instrumentation, data model mapping, Common Information Model
(CIM), Java Management Extensions (JMX), storage management.

� ,1752'8&7,21

We are working on a research prototype for policy-based storage management that is suitable
for service providers [1]. Its aim is to enable intelligent placement decisions for file and
digital media resources by taking both current availability and performance of contributing
resources into account. As storage systems increase in capacity and complexity, common
abstractions such as file systems subsume an increasing number of distributed system
components. For instance, in the case of Storage Area Networks (SANs) a substantial
network infrastructure must be controlled before storage services can be delivered with
predictable levels of service (QoS).

We therefore investigate policies as a means to translate between service-level business
requirements and technology-level resource provisioning steps in an automatic and scaleable
fashion. We want to enable service providers to bundle storage offerings as part of larger
application hosting suites (together with server and network resources), and to grant different
levels of services to groups of customers.

In order to enable a flexible design of the policy decision layer, we are interested in building on
top of a common resource description framework that allows us to inquire and control actual
system components. Different management technologies, such as SNMP [2], CIM [3], and
JMX [4] address this need to different extents by offering appropriate data models and/or APIs.

Our preliminary selection of the Common Information Model (CIM) [3] was driven by the
Storage Networking Industry Association’s (SNIA) investment in this standard. Combination
of CIM with Java Management Extensions (JMX) [4, 5] was also attractive because all of our
software is written in Java.

For the storage management application, we simulate new storage networking architectures
by suitably configuring commodity equipment, such as Linux workstations (as IP storage
routers, say). Very often we need to prototype our own (CIM) adapters, and obviously we
cannot spend much effort on this item during development. In this context a combination of
CIM and JMX proved very useful and efficient. We will discuss the solution’s potential in
more general terms throughout the rest of this paper. The basic rationale for the combination
results from the following observations:

• CIM defines a management data model with a fairly deep and wide coverage; it was
designed in a relatively short time, and its definitions therefore avoid inconsistencies and
duplications (perhaps at the price of some blind spots). Its access protocols from the
Web-Based Enterprise Management (WBEM) extension [6] adopt contemporary web
standards. Hence we were interested in CIM for its rich and convenient data model and
adoption of XML-based protocols.

• JMX deals with management instrumentation of Java software (or of other entities that
receive Java-based wrappers). It establishes conventions for a new sub-category of
JavaBeans, called MBeans. JavaBeans are the basic building blocks of Java’s component
model, and as such are widely understood and deployed.

In section 2 we present a more complete characterization of the two technologies; section 3
explains the transparent CIM-to-JMX gateway, by introducing its run-time (generic CIM
provider) and compile-time (MOF compiler) components in turn. Both the Distributed
Management Task Force (DMTF), which coordinates the CIM effort, and Sun’s Java
Community Process program, whose mandate includes JMX, still sponsor active working

 1

groups which may look at mutual gateways from their own perspectives at some time. We
present first experiences after designing, implementing and using an actual gateway as
possibly guide to further action. The final section 4 presents our conclusions and briefly
discusses some of the limitations that relate to the current prototype.

� &203$5,621

Figure 1 characterizes CIM and JMX in terms of relative scopes (bars) and specializations
(labels). Both of them and the Internet’s Simple Network Management Protocol (SNMP) [2]
share basic architectural elements: agents are in charge of single (or few) managed resources.
They report on and influence resource states using appropriate local means (providers), are
typically colocated with resources, and in the case of software resources may share the same
address space (subagents). The information from several remote agents is collected and
accumulated at a central location by a manager, using a suitable intermediary communication
protocol. This is also where clients, such as the storage management application, may retrieve
consolidated management information.

Fig. 1 coarse differentiation of two management technologies.

The Common Information Model (CIM) [3] defines protocols (e.g. XML mapping in WBEM
[6]) and a data model capable of representing a range of managed objects from hardware
devices and software elements to global policy and end-to-end state information (e.g. DEN
[7]). Its data model is broader but still more shallow than SNMP’s total, although facilities for
extending it and for including SNMP data exist. Existing Java implementations adhere to
common versions of both provider-side and client-side APIs (Java WBEM API [8]).
However, adding management logic at the provider side requires substantially more coding
effort than with JMX (gap on the left).

Java Management Extensions (JMX) [4] is deliberately designed as model-agnostic (at least
for the time being [5]), and it imposes no particular protocol nor client-side API (large gap on
the right). In addition to the provider-side API that is mostly implicit in the definition of
MBeans as first-class Java objects (section 2.2), there are facilities for introducing a range of
protocol adapters as needed. We make use of this flexible capacity in the design of the
CIM-to-JMX gateway.

Figure 1 shows that the combined scope of CIM and JMX promises broad coverage from
language bindings (left aspects) to data models (right aspect), thus supporting storage
management solutions that are capable to scale both in terms of implementation cost
(software engineering metrics for the provider code) and portability (standard compliance e.g.
for client code). We associate the remaining gap on the left side mainly with situations where

 2

agent
manager

CIM
JMX

desktops, end-to-end
(Java) applications

clients

pr
ov

id
er

s

focusapprox. scope

(sub)
agent

provider-side API data model
client-side API

protocol

Java-based providers may be inappropriate; the gap on the right side refers to imperfections of
the CIM model. The next subsections elaborate further on the two target technologies.

A summary of their comparative strengths is given in table 1 (section 4). On their downsides,
we have observed that full-scale adoption of the CIM standard is slow, and that
implementations tend to be heavyweight. JMX requires a Java execution environment (a
heavy burden on many devices that need instrumentation outside a prototyping context) and it
has not seen much use except in the niche of web application administration so far.

2.1 Common Information Model (CIM)

At the core of the Common Information Model (CIM) [3] is a broad schema of managed
objects specified in Managed Object Format (MOF) notation. Modeled objects range from
very coarse and generic (e.g. policies) to fine-grained and specific (e.g. device configuration)
classes, hence providing an appropriate basis for uniform end-to-end resource management.
Associations and aggregations between objects are made explicit as objects as well. In total,
CIM version 2.5 defines approx. 850 classes; the schema is extensible via the usual means of
object-oriented data modeling. Figure 2 shows a subset of those CIM classes that are relevant
to storage management tasks.

Fig. 2 hierarchy of CIM classes for storage management (samples).

The data model at the core is complemented by protocol facilities and specialized schemas,
with different vendors now committing to different subsets for example as follows: Microsoft
WMI (Windows Management Instrumentation) complies with an early version of the core
CIM schema and concentrates on desktop management. The Web-Based Enterprise
Management (WBEM) [6] initiative adds HTTP/XML protocol mappings; an implementation
is available from Sun (Solaris WBEM Services). The Directory Enabled Networks (DEN)
initiative investigates directory-based control and extensions of the core schema towards
network elements and services; Cisco has made an early commitment there [7]. Although
SNMP competes with CIM in practice, the IETF policy working group uses CIM terminology
for its work.

Our prototype is based on SNIA’s open-source Java implementation of CIM [8]. As a por-
table CIM framework, it does not include any specific providers, and the CIM-to-JMX gate-
way is our methodology for quickly adding the necessary instrumentation to the framework.
The SNIA implementation adheres to the provider-side and client-side portions of the Java
WBEM API. The same is true for the Solaris implementation, hence this API forms a de-facto
standard for CIM access in Java implementations, and its formal ratification is under way [9].

 3

Name

CIM_DiskDriveCIM_SCSIController CIM_StorageVolume CIM_DiskPartition

CIM_LogicalDisk

CIM_FileSystem

<<key>>
CSCreationClassName
CSName
CreationClassName
Name

CIM_MediaPartition

CIM_StorageExtent

CIM_LogicalDevice

CIM_LogicalElementCIM_ManagedSystemElement

CIM_ManagedElement

CIM_Controller CIM_MediaAccessDevice

CIM_ResidesOnExtent

CIM_LogicalDiskBasedOnPartition

CIM_MediaPresent

CIM_DiskPartitionBasedOnVolumeCIM_SCSIInterface

The basic entities in figure 1 translate into the following CIM terminology (variations exist):
agents correspond to CIM object managers (CIMOMs), subagents correspond to CIM
providers, and from the CIM perspective, the CIM-to-JMX gateway occurs as a CIM provider
for JMX MBeans.

We observe that CIM makes a single shared data model its primary concern; we call this a
top-down approach where the model’s conventions (shown at the top in figure 3) are
uniformly imposed across a range of underlying resources in an attempt to facilitate global
management decisions by hiding differences in an abstraction layer. The top-down
characterization will allow us to contrast JMX and place the CIM-to-JMX gateway as a
solution that combines both ways in synthesis but keeps an emphasis on top-down to help
adoption of a consistent data model.

Fig. 3 top-down vs. bottom-up relationships.

2.2 Java Management Extensions (JMX)

JMX [4, 5] proposes itself as an insulation layer between resources that need to expose their
management information in a simple and generic way (by manipulating first-class Java objects)
and management tools that make technology-specific assumptions about management protocols
and APIs (e.g. SNMP, CIM). Because interpreted Java byte code contains redundant type
information that can be inquired at run-time using reflection, a degree of freedom is added by
introducing Java-based interfaces at the boundary between agents and managers.

In effect, two advantages result when Java interfaces replace (compile-time) interface
definition languages such as MOF: first, they have a well-defined run-time (plus their
compile-time) representation; mapping decisions may therefore be delayed until run-time.
Second, if managed resources consist of code that is (at least partly) written in Java, the
relevant interfaces are readily available and management instrumentation code has the form
of normal first-class objects implementing those interfaces. Because of the second, JMX is
particularly suitable for (Java or mixed) application management.

JMX management interfaces comprise normal Java interfaces with the name suffix MBean.
Their conventions for providing read/write access to management attributes, for allowing
invocation of management operations, and for triggering/receiving management events are all
inherited from JavaBeans. JMX is therefore an extension of the normal Java component
model, and its components are called MBeans (JavaBeans for management). Standard
MBeans implement the management interfaces directly. Dynamic MBeans report their
interfaces in an equivalent data structure, thereby allowing variations at run-time and
implementations in other languages. Open MBeans restrict themselves to using only few Java
classes (this helps with packaging and class loading), and model MBeans capsule advanced
functionality, such as persistence control, in a ready-to-use format.

 4

resources
(specific)

data model
(generic)

MOF schema

MBeans

CIM instances

JMX

generic
CIM provider

CIM

MOF compiler

A JMX implementation essentially provides the following: a set of code naming conventions
borrowed from JavaBeans, new object naming conventions for MBeans, an MBean server
that registers and brokers MBeans, services that help to keep the MBean server’s content in a
consistent state (e.g. trigger alarms when values exceed thresholds), and an open set of
protocol converters. Such converters are themselves MBeans, and converters to SNMP, RMI,
HTTP, and other choices are available. For instance, an HTTP adapter renders the current
states of MBeans into web page markups.

Each JMX name consist of a domain (type) name plus key-value pairs; their combination is
unique per MBean, thus allowing the MBean server to hide Java object references within and
only advertise object names across APIs. Besides the Sun reference implementation, IBM
Tivoli [10] also makes one available, and we were using it during development.

The basic entities in figure 1 translate into the following JMX terminology: agents correspond
to MBean servers, and subagents correspond to MBeans. From the JMX perspective, the
CIM-to-JMX gateway would appear as a CIM protocol converter. However, this choice of
terminology underemphasizes that CIM (unlike JMX) places primary importance on the
model at the top (figure 3).

The JMX insulation layer works like the CIM abstraction layer mentioned above; its shape is
not determined by the requirement of a uniform data model but by resource instrumentation
code that is effectively in place. For the purpose of local comparison we therefore
characterize JMX as bottom-up approach towards management instrumentation. It endorses
no particular data model a-priori, but percolates available management code into interface
descriptions, thereby facilitating singular models on demand. This observation corresponds to
the fact that JMX does not define its own management data model, which is part of the reason
why a combination with CIM is attractive in the first place.

� 75$163$5(17�&,0�72�-0;�*$7(:$<

Fig. 4 basic architecture of transparent CIM-to-JMX gateway.

In section 2 we referred to CIM and JMX in terms of top-down vs. bottom-up relationships. It
is now straightforward to understand the two parts that make up the transparent CIM-to-JMX

 5

generic CIM provider

MBean server

CIMOM

provider-side of Java WBEM API
(local calls)

client side of Java WBEM API
(HTTP, RMI, local calls)

JMX HTTP
protocol adapter

registration

e.g. web
browser

MOF
compiler

managed
objects

MBean

gateway in equivalent terms; several symmetries emerge. Figure 4 shows the basic
architecture with CIM clients, such as the storage management application, at the top
(optional JMX clients at the right) and providers at the bottom.

The MOF compiler (optional compile-time component) constitutes the top-down component
(figure 3): it generates Java skeleton source code for MBeans and thereby pushes generic
MOF schema definitions “down” into specific Java source code. This allows us to impose a
standard data model on JMX. The transparent CIM provider (mandatory run-time component)
works as bottom-up component: it pulls information from instantiated MBeans “up” after
exploiting a one-to-one relationship between CIM instances and MBeans that is enabled by
corresponding sets of names in both realms. The following steps still require manual coding
(darker shades in figure 5):

• refine generic CIM provider and register in MOF file (one global step);

• generate MBean skeletons by running MOF compiler and refine into specific versions that
implement management logic (one local step per desired MBean);

• implement management application (client) in terms of client-side Java WBEM API.

The rest of the transition occurs transparently inside tools (MOF compiler in section 3.2) or at
run-time (generic CIM provider in section 3.1). Figure 5 outlines all steps in sequence; the
following two sections add more technical information.

Fig. 5 individual steps taken (darker shades mark coding steps).

3.1 Generic CIM provider

CIM’s MOF syntax includes qualifiers as a generic means to refine the definition of managed
objects. With the SNIA CIM implementation, the qualifier provider is used with CIM classes
(including associations), properties, and methods to name Java classes that are instantiated
and called via the provider-side of the Java WBEM API whenever the CIMOM identifies a
request to the corresponding entity.

The prototype includes a generic provider MBeansProvider that implements the required core
functionality. The generic version creates its own JMX MBean server and registers a JMX
HTTP protocol adapter as single MBean. This allows management information to be exposed
via an alternative path in addition to CIM (figure 4). Any web browser can serve as
management console in this case.

The user is in charge of refining the generic version (e.g. through inheritance) to accomplish
the following: alternatively link to an existing MBean server, if applicable, and seed the
MBean server with MBeans corresponding to initially known managed resources (e.g.

 6

compile-time run-time

refine MBeansProvider
(register MBeanServer, seed MBeans)

register in MOF schema
(add provider qualifiers)

run MOF compiler (generate mgmt.
interfaces, MBean skeletons)

refine MBeans
(add management logic)

client issues management operation
(client-side Java WBEM API)

remote communication (e.g. XML)

refined MBeanProvider receives call
(provider-side WBEM API)

identifies corresponding MBean in
MBean server by name (Java reflection)

refined MBean receives call
(first-class Java method call)

LinuxMBeansProvider). It may also start up threads that observe the environment and
add/remove managed objects/MBeans according to circumstances. In practice only a part of
the full schema definition needs to be covered, so the effort required during this manual
coding step is kept at bay (skeleton methods continue to return null as per default).

Both CIM and JMX define object names as consisting of a generic part plus a set of key-value
pairs each (section 2.2). CIM uses another MOF qualifier to mark some properties as keys,
whereas JMX does not enforce any correlation between key values and values stored inside
specific fields of MBeans.

The generic CIM provider operates by requiring adherence to a stricter naming discipline that
applies to all MBeans at this point: they must be registered with the MBean server under
“CIM-friendly” names, i.e. field values that correspond to CIM key properties must be
included in the name; furthermore, JMX requires that key-value pairs are sorted
alphabetically, and interference of HTTP and JMX naming rules (e.g. nested JMX names for
CIM associations) requires appropriate escape mechanisms. The following examples refer to
JMX names for an ordinary CIM instance (key properties also marked in figure 2) and a CIM
association each; the association name contains two other names recursively (underscore as
escape character and base64 [11] encoding).

CIM_LocalFileSystem:CreationClassName_3DLinuxMBeansProvider_
2CCSName_3Dvergeletto_2CCSCreationClassName_3DLinuxMBeansPro
vider_2CName_3D/

CIM_HostedFileSystem:GroupComponent=CIM_5FUnitaryComputerSys
tem_3ACreationClassName_3DLinuxMBeansProvider_2CName_3Dverge
letto,PartComponent=CIM_5FLocalFileSystem_3ACreationClassNam
e_3DLinuxMBeansProvider_2CCSName_3Dvergeletto_2CCSCreationCl
assName_3DLinuxMBeansProvider_2CName_3D/

The user needs not be concerned with the details of this process, because MBeanProvider
offers a method that assembles appropriate names using Java reflection. However, she must
make sure that this naming style can be adopted in an application. If this is not the case (e.g.
because existing MBeans must be accommodated), additional mapping information could be
included via extra MOF qualifiers. With the naming rules obeyed, the generic CIM provider
is able to work in a completely transparent mode.

3.2 MOF compiler

The MOF compiler is the second part of the current CIM-to-JMX gateway implementation.
Unlike the CIM provider its use is optional and occurs at compile-time.

The MOF compiler produces source code for two Java classes per CIM class definition and
ensures proper inheritance relationships (input e.g. corresponds to what is shown in figure 2).
One resulting class is an MBean and the other is its management interface (section 2.2). In
addition to mapping between MOF and Java types, the compiler achieves the following: it
makes sure that Java constructors include all fields that are marked as CIM key properties, it
generates get/set methods according to read/write access rights, and it overrides the equals
method to match CIM key properties. Furthermore, if a CIM class definition includes any
method prototype, then the corresponding Java class is marked as abstract.

The generated MBeans serve as skeletons that need to be refined, because in general it is
impossible to predict/generate the required management logic. The skeleton defines the

 7

required data structures and access functions. The user is responsible for adding code that fills
in corresponding values and reacts to their changes accordingly. This is typically achieved by
inheritance: each MBean skeleton of interest is refined at a further level of inheritance
(without changing the unqualified class name), where it selectively overrides a combination
of constructors or get/set methods in order to add specific management logic. This is based
on similar conventions for distributed programming using communication skeletons [12].

Overall, the decision how clients choose to extend the functionality of generated MBean
skeletons, and whether generated versions are used in the first place can be taken
independently of using the transparent CIM-to-JMX gateway (and its mandatory CIM
provider part) as such. The CIM-to-JMX gateway works with all MBeans that obey its
naming rules. We expect to be able to exploit more sophisticated design patterns as
experience with a range of realistic situations grows.

� &21&/86,216

We have reported on a transparent gateway that translates management information between
CIM and JMX formats and APIs. Our analysis has shown that the two management
technologies have some complementary strengths (summarized in table 1) whose practical
combination we have sought.

client-side and provider-side API
(Java WBEM API)

provider-side API for introspection
(MBean server)

transport formats (XML and others)
Java mapping for instances (MBeans)uniform data model (CIM schema)

JMXCIM/WBEM

Table 1 comparative strengths of CIM/WBEM and JMX (summary).

CIM provides a standard data model with appropiate expressive power for storage
management tasks, and JMX enables a straightforward Java language binding for ease-of-use.
Using this combination, we arrive at a standard-compliant and flexible management solution
that allows us e.g. to do quick prototyping of CIM providers, because state changes that occur
to normal first-class Java objects (registered as JMX MBeans; section 2) will be exposed to
management applications by the transparent CIM-to-JMX gateway. Adding CIM management
instrumentation may therefore require as little effort as coding a single Java assignment.
Since existing CIM APIs, such as the Java WBEM API [8, 9], are complicated (requiring a
steep learning curve) and error-prone (with lots of dynamic type casts, etc.) we benefit a lot in
terms of saved effort and software engineering metrics, and are therefore able to lower the
barrier for equipment and application vendors to ship their products with a CIM/JMX
instrumentation in cases where Java-based agents are permitted.

So far, we have relied on JMX to the extent that it enables desired CIM functionality. In
particular, we utilized its code and MBean naming conventions to avoid creating yet another
such facility. If a more complete mapping of JMX features were desired (bottom-up focus),
JMX relations (from its relationship service) and CIM associations, as well as JMX
notifications and CIM events could serve as mapping candidates. (The second pair was not
yet considered because of lack of support in the current SNIA software version [8].)

 8

We have streamlined the provider side API by introducing JMX MBeans as appropriate Java
representations. Our approach depends on Java insofar as its byte code offers the necessary
redundancy for reflection (code inspection) at run-time. In principle, other interpreted
languages or component middleware could serve as well. We are also investigating use of
WSDL [13] to introduce first-class object semantics on client sides in overall similar terms.

The transparent CIM-to-JMX gateway currently exploits a direct mapping between CIM
instances and JMX MBeans. Alternatively, certain CIM associations could alter between
explicit and implicit forms inside the gateway. For instance, it may suffice to represent simple
one-to-one associations as pointers between the two instances concerned (without another
instance representing the association as such). This could reduce CIM overhead and facilitate
data consistency (matching lifetimes of instances and their associations).

The implementation is now in use with a research prototype for policy-based storage
management, and runs on a mix of Linux and Windows platforms. We plan to try some of the
extensions as this work progresses. Meanwhile, our experience indicates that the design and
code base are feasible and portable, and that the combined solution is appropriate for a range
of management tasks.

5()(5(1&(6

[1] HTRC Group, The Emerging Internet Storage Infrastructure Market , White Paper, 2000.

[2] J. Case et al., A Simple Network Management Protocol (SNMP), Internet Engineering Task Force (IETF),
RFC 1157, May 1990.

[3] Distributed Management Task Force, Common Information Model (CIM) Specification , June 1999.

[4] Sun Microsystems. Java Management Extensions - Instrumentation and Agent Specification, v1.0, July
2000.

[5] H. Kreger, Java Management Extensions for application management, IBM Systems Journal, 40(1), 2001.

[6] Distributed Management Task Force, Specification for CIM Operations over HTTP, Version 1.0, August
1999.

[7] J. Strasser, Directory Enabled Networks, Macmillan Technical Publ., 1999.

[8] openCIMOM software distribution, version 0.61.
http://www.snia.org/English/Products/Products_FS.html

[9] Sun Microsystems, WBEM Services Specification, Java Specfication Request, JSR 48, March 2000.

[10]TMX4J software distribution, version 1.3.
http://www.alphaworks.ibm.com/

[11]N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME), Part One: Format of Internet
Message Bodies, Internet Engineering Task Force (IETF), RFC 2045, November 1996.

[12]M. Schaaf, F. Maurer, Integrating Java and CORBA: A Programmer’s Perspective, IEEE Internet
Computing, January/February 2001.

[13]E. Christensen et al., Web Services Description Language (WSDL) 1.1, World Wide Web Consortium, W3C
Note, March 2001.

 9

