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Božidar Radunović
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Abstract

In this work we present a novel method to determine the optimal parameters of a router ar-
chitecture when certain router performance constraints are given. The total financial expense,
or cost, is the optimality criterion. We introduce a general, essentially distributed, router
architecture model, consisting of locally or remotely located forwarding engines or processing
units gathered around a switch of variable speed. Given the following constraints: number
of inputs, maximum line interface bandwidth, and maximum packet delay in a router, the
presented method finds the optimal amount and distribution of processing power among the
various available processing units and the optimal parameters for the switching element. The
optimization employs an estimated market-based cost function per element and finds the most
economical system solution.
The results show that the optimal solutions gather around two extreme points of the solution
space, distinguishable by the distribution of the processing power mass and corresponding
switch speed. We discuss when, depending on the customer input, one or the other solution
is appropriate.
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I. Introduction

Latest developments in transmission technologies have led to an enormous increase in the potential
amount of data transported over the links of a complex network like the Internet. Such rapid evolution
places significant strain on the interconnecting equipment, primarily routers, to scale with the pace of
the transmission speed increase. Recent works [1], [2] have provided a basis for the new generation of
interconnecting devices by presenting the first gigabit and terabit router architectures. These works
have built on new developments in the areas of switch architectures [3], [4] and fast lookup algorithms
[5], [6].

In order to eliminate the packet processing bottleneck, multiple processing units, known as for-
warding engines (FE), or, more sophisticated, network processors (NP), are typically deployed in
contemporary routers. A router system thus consists of multiple processing units gathered around a
switch element and packet processing within such a system is essentially distributed. Various architec-
tures have emerged in the industry with respect to the exact locations and capacities of the individual
router elements. With the ever-increasing number of processing units and the total processing power
present in the system, more emphasis is being put on the most economical use of these resources.

In principle, packet processing can either be carried out directly at router inputs, using local for-
warding engines (LFE), or at remote master forwarding engines (MFE), reachable through the switch
element. Both of these paradigms may be combined in one system. Given the performance demands,
a single MFE may not be sufficient and thus MFEs are often grouped into pools of parallel MFEs.
The critical question is–what are the best capacities, locations and schemes of cooperation of all the
elements (switch, LFEs, MFEs) in order to satisfy given system performance demands, and what is
the most economical alternative to satisfy those demands?

Two of the possible router architectures belonging to this space (albeit without considering the switch
element), fully distributed and parallel, were examined and compared in [7]. In the fully distributed
case (Fig. 1), each line card (LC) has a dedicated LFE attached. When a packet arrives at an LC,
its LFE searches for the appropriate route. If the route is found, the packet is immediately forwarded
through the switch to the output LC. If an LFE is not able to determine the route (e.g. contains only a
part of the routing table), or does not have enough processing power to handle all the arriving packets,
it sends the packet header to the MFE, which contains a copy of the entire routing table and therefore
is able to find the appropriate route. In general, as the MFE stores the entire routing table and should
be able to assist all LCs, it is considerably more powerful and expensive than an LFE.

CP

SWITCH

LC

LFE

LC

LFE MFE

Fig. 1. Distributed router architecture (LC: line card, LFE: local forwarding engine, MFE: master forwarding engine,
CP: control point).

In the case of a parallel router architecture (Fig. 2), the router contains a pool of several high-
performance MFEs that handle the router’s entire workload. Any MFE can take on a new request as
soon as it has processed the previous one. As long as the switch can handle the additional traffic, the
total system processing power is considerably higher than in the case of a fully distributed system, but
also the total system cost rises accordingly.
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Fig. 2. Parallel router architecture (LC: line card, MFE: master forwarding engine, CP: control point).

The content of the routing table is managed by the router control point (CP), which often resides in
the same hardware unit as the MFE. The CP uploads the table to the FEs. As the CP is a processor
dedicated to the control plane rather than to the data plane within router, it is not considered in the
optimization, neither in [7], nor in this paper.

In [7], a simple framework for assessing the cost vs. performance ratio was presented. The cost
and performance differences between a fully distributed and a parallel architecture, as well as the
influence of various system parameters on the ratio, were studied. The optimizations were carried
out by constraining the maximal packet-processing time and the maximal FE processing power while
minimizing the total cost of the system.

The results of the optimization in [7] in the case of the distributed architecture indicate that as the
cost ratio between MFE and LFE increases, it is more efficient to use the fully distributed architecture
rather than a centralized one without LFEs. Similar behavior occurs when the fraction of packets
an LFE unsuccessfully processes decreases. The parallel architecture is more expensive than the
distributed one for the same workload, but it is scalable and thus able to handle a much higher
workload.

In this paper, a general model of an essentially distributed router architecture is optimized, spanning
a large set of hybrid architectures. Our model (see Fig. 3) contains a fixed number of LFEs (one per
router input) of variable processing power (including null processing power, meaning that the LFEs
are absent), a variable number of MFEs with variable processing power, and a switch of variable port
speed. This work extends the model presented in [7] by a switch element and an LFE queuing and
queue overload model. Furthermore, we present a hybrid, more general router architecture model,
encompassing a large space of possible, in essence distributed, router architectures, including the
centralized, fully distributed and parallel cases presented in [7].

MFE

MFE

MFE

CPLC

LC

SWITCH

LFE

LFE

Fig. 3. LFEs, switch and MFEs within the general distributed router architecture model.
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The objective of the method is to serve as a general means for optimizing a router architecture with a
given set of constraints. The constraints, which can be interpreted as customer input, are maximum line
interface bandwidth, number of router LCs, and maximum packet processing delay within the system.
To carry out the optimization on a realistic model, the system model contains further constraints,
which can be interpreted as technological limits, such as the maximum processing power of the FEs or
the maximum switch port speed. The full set of constraints defines a space of feasible solutions over
which the optimization is carried out. The optimization cost function is an aggregate of estimated
market-based costs of the individual elements. The cost function takes the technological parameters
of each element (FE processing power, number of switch ports, and switch port speed) as input. The
optimization output consists of variables describing the optimal architecture—the processing power of
the LFEs and MFEs, number of MFEs, switch port speed, and the distribution of packet processing
among LFEs and MFEs.

A second objective of this work is to reach some general conclusions about the most economical
router architecture for a given set of constraints.

The paper is organized as follows: Section II presents the router architecture model, and, in Section
III, the cost optimization problem is described in detail. In Section IV, results of the most interesting
optimizations are discussed; in Section V, some further possible extensions to the model are discussed,
and, finally, Section VI contains some concluding remarks.

II. General Distributed Router Architecture

A. Router Model

We consider a router having k LCs, with an LFE attached at every LC (see Fig. 3). A switch
element interconnects all the LFEs and the pool of m parallel MFEs. All the possible sequences the
processing of a packet may take–at an LFE, at an MFE, or at both processing units—are accounted
for. A fraction r ∈ [0, 1] of the incoming traffic is processed locally at the LFEs; the fraction 1 − r is
diverted directly to the MFEs without being enqueued at the LFEs (see Fig. 4). Thus, if r = 0, LFEs
are not used at all and the router consists only of a pool of parallel MFEs and a switch. When r > 0
the LFE may not be able to handle all the traffic destined for it locally, for various reasons, such as
for being overloaded (see Section II-B). Such traffic is sent to the MFEs as well, but only after passing
through the LFE. Thus, if r = 1, all the traffic is enqueued at the LFEs, yet a fraction that the LFEs
will not be able to process will still subsequently be sent to the MFEs.

Arriving traffic is modeled as a Poisson process, which simplifies the analysis. Some form of bursty
traffic is typically observed in networks [8]. Bursty traffic would require a different, worst-case analysis
with respect to the system capacity. Recent works [9] have suggested that the aggregate arrival traffic
on an uncogested Internet link does tend to Poisson and therefore our assumption may not be far from
reality. The mean arrival rate at each input LC is λi packets per second (pps). The total router load
is thus λ = k λi. In the analysis we consider all the links to be fully loaded. In reality, workloads on
different LCs are generally not uniform and may vary significantly over time. This implies that LFEs
with a higher workload would forward more packets to the MFEs for processing than LFEs with a
smaller workload, and one can imagine a feasible problem solution where for some periods of time,
individual LFEs would be overloaded. We have experimented with nonuniform workload distributions
on different LCs and the LFE overload, but the optimization results did not differ significantly from the
uniform model. Nonuniform LC workloads are therefore not included in the model. The LFE model,
as presented in Section II-B, is applicable for the overload modeling, however the optimization never
finds an overloaded LFE solution to be the optimal one. With respect to the optimization, parameters
k and λi are a part of the optimization input, whereas values of r and m are a part of the output.
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B. LFE and MFE Model

The processing power of an MFE is µMFE pps, and that of an LFE is µLFE pps. We use µmax as a
bound on the maximum number of packets an FE can handle per second. The possible scenarios of
packet-processing distribution among LFEs and MFEs are depicted in Fig. 4. The fraction of traffic
arriving at an LFE is λLFE = rλi. A fraction λp = (1− r)λi is pre-scheduled directly for processing at
the MFEs.

Regarding the packets sent for resolution through the switch to the MFEs, we assume that it is only
the packet control information, i.e. the packet header, that travels through the switch (as in [10]). The
packet payload is assumed to be buffered until a resolution of the packet processing task arrives from
the MFE pool, again, traveling through the switch. Thus, in terms of number of packets, the amount
traveling through the switch is the same, yet in terms of bits, only a fraction of the packet size makes
the trip to the MFEs. In this work, the processing overhead and the memory size requirements for the
packet header detachment, the payload buffering, and the packet reassembly are not considered.

Furthermore, we assume that a single LFE workload, λLFE, can be greater than its processing power
µLFE. The LFE queue size n is introduced as a parameter to model the LFE overload. When the LFE
queue is full, a packet cannot be processed by the LFE and is forwarded to the MFE pool. Note that
the overload traffic does not have a Poisson distribution because the probability that an LFE queue
is full depends on the LFE load, but, for the sake of simplicity, we approximate it with a Poisson
distribution as follows: the LFE queue is an M/M/1/n queue. Thus, the probability of a packet
arriving at a full LFE queue is (see [11]):

b′(λLFE) = Pn =
1 − ρ

1 − ρn+1
ρn, ρ = λLFE/µLFE. (1)

Thus, we assume the fraction of traffic λo = b′ λLFE = r b′ λi to be sent to the MFE pool due to LFE
overload.

Furthermore, as in [7], even if a packet is being processed by an LFE, with a fixed probability b the
LFE will not be able to find the packet next hop, and the packet is likewise forwarded to the MFE
pool. Such packets account for route table misses, for example when the LFE acts only as a cache,
storing a fraction of the routing table. We denote such a fraction of traffic as λrf = r b (1 − b′)λi.

Finally, the fraction of traffic that actually does get resolved at the LFE and is forwarded directly
to the outgoing switch port is λq = λi − (λp + λo + λrf ) = r(1 − b)(1 − b′)λi.

In Fig. 4 we observe that there are three possibilities for a packet to be queued. Either a packet is
queued at an LFE and waits for time T1, it is forwarded to the MFE and waits for T2, or it is queued
at both the LFE and the MFE owing to the LFE resolution failure.

T 1

λ i ib’ λ iλ rf )= r b (1−

ib’ λ iλ o=r

λ iλ p=(1−r)

λ sum

T 2

λ LFE

µ MFE

µ MFE

µ LFE

n

LFE MFESWITCH

Fig. 4. Model of the general distributed router architecture with multiple LFEs and MFEs.
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Note that given the various paths the packet processing in the router can take, packets belonging
to a particular flow may be reordered, which is highly undesirable [2]. In the interest of simplicity, we
do not consider the additional processing overhead required to prevent reordering in this paper.

B.1 LFE processing time.

The average number of packets in a processor, the average workload arriving at the LFE queue, and
the average LFE response time are

N(λLFE) = ρ
nρn+1 − (n + 1)ρn + 1

ρn+2 − ρn+1 − ρ + 1
(2)

λa = λLFE (1 − Pn) = λLFE
1 − ρn

1 − ρn+1
(3)

W (λLFE) =
N(λLFE)

λa

=
(1 − ρn+1) (nρn+1 − (n + 1)ρn + 1)

µLFE (1 − ρn) (ρn+2 − ρn+1 − ρ + 1)
. (4)

Observing the behavior of a saturated LFE, we see from Eq. (4) that for higher n, the waiting time is
longer. Therefore, a router with long LFE queues would be penalized with respect to the packet delay
time compared to an equivalent router with smaller queues. On the other hand, a router with extremely
small LFE queues (e.g. n = 1) would have frequent queue overflows even on the nonsaturated LFEs,
which would again penalize its performance. The queue length n thus has to be chosen carefully in
order to achieve optimal performance. Ideally, n should be included in the optimization of the system
parameters. Experimentally, though, we have found that changes in n do not have a very significant
influence on the optimization in comparison to other factors, especially as the optimization never finds
an overloaded LFE to be the optimal solution. Thus, to simplify the analysis, we use fixed n values.
Note however that in reality, a queue of larger size would be necessary to handle bursty traffic, for
which we do not account for in our model. Time T1 is simply the average response time W (λLFE).

B.2 MFE pool processing time.

The MFE pool queue is, as in [7], a simple infinite M/M/m queue, with the input workload repre-
senting the sum of nonprocessed packets from the LFEs, together with the pre-scheduled packets. As
the part of workload sent for resolution to the MFE represents a sum of Poisson processes, the sum is
a Poisson process as well. This workload and the corresponding M/M/m queue waiting time are on
average [11]:

λsum = k (λp + λo + λrf ) (5)

T2 =
1

µMFE

+
ρPQ

λsum(1 − ρ)
, (6)

where

ρ =
λsum

mµMFE

, P0 =
1

m−1
∑

j=0

(mρ)j

j!
+ (mρ)m

m! (1−ρ)

, PQ =
P0(mρ)m

m! (1 − ρ)
. (7)

C. Switch Model

C.1 General input/output switch.

The switch is characterized by two parameters—the switch port speed s and the number of input
ports k. As k is an input to the optimization, s is the only parameter optimized by the method.
The switch port speed is expressed in terms of transmission time per the fixed size switch cell, that
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is, in seconds per cell. The parameter s is constrained from below by the technological limit of smin,
s > smin, which means that a fixed-size switch cell cannot be transmitted at a switch port in less than
smin seconds. To avoid confusion with the intensity indicators in packets per second, the intensity
indicators in switch cells per second are denoted with ∗ , e.g. λ∗ instead of λ.

We include the switch in our model by introducing the switch delay. In order to model the switch
delay time, we consider a formula for an input/output-queued switch derived in [12] and [13]. In
the interest of simplicity, we assume that the switch has infinitely large output queues, and that the
number of inputs is large (i.e. greater than 16, [12]). In the case of a lower number of inputs, the
performance of the switch is actually better than the formula depicts (as described in [14]), owing to
lower contention, but in such a case the formula can still be used as a rough upper bound. Note that
the head-of-line congestion at the input port considered in [12] and [13] has been eliminated in the
latest switch architectures; however, in this work, we conform to this model in order to obtain a simple
analytical formula for computing the switch delay.

A cell arriving at an input port first waits at the input queue, then at the head of the input queue
because of head-of-line congestion, and, finally, at the switch output port (see Fig. 3). We denote
Wi(λ

∗

x) as the average waiting time until the head of the input line is reached. The term λ∗

x denotes
the intensity of the input traffic (in switch cells per second). This is an M/G/1 queue with service time
Wb(λ

∗

x) equal to the time a cell spends waiting at the head of the input queue owing to head-of-line
congestion. We denote Dout(λ

∗

y) as the average delay from the instant a cell appears at the head of its
input queue until the instant it begins transmission at the output port. As shown in [12], this is an
M/D/1 queuing system, as we assume the switching matrix speed to be constant and the input traffic
to be Poisson. The term λ∗

y is the intensity of the aggregated Poisson flow arriving at the output port
(in switch cells per second).

The switch traffic consists of k equally loaded local ports and one additional port, the master port,
used for transferring the packet headers to and from the MFE pool (see Fig. 5). As we consider infinite
output queue sizes, waiting time due to head-of-line congestion is Wb(λ

∗

x) = 0 because a cell can be
queued at the output the moment it arrives at the head of an input queue. It follows from [12, Eq.
(2.9)] that

Wi(λ
∗

x) =
λ∗

xs
2

2(1 − λ∗

xs)
,

where λ∗

x denotes the intensity of the input traffic (in switch cells per second) and s denotes the
switching matrix processing time. From the analysis of an M/D/1 queue we have

Dout(λ
∗

y) =
λ∗

ys
2

2(1 − λ∗

ys)
,

where λ∗

y is the intensity of the aggregated Poisson flow arriving at the output port (in switch cells
per second).

In order to exploit the above switch model in conjunction with the FE models, we need to transform
the load variables to a common unit: packets per second. As Internet packets are variably sized, we
need to use some approximations to establish a relationship to the fixed-size switch cells. Two kinds of
packets travel through the switch—entire packets, and the packet headers traveling between the LFEs
and the MFE pool (see Fig. 5). Let S̄P denote the average size of a packet in the router incoming
traffic, and S̄H the average size of a header message traveling in the switch. We assume that a packet
header corresponds in size to a single switch cell. We denote c as the ratio between the packet header
cell size and the average packet size, c = S̄H/S̄P . Thus an average packet accounts for 1/c switch cells.
Measurements and analysis have shown that the Internet traffic distribution is highly nonuniform.
Empirical values in recent studies show S̄P

.
= 300 B [15]. A typical switch cell size is 64 B, with the

payload part being equal to 60 B. Thus, a 40–44 B packet header usually fits into a single such cell,
S̄H = 64 B and, consequently, c

.
= 0.2 is a good typical value.
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λ 1

λ 2
LFE

MFE

*

*

Fig. 5. Traffic flows within the switch; λ
∗

1
represents the amount of traffic leaving the local port (equal to the amount

arriving at the local port), and λ
∗

2
represents the amount of traffic arriving at the master port (equal to the amount

that leaves the master port).

The transfer of packet headers among the processing engines may be time consuming, especially
when the switch traffic is already high. In the interest of simplicity, we assume that the two kinds
of traffic traveling within the switch, entire packets and packet headers, are not distinguished in any
way by the switch element. Thus, the packet header communication overhead traffic saturates the
switch further. Note that with the latest switch designs, full decoupling of the two kinds of traffic may
be achievable by using different switch priorities or separate switch planes. The following paragraphs
describe the introduction of the overhead into the model.

A fraction of traffic is sent to the MFE pool for processing. With reference to Fig. 5, we have
λ∗

1 = λi/c + (λp + λo + λrf ) and λ∗

2 = k (λp + λo + λrf ), where λ∗

1 is the total switch outgoing traffic at
an LFE port (comprising both packet headers and entire packets) and λ∗

2 is the switch outgoing traffic
at the master port (comprising packet headers only). The values of λ∗

1 and λ∗

2 are expressed in switch
cells per second, whereas λi, λp, λo, and λrf are expressed in packets per second.

From the above discussion, we see that the waiting time for a packet header traveling to the MFEs is
Wi(λ

∗

1)+Dout(λ
∗

2) and that the waiting time for the way back to the output port is Wi(λ
∗

2)+Dout(λ
∗

1),
hence the total switch delay for a packet header trip is

DH(λi) =
λ∗

1s
2

1 − λ∗

1s
+

λ∗

2s
2

1 − λ∗

2s
. (8)

An entire packet traveling through the switch after its destination output port has been found by the
next-hop resolution process experiences a per-cell delay of Wi(λ

∗

1) at the switch input and a per-cell
delay of Dout(λ

∗

1) at the output port, and occupies on average 1/c switch cells. Thus the mean switch
delay for the entire packet is

DP (λi) =
1

c
(Wi(λ

∗

1) + Dout(λ
∗

1)) =
λ∗

1s
2

c (1 − λ∗

1s)
. (9)

D. Time a Packet Spends within the System

The mean time T a packet spends in the system is

T =
λi − λp − λo

λi

T1 +
λp + λo + λrf

λi

T2 +
λp + λo + λrf

λi

DH(λi) + DP (λi), (10)

where the first element represents the fraction of packets processed by the LFEs, the second the fraction
of packets processed by the MFEs, the third the switch delay for a remotely processed packet header,
and the fourth the switch delay for the entire packet traveling through the switch.

III. Cost Optimization

A. Forwarding Engine Cost

To simplify the problem, the cost associated with an FE is assumed to be a linear function of
processing power of the form costMFE (US $)

.
= c1 µMFE, costLFE (US $)

.
= c2 µLFE, where µLFE and
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µMFE are expressed in packets per second. We denote a as the ratio of the two coefficients, a = c1/c2.

B. Effective Switch Throughput

Recall that s is the switch speed, and k the number of input ports. In order to establish a general
measure of the switch performance, we define the saturation throughput of the switch to be λ∗

s = k/s
(in switch cells per second). The notion comes from the fact that the switch delay,

D(λ∗

i ) =
λ∗

i s2

(1 − λ∗

i s)
, (11)

tends to infinity as the per-input switch load λ∗

i (in switch cells per second) approaches 1/s (see [12]).
We denote as the effective switch throughput λ∗

e = αλ∗

s a fraction α of the saturation throughput for
which the delay remains within reasonable bounds. For Internet applications, we assume α = 0.9. A
common switch performance metric used by the industry is the switch effective throughput λ′

e measured
in bps. The relationship between λ∗

e and λ′

e holds as:

λ′

e = 8 S̄H λ∗

e . (12)

C. Switch Cost Function

To establish a switch cost function costS(s, k) dependent on the switch performance, we establish a
relationship between λ′

e in bps and the switch cost in US $. We assume that within certain limits of
k ≤ k0, there is a linear dependency of the switch cost on the switch effective throughput λ′

e, which
can be characterized as costS(s, k) (US $)

.
= c3 λ′

e(s, k), where k ≤ k0. The limit of k0 denotes the
limit for single-stage switches. For k > k0, we assume more aggressive growth of the switch cost
with λ′

e, because we assume that such a switch can only be built using a multistage architecture. A
typical empirical value of k0, which is also used in this work, is k0 = 64. From the fixed point of k0,
we assume a cost function dependency of linear-logarithmic form, approximately costS(s, k) (US $)

.
=

c3 λ′

e(s, k) log(λ′

e(s, k)), where k > k0. In the interest of a smooth transition and reasonable values, we
normalize the function as follows:

costS(s, k) (US $)
.
= c3 λ′

e(s, k) log

(

e +
λ′

e(s, k) − λ′

e(s, k0)

λ′

e(smin, k0)

)

, (13)

where k > k0.

D. Total System Cost

The total system cost formula holds as

cost = mc1 µMFE + k c2 µLFE + costS(s, k). (14)

The linear cost functions for the FEs and the switch are of course simplified from reality. Some form
of exponential growth of cost with capacity should rather be expected.

E. Optimization Problem

The cost is optimized over the tunable system parameters: (r, µMFE, µLFE, s,m). Given the maximum
allowed mean packet processing time Tmax, we derive the following optimization problem:

Optimization function Constraints

mc1 µMFE + k c2 µLFE + costS(s, k) 0 ≤ r ≤ 1
0 ≤ µMFE < µmax

0 ≤ µLFE < µmax

Parameters smin < s
{r, µMFE, µLFE, s,m} T < Tmax

1 ≤ m.
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Note that m is an integer, whereas all the other optimized parameters are rational numbers.

IV. Numerical Results

A. Optimization

Numerical results have been obtained using the Matlab Optimization Toolbox environment. First,
the value of m is increased until there exists a feasible solution, and then the constrained nonlinear
optimization function fmincon is used to find the optimum. The system variables in our optimizations
have been set to the following values: Tmax = 10−6 s, c2 = 6 × 10−5, c3 = 10−8, µmax = 6 × 106 pps,
smin = 10−9 s (meaning a fixed-size switch cell would have to be transmitted at a switch port within 1
ns), n = 100. The values have been selected to approximate the limited market information available.

The ratio of costs of equally powerful LFEs and MFEs, a, is alternated in our simulations over values
a ∈ {2, 10, 100} and influences several variables. Variable c1 is dependent on c2 and a, c1 = ac2. The
value of b reflects a in the following manner: we assume that a can be interpreted as a difference in
memory size available to the processing engines. Thus a determines a fraction of the memory available
at an LFE, and b, the fraction of nonresolvable packets at an LFE, reflects the cache miss rate at an
LFE. A sample dependency between a cache hit-rate and cache size can be found for example in [16].
Based on that, we use the following pairs of (a, b): (2, 0.1), (10, 0.2), (100, 0.9).

Figures 6 – 18 show plots of the output variables over a spectrum of the number of inputs k and link
speeds λi. The number of inputs k grows geometrically with a coefficient of 2, k ∈ {8, 16, 32, ..., 1024}.
The values on the maximum interface bandwidth λi axis grow geometrically with a coefficient of

√
2,

thus including link speeds approximately corresponding to the capacities of 10 Mb – 1 Gb Ethernet
and OC-48 – OC-768 links, in Mpps, that is, λi ∈ {0.025, 0.035, 0.050, ..., 6.40, 9.05} Mpps.

B. Total System Cost

Figure 6 depicts the system cost on a linear and a logarithmic plot for a = 10. The cost grows
exponentially along both the k and λi dimensions, with a steeper increase in the high λi segment,
which is due to the increasing influence of the switch cost on the total cost.
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Fig. 6. Total system cost.

C. Distribution of Resources—LFEs, MFEs and Switch Capacity

Figure 7 shows how the optimization selects between the two extreme points of the solution space.
For a smaller part of the problem space, r attains the value of 0, meaning no LFEs are needed. When
r is equal to 1, the results indicate that it is cheaper to add and fully stress the LFEs to be able to
handle the load.

It is clearly visible that a certain boundary divides the problem space into two regions. Typically,
for systems with a small number of inputs and small link loads, deploying LFEs is too expensive and
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Fig. 7. Fraction of traffic enqueued at LFEs, r.

r = 0. This somewhat counter-intuitive result comes from the fact that the processing capacity needed
for one M/M/1 queue serving the aggregate load is smaller than the processing capacity needed for k
M/M/1 queues, each serving 1/k of the aggregate load, if both systems need to conform to the same
time constraint. As the relationship is nonlinear, with the increase in the total amount of processing
capacity required, at a certain boundary it becomes more economical to use the multiple, less powerful
processors, and thus, for systems with a higher number of ports or higher link loads, LFEs are more
economical to fulfill the performance requirements and r = 1. The exact curve of the shift differs for
various a. Two further observations can be made. For a = 2 and a = 100, r starts to decrease from 1
towards 0 for very high λi. Furthermore, for a = 100 and very high k and λi, r is undefined, meaning
that it is not feasible to build a router with the constraints given. Observing the optimization results
of other parameters leads to a better understanding of these phenomena.

Figures 8 and 9 show on a logarithmic scale the optimal amount of total processing power within the
system and its cost. Figures 10 and 11 show on a logarithmic scale the optimal switch, characterized
by the saturation throughput, and its cost.
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Figures 8 to 11 explain the differences in the shape of the boundary between r = 0 and r = 1 in
Fig. 7. We observe a trade-off between increasing the switch throughput and deploying LFEs. The
influence of the switch cost, however, differs when the factor a changes. The lower a is, the higher the
influence of the switch cost on the boundary shape, because when a and b are low, the total system
cost remains lower and the switch cost influences the trade-off between r = 0 and r = 1, described
above. However, when a is large, b becomes large as well, and a large fraction of the packets processed
at the LFEs have to travel to the MFEs anyway, thus the introduction of LFEs is beneficial only for
very high link speeds. The MFEs and the system in total are then very expensive, and the switch cost
is no longer a factor in the trade-off.
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Fig. 10. Switch saturation throughput.
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Fig. 11. Switch cost.

D. Distribution of Processing Capacity—LFEs and MFEs

Figure 12 shows the optimal amount of processing power at each individual LFE. For a = 2 and
a = 100, the LFE processing power µLFE reaches the upper limit µmax in the very high λi region. As
the LFE is overloaded at that point, it does not make sense to enqueue additional packets at the LFEs
because they only incur additional delay. Thus it is more efficient to send the appropriate fraction
of the packet headers directly to the MFEs, resulting in a decrease of r. The boundary where the
LFE processing power limit is reached differs for various a. This phenomenon is again dependent on
the particular pairing of (a, b), which, as described in Section IV-C, influences the boundary where it
becomes advantageous to use LFEs, and, in particular, on the fraction of the LFE resolution failures
b, which increases the required LFE processing power.

Figures 13 and 14 show the total amount of processing capacity of the LFEs and the MFEs, respec-
tively. Figure 15 shows how the total amount of processing power is partitioned among the LFEs and
MFEs. In most of the problem space, the major part of the optimal system processing power rests
with the LFEs. In the segment of routers with high-speed links, for a = 2 and a = 100, the LFE
processing power limit µmax is reached and thus the bulk of the processing capacity begins to shift
towards the MFEs. At the same time, as described in Section IV-C, in the segment of devices with
few, low-speed links, LFEs are not used at all and thus their share of the total capacity is equal to 0.
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E. Switch Speed

Figures 16, 17 and 18 depict the optimal switch port transmission speed and the overhead of the
header-passing traffic compared to the total switch traffic. We see why there is no feasible solution
for a = 100. Given the dependence of b on a, a large fraction of traffic (b = 0.9) fails to be resolved
at the LFEs and still travels through the switch to the MFE pool. Thus, LFEs cannot be used to a
great extent to decrease the packet delay in a router, and the switch, the master port in particular, is
placed under increased demand to compensate the delay. For the very high-speed, many-input case,
the switch is not able to cope with the demand and reaches the limit of its port transmission speed.
Therefore a feasible solution for this region does not exist. Note that a similar phenomenon is only
narrowly avoided in the case of a = 2, when the LFEs are already saturated as well.

To summarize the optimization results, we observe that for each a and b, a similar trend of dividing
the problem space according to the optimum solution exists. However, the boundary line and the
appropriate switch element parameters vary significantly for different a and b, which suggests that
they are important factors in any router design. Note that the results are, to a large extent, also
dependent on c, the ratio of the average packet size and the packet header size. If, for example, the

a=2

0.01
0.1

1
10

λi [106 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10-6 s/cell]

a=10

0.01
0.1

1
10

λi [106 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10-6 s/cell]

a=100

0.01
0.1

1
10

λi [106 p/s]10

100

1000

k

0

0.2

0.4

0.6

s [10-6 s/cell]
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average packet size were to decrease, the influence of the packet-header-passing overhead traffic on the
system would gain a much higher significance, and vice versa. Furthermore, with a more realistic cost
function, less capable elements would be favored and thus a shift in the division boundaries could be
expected.

V. Future Work

There are many possible improvements to the model and to the way the system behavior is studied.
Such improvements comprise:
• decoupling the packet-header passing from the switching of entire packets within the switch element,
as discussed in Section II-B;
• more realistic traffic modeling, such as self-similar traffic [8] or packet trains [17];
• rather than being linear, the FE cost function could be more realistic, perhaps tied to a more complex
FE architecture;
• including payload buffering and packet reassembly in the processing model;
• evaluating load balancing on a per-flow basis and addressing packet reordering prevention (as dis-
cussed in Section II-B), and
• modeling specific packet processing tasks, such as lookup, classification, flow control, or scheduling
in more detail.

We have focused here on the worst-case performance: all router links are fully loaded. However, a
useful analysis could concentrate on the system behavior within a certain load range.

VI. Conclusion

This work presents a model for analyzing a general distributed router architecture and determining
its most economical variant, given a set of performance requirements. We bring new insight as to how
the individual elements influence the most economical architecture for a given set of constraints. The
introduction of a nonlinear LFE overload model allows us to easily combine both LFEs and MFEs
within one scalable hybrid system. Using a simple switch model, we have demonstrated that the intro-
duction of a switching delay can significantly influence the optimization results. The introduction of
the two elements enables us to enhance the scalability limits of the fully distributed router architecture,
as they are reached only for the most extreme points of the spectrum studied. For low-end systems,
we have demonstrated that the LFE alternative is too costly. However, for most systems, deploying
LFEs is advantageous because the switch bottleneck and the high MFE cost are avoided. We show
that the cost ratio of the equally powerful LFEs and MFEs and the corresponding fraction of load the
LFE is able to handle are a decisive factor in determining the location of the boundary between the
two optimal solutions as well as in selecting the appropriate switch element.
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