
�����������
	�����������������������������
���������! #"%$'&�(�) "%*�(+" �,� �%-�.�"+/

0 132416587:9<; 0 16=?>@7BA

CED,D+FHGJI�KML,NPORQTSVUWFYX4Z[GJSVU8K'F]\^N4_`NPFbacNdFYZfegFYNihkj:L,NPSlImZ
npoiUqK'SVrsU@\^U'L,NPO]tHSlSVu4vPImGw_

xzy,{�|~}J�z��|�y��
�#��� }Jy+��y,{������
�k� �������i}Jy+��y,{������P��{�������{%�������
������� }
�� ��������������|x��J� ��¡+y+���¢{�|�£
������¤l¡ � ��������¥ ����¦i¥ �+��¦

§�¨ ©�¨ ªz«�¬l¬�¨ �ªz®�¨ ¯%°,ªz¨ ±³²�²%±�ªz¨ ´%«
ª�µ�¶ ·¹¸ º¼»�½#¸ ¾�µ¼¿À·¹Á�ºÂº¼ÃM·ÅÄ#Á#ÆÇ¶ ¾È¾ÉºÂÊ[Ë ½#¸�»#Ä#Á#Ì ¶ ÍÎ¿Î¾�¶ ½�ÃM½�ÄÎ¾É·¢¶ Ê#ºW½¼ËÇ¨ ¯�©i¿#ÃÀÊ[Ï�¶ Ì Ì%»¼¸ ½�Á¼¿#Á#Ì ÐÑÁ�ºqÍÂ½�»ÅÐ�¸ ¶ Ò�µÎ¾ÉºÂÊ�¶ Ë�¿ÀÍÂÍÂº¼»Î¾ÉºÂÊÑË ½#¸�»#Ä#Á#Ì ¶ ÍÎ¿Î¾�¶ ½�Ã�ÓJ¨ ¾�µ¼¿À·Á�ºÂº¼Ãq¶ · ·ÅÄÀºÂÊW¿À·�¿q®�ºÂ· ºÎ¿¼¸ Í¼µ'®�º¼»�½#¸ ¾�Ë ½#¸�ºÎ¿¼¸ÔÌ Ð�Ê�¶ · · º¼ÆÇ¶ Ã¼¿Î¾�¶ ½�Ã�½¼Ë�¶ ¾É·�ÍÂ½�ÃÎ¾Éº¼ÃÎ¾É·ÎÓk¨ Ã�Õ#¶ ºÅÏl½¼Ë%¾¢µÀºÇ¾¢¸ ¿#ÃÀ·ÉË º¼¸�½¼Ë�ÍÂ½�»ÅÐ�¸ ¶ Ò�µÎ¾z¾É½�¾¢µÀºk½�ÄÎ¾É·¢¶ Ê#º�»#Ä#Á#Ì ¶ ·ÅµÀº¼¸ÈÖ¶ ¾É·�Ê�¶ ·É¾¢¸ ¶ Á#ÄÎ¾�¶ ½�Ãw½�ÄÎ¾É·¢¶ Ê#ºM½¼Ëk¨ ¯�©�»¼¸ ¶ ½#¸�¾É½J»#Ä#Á#Ì ¶ ÍÎ¿Î¾�¶ ½�ÃÑ·ÅµÀ½�Ä#Ì Ê×Á�ºÑÌ ¶ ÆÇ¶ ¾ÉºÂÊÑ¾É½�»�ºÂº¼¸�ÍÂ½�Æ�Æ�Ä#Ã�¶ ÍÎ¿Î¾�¶ ½�ÃÀ·�¿#ÃÀÊØ·Å»�ºÂÍÀ¶ Ù�ÍÑ¸ ºÂÚ�ÄÀºÂ·É¾É·ÎÓ�Û�Ë ¾Éº¼¸�½�ÄÎ¾É·¢¶ Ê#º»#Ä#Á#Ì ¶ ÍÎ¿Î¾�¶ ½�Ã�Ö,¸ ºÂÚ�ÄÀºÂ·É¾É·z·ÅµÀ½�Ä#Ì Ê'Á�º�Ù�Ì Ì ºÂÊ�½�Ã#Ì Ð¹ÁÅÐ�¸ º¼»¼¸ ¶ ÃÎ¾É·�½#¸�Ì ºÂÒ#¿#Ì Ì Ð�½�ÁÎ¾ ¿�¶ ÃÀºÂÊ�ÍÂ½�»�¶ ºÂ·�½¼Ë!¾¢µÀº�¿¼¸ ¾�¶ Í¼Ì ºkÜÔº#Ó Ò�Ó Ö�»¼¿ÅÐ�Æ�º¼ÃÎ¾�½¼Ë�¸ ½ÎÐÀ¿#Ì ¾�¶ ºÂ·¢ÝÅÓ��½�Æ�º�¸ º¼»�½#¸ ¾É·¿¼¸ ºÇ¿ÎÕ�¿�¶ Ì ¿#Á#Ì º³¿Î¾�µÎ¾È¾¢»�Þ ß�ßÀÊ#½�ÆÇ¶ ÃÀ½�Ó Ï�¿Î¾É· ½�Ã�Ó ¶ Á#Æ�Ó ÍÂ½�ÆÇß#Ì ¶ Á¼¸ ¿¼¸ Ð#ß�´�Ð�Á�º¼¸ Ê�¶ Ò�Ó ÃÀ·ÉËÈß#µÀ½�Æ�º#Ó
àBáRâ ãåä�æçä�è�é+ê,ëìmí¢î è�ïkä�ðòñ ìmó æ�ô+õ¢ðöñ�÷lä�õ ø�õ¢ð�ù�ñ�úûä í ëkõ[ñ³üYèzõ�ýÎè~ñÇþbÿ���ÿ�� è�ô�æ���ðöñÇþ����
	���ñ� ó é,õ�ê,ë

���������	��
������������������	����
������� !���#"$�%�&��'(����)+*,�������-�/.�0!�1
��#23�$�/�������
4 ����576��-�8

xzy,{�|~}J�z��|�y��
9;:=<?>�@BAC@;D+E;FBGIH-J�KLENMOFBGP>�@BAC@;D+E;FBGPQ	DIRNSTEUD+VWSTENXCH�YIYLZ+[\>^]KIACFBGL_`MbaISTc�H-d8e-MfVhgi@jEN_kD+cmliH

AjE;S�nogpKLENMOFBG�qbMrRps,qtFBSTs

��6��1
���-�u

}Jy+�+y+|��[�w�����å�³{��[{%����y+¦,v���y+£m����{�������yjw�y���y�����y+�M��y+��� � ���+y×{������z�,{%������|���|û�+��¦,v���yNxm�+��¦,v � ��y+�'���z����y+¦Y�
��� � ����|�yPzÂy+y+£��³{����P�+��|��������À¥åx � �����w�����i���Lv����,{���� �~{���� � ¦Yy+�l���³{%�V����ym��y+�³{{wz�����l�+z[����y � |�£�y+��� �z��|�y
���z����y+¦ �,{�|H��yl¦Y�z£�y+��y+£ � ����|�y
{m��y��J�+z�����|�y,{��w£��k|ky+��y+|��+yVyp} � {%������|���{�|�£p���³{%�Ø��������yVyp} � {%������|���{���y
��|��!�J| {%�û����y`����¦Yyp�+z×����yH�+��|�����������y+�p~ �û£�y+���by�|�¥��ly���y+��¦Y��|���|�y�{4¦Y�z£�y+��zÂ���
{�| {������ ����{����ò��y��Y�+z
��|���y+��£�ypv�y+|�£�y+|��l{+v�v������,{%������|��Ñ����|���|`�����kwz�¢{��k{�|�£`����y+��yV���Ø|��\y � {���{�|���y+yV���³{%��� �Ø�J��������yV����|�y,{��+¥�� y
£�y+���+������yb{�zÂy+y+£��³{����p�+��|�����������y+�Ø�,{+v³{�����yl�+zW{������z�,{%����|�y�� � ���Jy+|�� � y��H��y+��� � ���+yV����v�y+��¦Y� �J{m��yp} � ����y+£
���z����y+¦@��y+�³{{wz�����J�J� ����� � ����|��!�J��y+£�y�yå�+z'����yå���z����y+¦�~ �l¦Y�z£�y+�À¥�� y�v����Cw�y����³{%�×����ym{��by������ ����¦�����y
�+��|�����������y+� � ��y+��y � {���{�|���y+y+�q�+��|Iw�y+�Uy�y+|��+y=y��kw�y+|��+y+����{���|å{���� � ¦,v�������|��q{�|�£b�wyw�+��¦,v³{���yM����yM����{�|�����y+|��
��y+�³{{wz�������+zW� � ��y�y+|�y+��{���v � �Uv�����yb�+��|�����������y+�w�J� ���i{û�+�¢{���������v�����v�����������|³{��k��|���ypy���{��k�+��|�����������y+��zÂ���J{
w�{�����y����p�+z'£��k|ky+��y+|�� � |�£�y+��� �z��|�y
���z����y+¦Y�+¥

I. Introduction

Control is: the process of causing a system variable to conform to some desired value, called a reference value [1].
Typically a feedback controller measures the output from the system, calculates the divergence from the desired
output and changes the input using knowledge of the system model.

The problem of computer application resource allocation can be framed in terms of control theory: the set of computer
applications is the system; the allocated resources (cpu, memory, bandwidth, etc.) are the system input, while some
measurable aspect of the application’s performance, e.g. the number of video frames produced per second, delay
in returning a web page, is the system output. Ideally the amount of resource allocated to an application can be
maintained at a level just sufficient to guarantee a desired application behavior. This is of particular interest in an
environment in which the owner of infrastructure is leasing resources to third parties and is contractually obliged to
provide a minimum level of service to those third parties, but is anxious not to over allocate resources.

Recent work [2], [3], [4] has proposed using feedback controller for resource allocation within computer systems. This
work typically assumes that: a model of the computer system is available to the designer of the controller and that
this model is linear1.

Using classic control theory to calculate computer system resource allocation presents some challenges:

• The behavior of non trivial computer applications is not linear with resource allocation. For example, every
threshold in the application, in the operating system and in the hardware creates a point of non linearity.

• Even if a good enough linear approximation exists for the application behavior, it is still difficult to include all
important parameters, for example, with a given resource allocation a http daemon serving static html pages may have
a very different behavior when the pages have to be dynamically generated. [5] points out that normal linearization
techniques may not be applicable to computer real-time systems as the system inputs and states are not clearly defined.

• Assuming an adequate linear model exists for two applications separately, there is no guarantee that their joint
behavior will be a simple combination of their separate ones.

• Finally, while an adequate linear may exist, it may not be available to the environment in which the applications
are executing. For example, when the application is being hosted by a third party.

[6] describes an architecture which delegates the control of resource allocation to clients within an ASP infrastructure.
It uses a simple feedback loopback with which a client can indicate the need for more, less or the same amount of
resources at regular time interval, allowing adequate resources to be allocated to an application without the application
knowing about the nature of the infrastructure, or the infrastructure about that of the application. This paper gives
a much more detailed description of that architecture’s controller.

First we explain the basic design of the generic controller; we prove that convergence of the resource allocation is
guaranteed under certain conditions. We compare its behavior with that of a Proportional Integral (PI) controller
for the same system and reference value. We discuss the dynamic response of the controller in tracking fluctuating
reference values and we conclude by discussing the use of the controller within the architecture.

II. Design of the Generic Controller

The controller assumes that some entity is capable of determining if the application has enough, too much or too few
resources to perform its function. This entity could be the application itself, a dedicated resource monitor for the
application or a human; the actual use in practise is explained in Section IV.

Assume that there is only one resource type u and that uk is the amount of resource allocated to the application during
the time period k. From the point of view of the monitor there are two thresholds for the application: an acceptable
behavior and an acceptable cost. Both of these are some function of u. Assuming that an acceptable behavior is
achievable at an acceptable cost then there are three possible outputs from the resource monitor:

yk =

+1 too few (unhappy−),

0 enough (happy),

−1 too much (unhappy+) .

1A linear system has the property that: if o1 = f(u1), o2 = f(u2) then o1 + o2 = f(u1 + u2).

1

In effect the application specific monitor applies a simple filter to the actual output from the application to produce
yk an application independent output; this is then fed into the application independent controller.

u(k) = u(k-1)

A

u(k)= u(k-1)+ P

u(K)=u(k-1)+1

u(k)= u(k-1)- 1

B C

D

unhappy-

unhappy-

happy

happy

unhappy-

happy

Fig. 1. State Machine for the Controller

The action of the controller during a resource increase, i.e. a change from unhappy− to happy, is described by the
finite state machine in Figure 1. If an application was happy during time period k− 1 it is allocated the same amount
of resources in time period k. This is labeled state A in the diagram and is called the stable state. If has too few
resources in time period k − 1, then in time period k they are increased by amount P , this is labeled state B. When
the application leaves state B it is happy, but not necessarily minimally happy, i.e. the application may be satisfied
with the resource allocation, but could actually make do with less. In order to achieve a minimal resource allocation
we reduce the allocation by unity while the application is still happy until it is unhappy−, labeled state C and then
add unity back to the resource allocation, state D and return to state A. State C and D are called the tuning states.

To write this algebraically we introduce four variables ak, bk, ck and dk, which are equal to one when in the corre-
sponding states A, B, C and D and zero otherwise:

1 = ak + bk + ck + dk ∀k (1)

The state machine can then be described by the following equation:

uk = ak · uk−1 + bk · [uk−1 + P] + ck · [uk−1 − 1] + dk · [uk−1 + 1] (2)

The difference between the change of state from unhappy+ to happy and from unhappy− to happy is simply the action
in state B, i.e. P is subtracted rather than added. The stable state A is clearly identical, while regardless of whether
the happy state is reached by adding or subtracting resources, the resource allocation still needs tuning to be minimally
happy; so the states C and D are also identical. This observation gives the general equation:

uk = ak · uk−1 + bk · yk · [uk−1 + P] + ck · [uk−1 − 1] + dk · [uk−1 + 1] (3)

Simple manipulation and the use of Equation 1 gives:

uk = uk−1 + bk · yk · P − ck + dk (4)

The cyclical and non branching nature of the finite state machine shown in Figure 1 means that being in a given state
depends at most on: whether the controller was in that state in the previous time period; whether the controller was
in the only other state that can lead to that state in the previous time period; the value of yk in the previous time
period. For example, if bk−1 is equal to one then ak must equal zero, as there is no possibility of going from B to A

2

in one time period. This observation allows the state variables to be expressed as follow:

ak = (1 − abs(yk−1)) · (ak−1 + dk−1) (5)

bk = abs(yk−1) · (ak−1 + bk−1) (6)

ck = (1 − abs(yk−1)) · (bk−1 + ck−1) (7)

dk = abs(yk−1) · (ck−1) (8)

From Equation 8, dk can be written in terms ck−1, and Equation 6 can be rewritten using Equation 1 such that bk can
be expressed in terms of ck−1 and dk−1. Simple manipulation then allows Equation 4 to be rewritten only in terms of
state variable c.

uk = uk−1 + P · yk−1 · abs(yk−1) · [1 − ck−1 − abs(yk−2) · ck−2] − ck + abs(yk−1 · ck−1) (9)

In Equation 9 the action of the controller is expressed in terms of the previous input to the application, the last two
outputs from the application and the last three value of one state variable of the controller. The relationship between
yk and uk is non linear, as yk is a threshold on uk. Moreover, this non linearity is a necessary criteria for the controller
to work and is not something which can be linearized.

Comparison with classic controller is instructive; the general form of a discrete PI controller is:

uk = uk−1 + K ∗ [rk−1 − ok−1] (10)

where rk−1 is the reference output, ok−1 the actually output during time period k − 1 and K is the controller gain.
Knowing the linear relationship between uk and ok, the designer of the PI controller can choose an appropriate value
of K, for example using the Root Locus approach, to achieve an appropriate dynamic response. In particular, K can
be chosen such that the system converges to the reference value in a well bounded time; such a system is termed stable.

Inspection reveals similarities between Equation 9 and Equation 10. The role of the gain in Equation 10 is played by
the additive factor P in Equation 9.

If P is a constant and the application does not fluctuate during states B, C and D, i.e. the controller acts quicker than
the application reference behavior varies, then it is trivial to prove that Equation 5 will converge. However, if P is
small relative to the values of u, it may take a long time to reach a happy state, if P is large relative to u, then it may
take a long time to reach a minimally happy state or alternatively we may overshoot entirely, passing from unhappy−

to unhappy+ in one step.

Instead of a constant we define P by:

P = 2i (11)

where i is the number of time periods since the last time yk changed, i.e. every time we move between the states
unhappy−, happy and unhappy+ we reset i to zero and in consequence P to one. This means that the longer the
system remains in the same undesirable state, the faster the increases or decrease in the allocated resources. We now
prove that the system will converge:

Proof of stability

Suppose at time zero the controller is in state A, the application has resource allocation n and tells the controller it
needs more resources2, i.e. it produces output yk = 1. Suppose the new resource allocation that would satisfy the
application is m where m > n.

The controller adds an increasing power of two resource units to the applications resource allocation until at time k
the new resource allocation, n +

∑

i=0..k
2i, is either bigger or equal to m. Either it is close enough to m that the

application declares itself happy and the system moves into the fine tuning state C or the application has now too
much resource.

In order to prove that the system will not oscillate forever, it is necessary to prove that each time yk changes that the
resource allocation is closer to m. If the system has moved from unhappy− to happy this is implicit in the definition,

2If the application started with too many resources then yk = −1 and n > m; exactly the same argument works in both cases
by simply inversing the signs.

3

so we need only consider the case where the system has overshot, i.e. moved from unhappy− to unhappy+ in one time
period.

At time zero the application’s resource deficit is (m − n), while at time k the application’s resource surplus is (n +
∑

i=0..k
2i) − m

Suppose the surplus is greater or equal to the deficit, i.e we are now no closer to m than when we started. Then:

(m − n) ≤ (n +
∑

i=0..k

2i) − m

2m − 2n ≤
∑

i=0..k

2i

(m − n) ≤
∑

i=−1..k−1

2i

m ≤ n +
∑

i=0..k−1

2i + 1/2

m ≤ n +
∑

i=0..k−1

2i (m and n integers)

However the right hand side of the last equation is the resource allocation at time k− 1, at which time the application
said it didn’t have enough resource, this is a contradiction and the initial assumption must be wrong. Therefore after
each change in yk the system is closer to the reference value and the system must converge.

Convergence is proved under the assumption that:

• the variation in application requirement is slow compared to the action of the controller;

• the application decision as to whether it is happy or not, depends only on the resource allocation at that moment
rather than the time history of resource allocations.

The first assumption is true of all controllers; we will examine this point in more detail in the next section when we
compare the behavior of the generic controller with a PI controller with a varying reference value.

The second assumption is unlikely to be true in practise, i.e. there will always be some delay in resources being allocated
and the application reacting. If at time k the application makes its decision as to whether it is happy based on its
reaction to the input at time k − 1, then the stability criteria does not hold, the application realizes too late that it
has enough resources and because of the exponential growth of P overshoots by more than it original distance from m.

The key difference with the PI controller is that successive PI controller inputs gets closer together as the output
approaches the reference value, while the same is not true of the generic controller as the controller has no knowledge
of the reference value and the inputs are simply informed guesses.

If after every change to uk, in the next period uk+1 was held at the same value regardless of the value of yk, then
the same proof for stability described previously for application basing yk on uk alone would apply to an application
observing some combination of uk and uk−1. If the controller held the input constant for n time periods after a change,
then an application using some combination of the n previous time periods to determine yk would be stable.

However, the longer the controller holds a value the more sluggish is its performance. This is exactly analogous to the
case of the gain in a PI where higher gains lead to better performance, but a high enough gain causes the system to
oscillate.

If the controller can recognize that it is not converging, then it can increase the hold period and reset the resource
allocation. In this way the controller can adapt itself to applications whose outputs depend on arbitrary time histories
of input. In Section III we will examine the performance of the controller in regard to such systems.

We have been assuming that the input uk can be expressed as an integer, in order to make it more general, every
time we reset P i.e. every time we overshoot or undershoot the reference value, we set P not to 1 but a random
number in the range 0...1. This also has the advantage that when a periodic reference value is changing faster than the
controller actions, the controller’s action is not periodic and in consequence is not locked into following the reference
value without ever reaching stability.

4

III. Comparison with Proportional Integral Controller

In this section we compare the behavior of the generic controller described in the previous section with a PI controller
for a variety of different systems. It should be noted that although we will speak of the reference resource allocation
for both controllers, the PI knows and uses the reference value, while it is unknown to the generic controller.

A. Time to stabilize

Figure 2 shows how the number of time steps to converge to stability varies with the reference value for the generic
controller. The underlying system is defined simply by ok = uk, i.e. the input is simply the output, although this
relationship is unknown to the generic controller. The error margin is ±5% and the initial value of uk is always zero.
A PI controller with gain 0.1 is shown for the same system and reference values.

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

N
um

be
r

of
 ti

m
e

pe
rio

ds
 u

nt
il

co
nv

er
ge

nc
e

Reference output

Generic Controller
PI Controller

Fig. 2. Number of time units required to reach convergence for PI and generic controller, system is ok = uk, PI gain
= 0.1, reference value = 0...10000, initial value = 0

The number of steps the generic controller requires to reach stability is higher for large reference values and more
erratic than the PI controller, varying from 20 to 160 time steps. The PI controller always gets within ±5% of the
reference value with exactly 31 steps; a higher gain would allow an even quicker convergence of the PI controller. Note
that although the generic controllers convergence time increases as the difference between the initial and reference
value, it is a logarithm function, this is due to the exponential growth of P . As the time the experiments measure is
between leaving the stable state A and returning to it, some of the convergence time is actually spent in the tuning
state, in which the application is actually happy but the controller is ensuring minimal happiness.

Figure 3 shows how the output evolves during the convergence for both the generic and PI controller (gain = 0.1) for
a system defined by ok = uk, for two different reference values: 1000, 3000.

The PI controller is much smoother than the generic controller. The generic controller overshoots by the difference
between the reference value and biggest sum of powers of two greater than the reference value. So the overshoot for a
1000 is quite small, while than for 3000 the overshoot is more than a 1/3 of the reference value. In classic control theory
undershoot and overshoot can be treated symmetrically, e.g. a robot arm 2 cm to the left of the reference position is
much like a robot arm 2 cm to the right. This is not true of the environment in which the generic controller is intended
to be used. An undershoot means the applications hasn’t enough resources while an overshoot means that its costs
are unnecessarily high. Not having enough computer resources to accomplish a given task is a physical property of the
system, while the cost the controller charges to the application is a policy set by the owner of the infrastructure. In
consequence, the policy may be set to tolerate a limited period of overshoot, for example by not charging the client
until they have announced themselves happy.

The paper [2] describes a PI controller for a set of differentiated web servers. The paper assumes the most important
resource for the server is the number of kernel threads allocated to it. The PI controller redistributes the kernel
threads amongst the set of web servers in order to maintain some ratio of performance between web servers with

5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

Generic Controller with reference = 1000
Generic Controller with reference = 3000

PI Controller with reference = 1000
PI Controller with reference = 3000

Fig. 3. Output during convergence for PI and generic controller, system is ok = uk, PI gain = 0.1, reference value =
1000 & 3000

different relative priorities independently of the nature of the content they server which is unknown and can be
expected to vary over time.

[2] uses system identification — i.e. the iterative calibration of a linear model against actual response — to deter-
mine how the output from the web server is related to the number of process allocated to it. The following linear
approximation is given:

ok = (0.74 · ok−1 − 0.37 · ok−2 + 0.95 · uk − 0.12 · uk−1) (12)

where uk is relative number of kernel threads and ok is a relative delay.

Figure 4 shows the behavior of the generic controller and the PI controller for this model. The lag in the effect on
output in changing the input, as described by the uk−1 term in Equation 12 results in an even greater overshoot than
that for the previous system.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

Generic Controller with reference = 1000
PI Controller with reference = 1000

Fig. 4. Output during convergence for PI and generic controller, system is model of a web server (ok = (0.74 · ok−1 −

0.37 · ok−2 + 0.95 · uk − 0.12 · uk−1), PI gain = 0.1, reference value = 1000

6

B. Effect of time delay

In order to further investigate the effect of time delays on the generic controller, Figure 5 shows how the output from
the application converges for a system described by: ok = uk + uk−1 + uk−2 + uk−3, i.e. the output is related to
the input by three separate time delays. As P is dependent on a random number each time the controller over or
undershoots, three different data sets are shown. They all have the same shape, although the degree to which they
fluctuates varies. Note that negative resources are plotted just to show the pattern of the curves; they do not have
any physical meaning, and would correspond to an allocation of zero resources.

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180 200

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

Fig. 5. Output during convergence for generic controller, system has three time delays (ok = uk + uk−1 + uk−2 +
uk−3), reference value = 1000

The controller is initially started with no time hold and realizes that its not converging. It does this by checking at
each change of value of yk to unhappy+ whether it had already been in the same state previously with a lower input
uk, if so the system is not converging.

When the controller realizes the system is unstable it then increases the time hold by one and resets the system to
its original resource allocation, i.e. the resource allocation it had when it was last happy. The data sets chosen are
to show the range of behaviors rather than as a random sample, the trace which converges at more than 200 steps is
atypical, what it does shows is a trace requiring the hold period to be twice reset; as the hold increases the rise time of
the system decreases, this can be seen in the graphs as the gradient of the curves decreases after every reset (i.e. after
uk is set to its original value zero).

Note that if ok = uk−n, n > 0, then using the method of recognizing instability described here, the system will have
a maximum overshoot of: the reference value · 2(n−1). In practise upper bounds imposed by the resources at the
infrastructures disposal would prevent huge overshoots.

C. Nonlinear functions

Figure 6 shows the behavior of the generic controller for a system with a non linear relationship between input and
output: ok = u2

k
, with reference value 2000. Three data samples are shown again demonstrating that the starting

factor after the initial overshoot is chosen randomly. The generic controller actually converges faster for ok = u2
k
, than

its does for ok = uk.

A simple PI controller cannot handle non linear systems directly; by way of example consider the behavior of the
controller when given a reference value of 200: at time zero the controller calculates the input as the gain times the
difference in reference and zero, this equals 20. The output from the system is 400. The controller then calculates the
new input as the old input plus the gain times the error. The new input is again zero and the controller oscillates
between these value and never converges. In order to apply control theory to non linear system, a linear approximation
must be found using techniques such as Lyapunov theory.

7

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

Fig. 6. Output during convergence of generic controller, system is ok = u2
k
, reference value = 20000

The ability of the generic controller to handle non linear relationships between resource allocation and application
behavior is one of its most attractive features.

D. Dynamic Response

A controller must not only be able to converge the output of the system to a reference value but also to track that
reference value as it changes over time. The resources that an application requires change overtime either because the
work it performs is periodic, e.g. a web server is more loaded at lunch time that late at night, or because the client
changes the cost function, for example is willing to pay more to have a better service.

Figure 7 shows the response of the generic controller, to an underlying system ok = uk whose reference values doubles,
then halves after a fixed number of time periods, i.e. the reference value is a step function.

Figure 7(a), shows that the generic controller is capable of tracking the step function at frequency 40. Although the
controller overshoots when the reference value steps up and undershoots when it steps down, the majority of the time
the output is at the appropriate reference value. Figure 7(b) shows what happens when the frequency of the step
function is doubled, the generic controller follows the reference value, but a much larger portion of its time is spent
recovering from over and undershoots.

Figure 8 shows how the PI controller (with gain 0.1) deals with the step function with frequency 20 and 40. At
frequency 40 (Figure 8(a)) the PI controller just has time to reach the reference value before it changes, at frequency
20, the PI controller never reaches either of the two reference values and is always caught between them. Better
tracking could be achieved with a higher gain, but normally a PI controller is designed for a particular system with a
particular reference input. A PI controller designed to optimally follow a step input, will not follow a parabolic one.

8

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

(a) Step function with frequency 40

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

(b) Step function with frequency 20

Fig. 7. Output during convergence for generic controller, system is ok = uk, reference value = step function(1000,2000)

9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

’/u/sro/gnuplot/ctr/dat/pid_lin_dyn40_1000.dat’

(a) Step function with frequency 40

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t f

ro
m

 th
e

sy
st

em

Time

’/u/sro/gnuplot/ctr/dat/pid_lin_dyn20_1000_1.dat’

(b) Step function with frequency 20

Fig. 8. Output during convergence for PI controller, system is ok = uk, gain = 0.1, reference value = step func-
tion(1000,2000)

10

IV. Use of the Controller

[6] describes the general architecture in which the generic controller is used and is the context in which it was developed.
The objective of this architecture is to permit very large number of different client applications to be hosted on the
same physical infrastructure.

In order to reduce the number of physical devices required, multiple different clients are hosted on the same devices.
Clients are allocated some partition of one or more physical servers in which to run a set of potentially dynamically
loaded applications. The server partition appears to the application as if it were a normal server and in this paper we
will refer to it as a virtual server.

The set of virtual servers are interlinked via a partition of the owner’s network and made available to the public
internet via a partition of a proxying device, also running client chosen proxying code. The unified set of partitions
on the various different devices is called an iCorp.

In order to limit the amount of human operator time required to manage the infrastructure, the process of adding,
removing and modifying iCorps is entirely automated and under the client’s control. Initially a client is given one from
a set of predefined resource allocations but the client may modify this either because it is inappropriate or the client’s
needs may vary over time.

Within each virtual server is a client accessible interface which allows the client to indicate to the infrastructure
whether it wants more, less or the same amount of resource. Invocations on this interface are sent to the architectural
entity running on the physical server responsible for managing the virtual servers. How and under what circumstances
the client invokes the interface is entirely up to the client. The client can manually telnet into the virtual server,
observe the behavior of their application and make the appropriate call, or have a piece of software running inside the
virtual server perform the same action on their behalf.

A set of generic controllers is run on the physical server for each virtual server. For a given virtual server, each
controller controls one resource; in the current implementation there are two managed resources: the fraction of the
servers physical cpu allocated to the client and the amount of network bandwidth that it may use.

A client is free to send messages to the controller as many times as it wishes, but the messages are written to a
mailbox which the controller reads at a rate it determines. The mailbox is capable of buffering only a small number
of messages, new messages overwrite old ones when the buffer is full. In this way a badly behaving client cannot force
the controller to spends its entire time resource updating.

Our initial tests have involved trying to adjust the resource allocation of a video server. Both the virtual server and
physical servers run the Linux OS; the virtual server is created using the VMWare [7] product. The virtual server
appears to the physical server as a Linux process and its cpu can be modified by adjusting the process priority using
the renice option. Note that there is not a simple relationship between the priority allocated to a process and the
number of processing cycles it actually receives, but the generic controller does not require there to be one. The
amount of bandwidth that the virtual server can produce is controlled by the Linux traffic shaper.

Although it would be possible to write applications that directly communicate with the generic controller, this would
inhibit the use of existing applications. Instead a small client supplied monitor runs on the virtual server. It observes
the number of users the video server is serving and the number of frames being produced per seconds. When the
number of frames per second per user falls below a certain threshold it asks for more resources. To what extent the
client should or can be able to identify which resource it is lacking is an open question, currently all resources are
increased and decreased independently, i.e. it is allocated both more cpu and more bandwidth. Figure 9 shows the
relationship between the entities in the architecture, only one generic controller is shown for reasons of simplicity.

The video server is a freeware version of the commercial Real Server from Real Network, this version does not have much
in the way of performance monitoring tools so we observe the performance of the video server indirectly examining the
totality of the traffic being produced by the Linux virtual server (via the pseudo /proc file system), and the number
of end users by observing the number of open connections on the well known Real Server port 554. By assuming that
the only traffic produced by the virtual server is video frames, we can calculate the average number of frames per user.
This is step (1) in Figure 9.

The monitor periodically tests if the current performance is adequate by calculating the number of kbp per user per
second. It attempts to maintain a minimum number of kbps to each user to permit an acceptable quality of playback
at the user’s video player.

11

Traffic Shaper

eth

Video Server

Monitor
Generic
Controller

(1)

(2)
(3)

(4)

Scheduler

veth

Video Stream

Fig. 9. Overview of controller for Video Server

The monitor cannot depend on operating system sleep instructions to be accurate, especially as the physical servers
get more and more loaded. It asks for a nominal time to be set to sleep, but when woken checks using the Linux real
time clock how much actual time it was a sleep for and it is this figure it uses to calculate the performance.

If the performance is not adequate, then the monitor puts a request for more resources into the mailbox, this is step
(2) in Figure 9. The generic controllers periodically reads the mailbox (3), and when instructed attempts to change
the process priority of the virtual server and the amount of traffic it is allowed to send (4).

Cost is not considered in the current implementation, not because it presents a particular technical challenge, but
because more work is needed to determine a suitable charging model. Clients are simply assumed to be frugal in their
resource use, for example when the number of video server users decreases the monitor asks for less resources.

Figure 10 shows the behavior of both an unmonitored and monitored video server initially running on a virtual
server on an unloaded machine, whose load is suddenly increased by an intensive cpu consuming high priority process
(calculating prime numbers) in the 20th time period. The monitor attempts to maintain the play out rate for each
user at 128 Kbps. In Figure 10 there is only one user for each server, the transport protocol is RTSP/TCP and the
number of TCP segments required to maintain an 128 Kbps video flow is about 25. Initially both video servers are
started with p riority3 +10, the process which creates the server congestion is started with priority -10.

The Real Player software running on the user’s workstation itself attempts to react to what it perceives as network
congestion by asking the Real server to play out at a reduced rate. However, as it requires almost as much cpu to play
out a 64 Kbps film as a 128 Kbps, in the case where the bottleneck is server processing power, this is of no benefit. To
give the monitor time to react to the reduced amount of allocated cpu, we intercept the client messages asking for the
server to down shift to a lower play out rate and ignore them. This is easily done within the architecture described
in [6] as users do not communicate directly with the virtual servers but via virtual proxies. RTSP requests from the
real player to the real server are intercepted at the proxies and those requesting down-shifts are removed.

In the 20th time period both video servers suffer a steep drop in the play out rate, but the monitored video servers
recognizes that the number of frames has fallen below the threshold and requests more cpu; after about 5 time periods
it has fully recovered, raising its priority to -2.

This simple example demonstrates the advantages of the empirical approach described in previous section: to determine
the relationship between the frame rate of a Real Server running with a VMWare instance and the priority allocated

3On Linux 2.4, the lowest possible priority is +20 and the highest is -20.

12

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

T
C

P
 s

eg
m

en
ts

 p
er

 s
ec

on
d

Time

Controlled video server
Uncontrolled video server

Fig. 10. A controller and uncontrolled video stream suffering server congestion at time 20

to that VMWare instance requires knowledge both of how the physical server and virtual servers map a given priority
on a particular scheduling regime and how being scheduled at such a rate effects the frame rate of the video server.
This is specific to those particular applications and might have to be changed if a different video server or a different
version of the same video server were used. The mapping between priority and scheduling rate is dependent on the
priorities and activities of the other processes running within both the physical and virtual servers. In consequence it
is extremely difficult to give a general model.

V. Related Work

Some work has already been mentioned which uses feedback control for resource allocation in a computer system [2], [3],
[4]. The approach described here is designed for an architecture in which arbitrary client applications are dynamically
loaded onto an application service provider’s infrastructure. So while, a pure control theoretical approach is more
predictable for a given known application, e.g. HTTP daemon, running in a well controlled environment, it is not
feasible in the target environment.

Modern operating System research has concentrated on making best use of the available resources rather than given
bounded guarantees, this is logical as the various tasks on the OS tend to be executed by the same client or a group
of trusted clients. Some real-time operating systems, for example [8], [9], [10] have allowed precise resource guarantees
to be given to application, but these have to be specified by the client and associated with a single task or process.

The controller described in this paper supposes an allocation of resources not directly to a client process on a shared
OS, but to a client’s virtual server within an architecture capable of supporting and controlling many such servers.
With the arrival of Linux on a mainframe [11] it is now possible to dynamically create many ten of thousands of Linux
images, each with a very fine resource allocation. As client can run whatever they want inside these secure sandbox,
they may run their own application specific monitors as described in Section IV

The client has no knowledge of how much resources there are available on the physical server, nor how much is currently
allocated to it, but is capable of adjusting to its environment using the generic controller. This is reminiscent of the
TCP/IP congestion control mechanism [12] whereby a TCP client attempts to probe the current state of the network
to determine the rate at which it should send. The role of dropped packets in TCP is played by cost in the generic
controller.

VI. Conclusion

The generic controller described in this paper allows the adaptive resource allocation to an arbitrary computer system.
The algorithms that the generic controller use are simple, but permit system stability. Although better control could
be achieved using classic control theory if the model of that system was known and was linear, we have argued that
the behavior of computer systems is not linear with resource allocation and even if they were, obtaining the linear

13

model is complex and not really suitable for the dynamic environment for which the controller was designed.

References

[1] G. Franklin, D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Addison-Wesley, 1994. ISBN:
0-201-53487-8.

[2] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “A Feeback Control Approach for Guranteeing Relative Delays in Web
Servers,” IEEE Real-Time Technology Sysmposium, Tai Pei, Taiwan, June 2001.

[3] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance Gurantees for Web-Server End Servers: A Control Theoretical
Approach,” Accepted for IEEE Transactions on Parallel and Distributed Systems, 2001.

[4] S. Cen, C. Pu, and J. Walpole, “Flow and congestion control for internet streaming applications,” In Proceedings of
Multimedia Computing and Networking (MMCN), 1998.

[5] C. L. et al, “Performance Specifications and Metrics for Adaptive Real-Time Systems,” IEEE Real-Time Systems Sysmpo-
sium, Sydney, Austrialia, December 2000.

[6] S. Rooney and A. Bussani, “Client Delegated Control within an ASP Infrastructure,” Journal of Communications and
Networks, vol. 3, March 2001.

[7] VMWare, “Getting Started Guide, VMWare 2.0 for Linux,” VMWare Technical Support, January 2000.
[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden, “The Design and Imple-

mentation of an Operating System to Support Distributed Multimedia Applications,” IEEE JSAC, vol. 14, pp. 1280–1297,
September 1996.

[9] RTLinux.org, “Workshop on Real Time Operating Systems and Applications and second Real Time Linux Workshop,
November 27-28 2000, Florida, www.rtlinux.org,” November 2000.

[10] WindRiver, “VxWorks 5.4 Programmers Guide,” WindRiver Production Information, vol. DOC-12629-ZD-01, May 1999.
[11] IBM, “S/390 Virtual Image Facility for Linux, Guide and Reference,” Version 1.0, Release 1.0 SL0500, GC24-5930-04,

June 1999.
[12] V. Jacobson, “Congestion Avoidance and Control,” Computer Communications Review, vol. 18, pp. 314–329, August 1988.

14

