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Abstract

We formulate an optimization problem for designing nonuniformly spaced constellations for
equiprobable M -ary coded modulation schemes. Given the average channel SNR constraint,
optimum (equiprobable) signal sets are obtained in an attempt to maximize the mutual in-
formation between channel input and output. It is proved that the optimum signal set can
asymptotically achieve the ultimate Shannon capacity over an AWGN channel without re-
quiring any shaping technique. Extensive comparisons between the optimum signal set, a
geometrically Gaussian-like signal set, and a uniformly spaced signal set are provided. Ex-
tensions to Rayleigh fading channels are also investigated. Rather than using a trellis code
to exploit the performance gain of the optimum signal constellation, we investigate powerful
low-density parity-check codes over GF(2b) in conjunction with 2b-ary modulation schemes.
Simulation results show that such a coding scheme can exploit almost the entire performance
gain promised by the information-theoretic argument.
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I. INTRODUCTION

For uncoded modulation schemes, the principle of designing signal constellations (sets) for an additive
white Gaussian noise (AWGN) channel is to maximize the squared Euclidean distance between signal
points under average power constraint, leading to uniformly spaced signal sets. Classical coded modula-
tions such as the set-partitioning technique of Ungerboeck [1] and the multilevel coding approach of Imai
and Hirakawa [2] use a trellis code to maximize the minimum Euclidean distance between code sequences,
in which the signal sets still remain uniformly spaced and equiprobable. Forney et al. [3] pointed out that
the channel capacity predicted by Shannon for the AWGN channel cannot be achieved by equiprobable,
uniformly spaced signal sets and that there exists a gap of πe/6 (≈1.53 dB) asymptotically.

One way to reduce this gap is shaping. In a conventional, uniformly spaced constellation, every point
is used with equal likelihood. The objective of shaping is to achieve a Gaussian-like distribution over a
somewhat expanded constellation, so as to reduce the average signal power while retaining the data rate.
The power reduction is called shaping gain. By going to higher dimensions and choosing signal points from
an N -dimensional sphere rather than an N -cube, the constellation implies a nonequiprobable distribution
on the projective one-dimensional constellation. In the limit as N → ∞, an N -sphere can ultimately
achieve a shaping gain of 1.53 dB, and enforces a truncated Gaussian distribution on the projective one-
dimensional constellation. For further details on shaping techniques and nonequiprobable signaling, we
refer the reader to [4]-[8] and the references therein.

A duality of the shaping, i.e., the use of nonequiprobable, uniformly spaced signal sets, is to use
equiprobable, nonuniformly spaced signal sets. It has been shown theoretically by Sun and van Tilborg
[9] that at any given channel signal-to-noise ratio (SNR), an equiprobable, geometrically Gaussian-like
signal set can asymptotically achieve the channel capacity of an AWGN channel. However, this optimality
property holds true only for the limiting case in which the code rate tends to zero (the size of the signal
set growing to infinity), and the associated problem of finding a suitable coding scheme remains intact. To
our knowledge, the first work to demonstrate the advantage of a nonuniformly spaced signal set was done
by Divsalar et al. [10], who showed that by designing an asymmetric (nonuniformly spaced) M -PSK sig-
nal constellation, a higher coding gain can be achieved in many cases than with the conventional M -PSK
combined with trellis coding. Several approaches followed this line of thought, as documented by [11]-
[14]. Nonuniformly spaced signal sets have also been used against signal-dependent channel impairments
affecting the outer points of a signal constellation [15]. By transforming (sometimes called warping) the
uniformly spaced signal constellation in such a way that points near the perimeter are spaced further apart
than points near the center, a performance gain of about 0.25 dB has been achieved by PCM modems.
However, these results all rely heavily on the use of a trellis code with the design criterion to maximize
the minimum Euclidean distance between code sequences. Hence the fact that a nonuniformly spaced
signal set, which actually decreases the minimum Euclidean distance between signal points under average
power constraint, provides an advantage is somewhat perplexing. A heuristic argument [15] is that the
performance is governed not only by the minimum Euclidean distance between signal sequences but also
by the average number of nearest neighbors to the transmitted signal sequence. However, this explanation
is neither fundamental nor convincing. Moreover, a systematic approach to design a good, nonuniformly
spaced signal constellation and an appropriate coding scheme capable of exploiting its advantage has not
yet been found.

This paper focuses on the optimum design of nonuniformly spaced signal constellations as well as on
coding techniques to exploit potential performance improvements. We propose that the optimum equiprob-
able, nonuniformly spaced signal constellation should be chosen such that, under the equiprobable-input
constraint and given the channel SNR, the mutual information between the channel input and output is
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maximized. This gives rise to a constrained, nonlinear cost-function optimization problem that can be
solved numerically. It is shown numerically that the resulting optimum, nonuniformly spaced signal con-
stellation leads to an increased information rate at a specific channel SNR compared with the conventional,
uniformly spaced signal constellation. In other words, a nonnegligible performance gain in terms of SNR is
expected, which we believe to be the fundamental reason for the preference of nonuniformly spaced signal
constellations in many scenarios.

Instead of using a trellis code to exploit the performance gain of a nonuniformly spaced signal constel-
lation, we consider a class of more powerful, low-density parity-check (LDPC) codes [16]-[18] together
with the progressive-edge growth (PEG) construction [19]. Specifically we investigate nonbinary LDPC
codes defined over GF (2b) [20] in conjunction with 2b-ary modulation schemes, in which each transmitted
sample or symbol carrying b bits corresponds to exactly one element of a codeword in the nonbinary LDPC
code. Simulation results show that such a coding scheme is capable of achieving almost the entire per-
formance gain of an equiprobable, nonuniformly spaced signal constellation promised by the information-
theoretic argument.

Closely related to this work are the empirical results reported in [21],[22], in which equally likely signals
with nonuniformly spaced constellations designed empirically such that the output signal approximates the
Gaussian distribution, have been investigated. There, Turbo codes combined with BICM [23] were utilized
to fulfill the so-called shaping gain due to nonuniform constellations.

II. AN INFORMATION-THEORETICAL VIEW

Consider a power- and bandwidth-efficient digital communication system based on M -ary modulation
schemes such as M -PAM, M -QAM, and M -PSK, where M = 2b, and b is a positive integer larger than 1.
For simplicity, we shall focus on M -PAM so that only real-valued input and output are involved. Extensions
to other modulation schemes clearly are straightforward. Assume that the signal constellation is chosen as
the finite signal set A = {a0, a1, . . . , aM−1}, ai being real-valued, over an intersymbol interference-free
band-limited channel with AWGN. Note that A may not necessarily be uniformly spaced. With perfect
timing and carrier-phase synchronization, we sample at time jT + τs, where T is the modulation interval
and τs the appropriate sampling phase. The output of the modulation channel becomes

yj = xj + wj, (1)

where xj denotes a real-valued discrete channel input selected from signal constellation A that is transmit-
ted at modulation time jT , and wj is an independent Gaussian-distributed noise sample with zero mean
and variance σ2. The average SNR of the channel is defined as

SNR =
1

Mσ2

M−1
∑

i=0

a2
i . (2)

The mutual information between the channel input X (discrete) and output Y (continuous) can readily
be written as [1]

IA(X; Y ) =
M−1
∑

k=0

P (ak)

∫ +∞

−∞
p(y|ak) log2















p(y|ak)
M−1
∑

i=0

P (ai)p(y|ai)















dy (3)
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in bit/T , where P (ak) denotes the a priori probability associated with ak, and because of the assumption
of AWGN, we know that

p(y|ak) =
1√

2πσ2
e−(y−ak)2/2σ2

. (4)

With the further assumption that only codes with equiprobable occurrence of channel input signals are of
interest, we can substitute in (3) with P (ak) = 1/M , which yields

IA(X; Y ) =
M−1
∑

k=0

1

M

∫ +∞

−∞
p(y|ak) log2















Mp(y|ak)
M−1
∑

i=0

p(y|ai)















dy

= log2 M −
M−1
∑

k=0

1

M

∫ +∞

−∞
p(y|ak) log2















M−1
∑

i=0

p(y|ai)

p(y|ak)















dy

= log2 M − 1

M

M−1
∑

k=0

Ew

{

log2

M−1
∑

i=0

exp

[

−|ak + w − ai|2 − |w|2
2σ2

]

}

, (5)

where Ew denotes expectation over the Gaussian-distributed noise variable w with zero mean and variance
σ2. For any given signal set A, the associated information rate, IA(X; Y ), can be numerically evaluated
according to (5) via the Monte Carlo method.

One of the main contributions of this paper is the design criterion for an optimum equally-like signal set
over a finite discrete-input memoryless channel based on the following proposition.

Proposition 1: The channel capacity of an equiprobable M -ary discrete input memoryless channel C ∗
equ

is equivalent to the supremum channel-input and -output mutual information over all equally-like signal
sets, namely,

C∗
equ = max

A
IA(X; Y )

= IA∗(X; Y ) , (6)

where A∗ denotes the optimum equally-like signal set under a specific channel SNR constraint.
Proof: A general formula for the capacity of arbitrary single-user channels without feedback has been

proved in [24], asserting that the capacity is equal to the supremum over all input processes of the input-
output information rate. Therefore, the channel capacity C∗ for a memoryless channel with M -level dis-
crete input constraint can be formulated as

C∗ = max
X

IA(X; Y )

= IX∗(X; Y ) , (7)

with X∗ denoting the optimum input process that maximizes the M -level discrete input-constrained infor-
mation rate IA(X; Y ). The determination of the optimum input process X ∗ involves investigating which
signal constellation is chosen and how frequently each individual signal point in the constellation is used.
Given the further constraint that the channel input is equally likely, the problem of choosing the optimum
input process X∗ reduces to designing an optimum signal constellation A∗, thereby giving rise to (6). �
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Finding the optimum equally-like signal set over a finite discrete-input memoryless channel is in gen-
eral not a trivial task. The underlying problem is a constrained nonlinear-cost-function M -dimensional
optimization problem in which the M signal points in the constellation serve as optimization parameters.
Formally this is a standard optimization problem: Maximize

IA(X; Y )

over all a0, a1, . . . , aM−1 satisfying
∑

i

a2
i = const .

We can write the constrained maximization using Lagrange multipliers as the maximization of

J = IA(X; Y ) + λ
∑

i

a2
i . (8)

Differentiating with respect to ai and setting it to zero, we obtain a necessary condition for the optimum
signal set

∂J

∂ai

=
∂IA(X; Y )

∂ai

+ 2aiλ

= 0 (9)

for all ai ∈ A. Note that

λ = − 1

2ai

· ∂IA(X; Y )

∂ai

. (10)

Then the necessary condition turns out to be

{

1
a0

∂IA(X;Y )
∂a0

= 1
a1

∂IA(X;Y )
∂a1

= · · · = 1
aM−1

∂IA(X;Y )
∂aM−1

∑

i

a2
i = const . (11)

As an analytical formula for computing optimum equiprobable signal sets using (11) is difficult to obtain,
we resort to the numerical optimization methods described in [25], [26], which involve only Monte-Carlo
evaluations of IA(X; Y ) via (5). Some optimized signal sets will be reported later.

As is well known, various shaping techniques are capable of achieving the 1.53 dB gap asymptotically
and thus of approaching the Shannon capacity over an AWGN channel. It is interesting to see whether the
use of an optimum, nonuniformly spaced signal constellation will be able to achieve the Shannon capacity.
This is answered by the following proposition.

Proposition 2: The channel capacity for an equiprobable M -ary input (memoryless) AWGN channel,
namely C∗

equ = IA∗(X; Y ), is equal to the Shannon capacity C = 1/2 log2(1 + SNR) as M → ∞.
Proof: First we show that C∗

equ ≤ C. This is trivial by recognizing that the input process, i.e., the equally
likely signal set A∗, can be visualized as a subset in the set of input process of an AWGN channel.

To show C∗
equ ≥ C as M → ∞, we consider a specific signal set, namely, the geometrically Gaussian-

like signal set Ageo defined as follows: Take M + 1 points on the real line

−∞ = α0 < α1 < . . . < αM−1 < αM = ∞ (12)
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such that for 0 ≤ i ≤ M − 1
1√
2πP

∫ αi+1

αi

e−x2/2P dx =
1

M
. (13)

Then the i-th element ageo
i of Ageo is defined by

ageo
i =

M√
2πP

∫ αi+1

αi

xe−x2/2P dx. (14)

Put simply, ageo
i is the centroid of the equiprobable intervals (αi, αi+1) with respect to a Gaussian distribu-

tion of variance P , P denotes the average signal power. This signal set may not necessarily be optimum
for any finite alphabet size M , but it is asymptotically optimum over an AWGN channel in the sense that
the mutual information IAgeo(X; Y ) = C = 1

2
log2(1+ P

σ2 ) as M → ∞. The asymptotic optimum property
of the Gaussian-like signal set has been proved in [9, see also Appendix A]. Then it follows

C∗
equ = IA∗(X; Y )

= max
A

IA(X; Y )

≥ IAgeo(X; Y )

= C as M → ∞. (15)

�

Remarks: Proposition 2 implies that the Shannon capacity of a continuous-input and -output AWGN
channel can be attained asymptotically by an optimum equiprobable signal constellation without requir-
ing any shaping techniques. That is to say, the shaping gain arising from the use of (uniformly-spaced)
nonequiprobable signal sets can be alternatively obtained by its duality, i.e., by the use of nonuniformly-
spaced (equiprobable) signal sets. As the input to the channel is in general equally likely, the gain promised
by nonuniformly-spaced equiprobable signal sets incurs no additional complexity, whereas the shaping gain
usually requires additional coding/decoding complexity to realize nonequiprobable use of signal points in
the constellation.

Note that Proposition 1 is widely applicable to all finite discrete-input memoryless channels and not
necessarily limited to the AWGN channel. For instance, the same philosophy extends to the frequency-
nonselective Rayleigh slow-fading channel, which can be modeled by

yj = θj ∗ xj + wj , (16)

where θ is the normalized Rayleigh fading factor with E[θ2] = 1 and density function p(θ) = 2θ exp(−θ2),
θ ≥ 0. Assume the perfect channel state information (CSI) is available at the receiver, i.e., the receiver
knows the exact value of θk at any time instant, then the mutual information ICSI

A becomes

ICSI
A (X; Y ) = IA(X; Y, θ)

= IA(X; θ) + IA(X; Y |θ) (chain rule)

= IA(X; Y |θ) (because X and θ are independent)

= log2 M − EX,Y,θ











log2

M−1
∑

ai:i=0

pθ(y|ai)

pθ(y|x)











(assuming equiprobable input) , (17)
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which, in principle, can be evaluated numerically; then an optimum signal constellation at a specific SNR
maximizing the mutual information over a Rayleigh fading channel can be obtained by solving the under-
lying nonlinear optimization problem.

Often the computational effort of solving the optimization problem is dominated by the cost of evaluating
the cost function IA(X,Y ). To evaluate (17) efficiently, we can translate (16) into another form in the
presence of CSI, namely,

ỹj = xj + vj , (18)

where vj is an instant Gaussian-distributed noise sample wj/θj with zero mean and variance σ2/θ2
j . Fol-

lowing a similar procedure as in (5), we obtain

ICSI
A (X; Y ) = IA(X; Y |θ)

= log2 M − 1

M

M−1
∑

k=0

Ev

{

log2

M−1
∑

i=0

exp

[

−|ak + v − ai|2 − |v|2
2σ2/θ2

j

]

}

, (19)

where Ev denotes expectation over the random variable v that has a Cauchy-like probability density func-
tion given by [see Appendix B]

p(v) =
σ2

(2σ2 + v2)3/2
. (20)

Equation (19) can be much more easily evaluated by Monte Carlo method than (17) as it involves only a
one-dimensional integral. To evaluate ICSI

A (X; Y ) using the Monte-Carlo method, the random samples of
v should be generated in two steps: first the Rayleigh distribution for θj , and then a Gaussian distribution
with zero mean and variance σ2/θ2

j .
It can be verified that the information rate for a given signal constellation in (5) as well as in (19),

depends solely on the channel SNR. Consequently, the optimum signal constellation is also a function of
the SNR, and independent of the specific signal power or noise variance values.

III. NUMERICAL RESULTS

In this section we compute the capacities and optimum signal constellations with equiprobable input at
specific channel SNRs for the two typical channels we discussed above: AWGN channels and Rayleigh
fading channels with perfect knowledge of CSI.

A. AWGN Channels

Whereas the geometrically Gaussian-like signal set Ageo has been known to be asymptotically optimum
for an AWGN channel as M tends to infinity, it is clear that Ageo is not the optimum signal set for maximiz-
ing the mutual information with equiprobable input, as Ageo is associated with the signal power whereas
the optimum signal set depends on the channel SNR.

Because the conventional uniformly spaced signal constellation is defined as ±1,±3, · · · ,±(M − 1),
whose average power equals (M 2 − 1)/3, we henceforth consider Ageo with the same average power con-
straint,1 i.e., P = (M 2 − 1)/3. Table I shows the resulting geometrically Gaussian-like signal sets for
4-PAM, 8-PAM, and 16-PAM, obtained by solving Eqs. (13) and (14).

Fig. 1 depicts information rates of equiprobable-input AWGN channels with conventional uniformly
spaced signal constellations and with geometrically Gaussian-like signal sets in Table I under 4-PAM,
8-PAM, and 16-PAM. One can see that at low SNRs the geometrically Gaussian-like signal sets clearly

1Unless explicitly stated, all M -ary signal sets reported in this paper have a normalized power constraint of (M 2
− 1)/3.
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TABLE I

THE GEOMETRICALLY GAUSSIAN-LIKE SIGNAL SETS WITH POWER (M 2 − 1)/3. NOTE THAT FOR 16-PAM, ONLY THE

POSITIVE PART OF THE SIGNAL SET IS SHOWN; THE NEGATIVE PART CAN BE OBTAINED BY SYMMETRY.

ageo
0 ageo

1 ageo
2 ageo

3 ageo
4 ageo

5 ageo
6 ageo

7

Ageo
4−PAM 0.782578 3.06391 −0.782578 −3.06391 — — — —

Ageo
8−PAM 0.74469 2.3162 4.22081 7.76308 −0.74469 −2.3162 −4.22081 −7.76308

Ageo
16−PAM 0.731853 2.21401 3.75499 5.40744 7.25275 9.44391 12.3625 18.3467

outperform their uniformly spaced counterparts, closely approaching the Shannon limit. For instance,
under 16-PAM, the Gaussian-like signal set achieves an information rate of 2 bit/T at 11.944 dB, which is
only 0.183 dB away from the Shannon capacity, whereas for the uniformly spaced signal set the needed
SNR is 12.527 dB, which is 0.583 dB worse than the Gaussian-like signal set and 0.766 dB away from
the Shannon capacity. Moreover, as the channel SNR tends to be even lower, the difference between the
information rate of the Gaussian-like signal set and the Shannon capacity is negligible; this also holds true
for fixed channel SNR but increased alphabet size M .
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Fig. 1. Information rates of the equiprobable-input AWGN channel with uniformly spaced signal constellations (solid lines)
and with geometrically Gaussian-like signal sets (dashed lines). The Shannon capacity limit (dotted line) of the continuous
input–output AWGN channel is also plotted.

From Fig. 1 we can also observe that, at high SNRs, the geometrically Gaussian-like signal sets perform
worse than their uniformly spaced counterparts. Specifically, at a SNR of 25 dB and for 16-PAM, the
uniformly spaced constellation achieves an information rate of 3.808 bit/T whereas the Gaussian-like one
achieves only 3.731 bit/T . This suggests that the Gaussian-like signal set is advantageous only at relatively
low SNRs, and that at high SNRs, a signal set optimized for the specific SNR should be utilized instead.
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Fig. 2. Information rates of the equiprobable input AWGN channel with uniformly spaced signal constellations (solid lines) and
with nonuniformly signal sets (dashed lines) optimized for individual channel SNRs.

Fig. 2 shows information rates of equiprobable-input AWGN channels with conventional uniformly
spaced signal constellations and with nonuniformly spaced signal sets optimized at individual SNRs under
4-PAM, 8-PAM, and 16-PAM: in the very low SNR region, the optimized signal sets exhibit essentially the
same performance as the geometrically Gaussian-like does, and in the very high SNR region the optimized
signal sets converge to the uniformly spaced signal sets. Unlike the geometrically Gaussian-like signal sets,
the optimum signal sets consistently outperform the uniformly spaced ones at any SNR.

We tabulate two optimized signal sets for 16-PAM over AWGN channels in Table II: the first is optimized
at an SNR of 19.0 dB, the second at 12.5 dB. When solving the optimization problem of finding the
optimum signal set, a symmetrical condition is imposed on the signal set, i.e., the signal points in the
negative part are defined to be the signal points in the positive part multiplied by −1. In this way, the
M -dimensional optimization problem reduces to a M/2-dimensional one. Interestingly enough, it is found
empirically that this constraint induces no noticeable performance loss, leading to the conjecture that the
optimum signal set holds the symmetry property over an AWGN channel.

TABLE II

TWO 16-PAM SIGNAL SETS OPTIMIZED FOR THE EQUIPROBABLE-INPUT AWGN CHANNEL AT AN SNR OF 19.0 DB AND

12.5 DB. THE NEGATIVE PART CAN BE OBTAINED BY SYMMETRY.

a∗
0 a∗

1 a∗
2 a∗

3 a∗
4 a∗

5 a∗
6 a∗

7

A∗
19 dB 0.781318 2.3634 4.01108 5.78051 7.77234 10.1671 13.1507 16.9582

A∗
12.5 dB 0.675268 2.64975 3.26062 5.90869 6.96619 9.96857 12.3329 18.0825
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Fig. 3. Information rates of the equiprobable-input AWGN channel with uniformly spaced signal constellation, geometrically
Gaussian-like signal set, and optimized signal set A∗

19 dB under 16-PAM.
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Fig. 4. Information rates of the equiprobable-input AWGN channel with uniformly spaced signal constellation, geometrically
Gaussian-like signal set, and optimized signal set A∗

12.5 dB under 16-PAM.
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Figs. 3 and 4 show performance comparisons in terms of achievable information rates for three equiprob-
able signal sets: the uniformly spaced, the geometrically Gaussian-like, and the optimized one, in the SNR
range of 19 dB and 12.5 dB, respectively. At an information rate of 3 bit/T , the optimized signal set A∗

19 dB

outperforms the geometrically Gaussian-like signal set by 0.304 dB and the uniformly spaced signal con-
stellation by 0.577 dB. The optimized signal set A∗

12.5 dB exhibits essentially the same performance as the
geometrically Gaussian-like signal set in the SNR range of 12.5 dB, and both outperform the uniformly
spaced signal constellation by approx. 0.58 dB.

With higher-order modulation schemes, the performance gain of the optimum signal set over the uni-
formly spaced one can be even larger. Table III summarizes empirical results of such performance gains
when the alphabet size M is increasing up to 256. This observation is in good agreement with Proposition
2, asserting that the 1.53 dB gap between equiprobable and Gaussian input can be recovered by the use of
an equiprobable but optimum signal constellation.

TABLE III

PERFORMANCE GAIN OF THE OPTIMUM SIGNAL SET.

Modulation Transmit rate Performance gain
32-PAM 2.5 bit/T 0.82 dB
64-PAM 3.0 bit/T 1.01 dB
128-PAM 3.5 bit/T 1.15 dB
256-PAM 4.0 bit/T 1.26 dB

B. Rayleigh Fading Channels

Here we report optimized signal constellations for Rayleigh fading channels with ideal CSI. We sum-
marize two optimized signal sets for 16-PAM in Table IV: the first is optimized at an SNR of 22 dB, the
second at 15 dB. Again, a symmetrical constraint is imposed on the signal constellation during the opti-
mization procedure. Figs. 5 and 6 show the performance comparison in terms of achievable information
rates under the equiprobable-input constraint between the uniformly spaced signal constellation and the
optimized one in the SNR range of 22 dB and 15 dB, respectively. We observe that the optimized signal
set A∗

22 dB outperforms the uniformly spaced signal constellation by 0.38 dB at an information rate of 3
bit/T , and A∗

15 dB outperforms the uniformly spaced signal constellation by 0.5 dB at an information rate
of 2 bit/T .

TABLE IV

TWO 16-PAM SIGNAL SETS OPTIMIZED FOR THE EQUIPROBABLE- INPUT RAYLEIGH FADING CHANNEL WITH CSI AT AN

SNR OF 22 DB, AND 15 DB. THE NEGATIVE PART CAN BE OBTAINED BY SYMMETRY.

a∗
0 a∗

1 a∗
2 a∗

3 a∗
4 a∗

5 a∗
6 a∗

7

A∗
22 dB 0.870211 2.57815 4.31533 6.1972 8.16027 10.3523 12.9902 16.5246

A∗
15 dB 0.909399 2.07285 3.84487 5.55386 7.42087 9.86724 13.0089 17.5381
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Fig. 5. Information rates of the equiprobable-input Rayleigh fading channel (CSI) with the uniformly spaced signal constellation
and optimized signal set A∗

22 dB under 16-PAM.
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Fig. 6. Information rates of the equiprobable-input Rayleigh fading channel (CSI) with the uniformly spaced signal constellation
and optimized signal set A∗

15 dB under 16-PAM.
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IV. CODING AND DECODING ISSUES

As mentioned, classical coded modulations using the set-partitioning concept or the multilevel-coding
approach use a trellis code to maximize the minimum Euclidean distance between code sequences. Clearly,
the optimum signal set, which in general is nonuniformly spaced, is not in harmony with this design
philosophy because the minimum Euclidean distance between signal points has been weakened. To fully
exploit the performance gain promised by the information-theoretic arguments in Section III, we need more
powerful coding schemes.

We consider a class of error-correcting codes, the so-called LDPC codes, discovered by Gallager [16] in
1962. LDPC codes are defined in terms of a sparse parity-check matrix and are known to be asymptotically
good for all channels with symmetric stationary ergodic noise [17]. To comply with 2b-ary modulation, we
consider the generalization of the conventional binary LDPC codes to finite fields GF(2b) such that each
point in the signal set corresponds to an element in GF(2b). Such a code is defined in terms of a LDPC
matrix H with m rows and n columns. The nonzero positions in H are established by the progressive edge-
growth (PEG) algorithm [19] to maximize the girth of the underlying bipartite graph and thus facilitate
iterative decoding. After the nonzero positions of H have been determined, we fill the nonzero entries in
H with the nonzero elements from the finite field GF(2b) according to a uniform probability distribution.
Assume the resulting matrix H is full rank, we can encode every n−m information symbols (each symbol
carries b bits) into a codeword X that meets HX = 0. Note that each element of X is an element of
the finite field GF(2b), and is mapped to some point in the signal constellation prior to transmission. To
minimize the bit-error performance, a Gray mapper is adopted in our experiments.

We transmit codeword X , which is received as Y = X + W , where W is a noise vector sampled from
the underlying channel noise distribution. An instance of the decoding problem requires finding the most
probable vector X̂ , given Y , which can be approximately solved by the sum-product algorithm (SPA).
The SPA can be viewed as a message-passing algorithm on a bipartite graph defined by the parity-check
matrix H , which contains n symbol and m check nodes. Each symbol node corresponds to a noisy sample
received, each check node represents a check equation that should be fulfilled by its associated symbol
nodes. Let edges ei,j connect check node i with noisy symbol node j. For each edge ei,j in the graph, the
quantities qa

i,j and ra
i,j are iteratively updated, in which a ∈ GF(2b) and a also corresponds to some point in

the signal constellation. The quantity qa
i,j denotes the probability that the j-th symbol of X̂ is a, given the

information obtained via connected check nodes other than check node i. The quantity ra
i,j represents the

probability of check i being satisfied if the j-th symbol of X̂ is considered fixed at a, given the information
stemming from connected symbol nodes other than symbol node j. The complexity of decoding scales as
nt22b per iteration, with t denoting the average number of edges incident to a symbol node. For detailed
description of the decoding algorithm for LDPC codes over GF(2b), we refer the reader to [20].

We are particularly interested in whether the performance gain of an optimum signal constellation
promised by the information-theoretic argument can be realized by LDPC codes over GF(2b). We consider
two LDPC codes. Both codes are rate-3/4 defined over GF(24), and constructed using the PEG algorithm
in [19]. Code 1 has a block length of 4096 symbols (in binary, of length 4096x4), and it is a regular LDPC
code with symbol-node degree 3. Code 2 has a larger block length, namely 20,000 symbols, which is an ir-
regular LDPC code with symbol-node degree distribution λ(x) = 0.643772x2 +0.1497193 +0.193001x4 +
0.0135085. In constructing both codes, the degree sequence of check node has been made as uniform as
possible. The codes are iteratively decoded with the sum-product algorithm up to 80 iterations. Note that
the overall data transmission rate is 3 bit/T , and thus matched to an AWGN channel of approx. 19.0 dB, at
which A∗

19 dB is the optimum signal constellation. Fig. 7 compares the performance of the optimized signal
constellation A∗

19 dB, the geometrically Gaussian-like signal set Ageo
16−PAM, and the uniformly spaced signal
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set over an AWGN channel. It reveals that a performance gain of approx. 0.5 dB is achieved at a bit error
rate (BER) of 10−5 by using the optimum nonuniformly spaced constellation instead of using the uniformly
spaced one. Recall that in this case a gain of 0.577 dB is expected by the information-theoretic argument in
Section III-A. Interestingly enough, the performance gain predicted by the information-theoretic argument
has been almost fully exploited by a very simple modulation scheme combined with LDPC codes over
GF(2b).

We also apply the same LDPC codes to a slowing-fading Rayleigh channel with perfect knowledge of
CSI at the receiver. Fig. 8 compares the performance of the optimized signal constellation A∗

22 dB with that
of the uniformly spaced one using the two LDPC codes. Again a performance gain of nearly 0.35 dB is
observed at a BER of 10−5 when using the optimum signal set. This gain is in fairly good agreement with
the information-theoretic claim in Section III-B.
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Fig. 7. Performance comparison of the optimized signal set (A∗

19 dB), the Gaussian-like signal set Ageo
16−PAM, and the uniformly

spaced signal set using 16-PAM and GF(24) LDPC codes over an AWGN channel.
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Fig. 8. Performance comparison between the optimized signal set (A∗

22 dB) and the uniformly spaced signal set using 16-PAM
and GF(24) LDPC codes over a Rayleigh fading channel with CSI.
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V. CONCLUSIONS

We have presented an optimization problem to design nonuniformly spaced constellations for equiprob-
able M -ary coded modulation schemes. Given the channel SNR constraint, optimum (equiprobable) signal
sets are obtained in an attempt to maximize the mutual information between channel input and output. It
has been shown that the optimum signal set can achieve the ultimate Shannon capacity over an AWGN
channel asymptotically without any shaping technique. Extensive comparisons between an optimum sig-
nal set, a geometrically Gaussian-like signal set, and a uniformly spaced signal set have been provided.
Extensions to Rayleigh fading channels have also been investigated.

Rather than using a trellis code to exploit the performance gain of a nonuniformly spaced signal constel-
lation, we investigated the more powerful low-density parity-check codes over GF(2b) in conjunction with
2b-ary modulation schemes. Simulation results showed that such a coding scheme can faithfully exploit
almost the entire performance gain promised by the information-theoretic argument.

To emphasize the advantage of the class of optimum, nonuniformly spaced constellations, we have
deliberately neglected two important issues, namely, the peak-to-average ratio (PAR) and the constella-
tion expand ratio (CER), both of which are of practical interest. Note that an optimum, nonuniformly
spaced signal set often leads to a larger PAR, which for practical applications is undesirable. One possible
remedy might be to consider the requirements of PAR and/or CER during the optimization procedure by
incorporating them as additional constraints. Another potential approach to reduce PAR is by going to
multidimensional constellations, which, of course, is an interesting topic for further research.

APPENDIX A

For self-completeness, we summarize the proof for which the equiprobable signaling specified by (13)
and (14) satisfies IAgeo = C = 1

2
log2(1 + P

σ2 ) asymptotically in the sense of M , which was first proved in
[9].

First we establish an upper bound on the average energy of Ageo,

1

M

M−1
∑

i=0

(ageo
i )2 =

1

M

M−1
∑

i=0

[

M√
2πP

∫ αi+1

αi

xe−x2/2P dx

]2

= M
M−1
∑

i=0

[E(xIi(x))]2 , (21)

where E(·) is the expectation with respect to the probability density function 1√
2πP

e−x2/2P , and Ii(x) is the
indicator function

Ii(x) =

{

1 if x ∈ (αi, αi+1)
0 otherwise.

(22)

Continuing with (21),

M

M−1
∑

i=0

[E(xIi(x))]2 ≤ M

M−1
∑

i=0

E[xIi(x)]2E(I2
i (x)) = E(x2) = P . (23)

Let XM be the random variable uniformly distributed on Ageo. Because the capacity-achieving output
distribution is unique, it suffices to show that the density function of XM +W converges to that of X +W ,
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where X and W are Gaussian distributions with variances of P and σ2, respectively. The density function
of XM + W is

pM(x) =
1

M

M−1
∑

i=0

1√
2πσ2

e−(x−ageo

i
)2/2σ2

=
1

2πσ
√

P

M−1
∑

i=0

∫ αi+1

αi

e−(x−ageo

i
)2/2σ2−y2/2P dy (24)

and the density function of X + W is

p(x) =
1

√

2π(P + σ2)
e−x2/2(σ2+P )

=
1

2πσ
√

P

∫ ∞

−∞
e−(x−y)2/2σ2−y2/2P dy . (25)

Now consider

|pM(x) − p(x)| ≤ 1

2πσ
√

P

M−1
∑

i=0

∫ αi+1

αi

e−y2/2P |e−(x−y)2/2σ2 − e−(x−ageo

i
)2/2σ2 |dy

≤ 1

2πσ
√

P

∑

i;x≤αi

∫ αi+1

αi

e−y2/2P |e−(x−y)2/2σ2 − e−(x−ageo

i
)2/2σ2 |dy +

1

2πσ
√

P

∑

i;x≥αi+1

∫ αi+1

αi

e−y2/2P |e−(x−y)2/2σ2 − e−(x−ageo

i
)2/2σ2 |dy +

2√
2πσM

≤ 1

2πσ
√

P

∑

i;x≤αi

∫ αi+1

αi

e−y2/2P |e−(x−αi)
2/2σ2 − e−(x−αi+1)2/2σ2|dy +

1

2πσ
√

P

∑

i;x≥αi+1

∫ αi+1

αi

e−y2/2P |e−(x−αi)
2/2σ2 − e−(x−αi+1)2/2σ2|dy +

2√
2πσM

=
1√

2πσM

∑

i;x≤αi

{e−(x−αi)
2 − e−(x−αi+1)2} +

1√
2πσM

∑

i;x≥αi+1

{e−(x−αi+1)2 − e−(x−αi)
2}

+
2√

2πσM

≤ 4√
2πσM

. (26)

Thus pM(x) converges to p(x) as M goes to infinity.
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APPENDIX B

Suppose a random variable V is defined by

V = W/Θ ,

where W is Gaussian distributed with zero mean and variance σ2, namely,

pW (w) =
1√

2πσ2
e−w2/2σ2

,

and Θ is normalized, Rayleigh-distributed:

pΘ(θ) = 2θe−θ2

.

To evaluate the probability density function pV (v), we first calculate the probability that V ≤ v:

Pr(V ≤ v) = Pr(W/Θ ≤ v)

=

∫ ∞

0

Pr(W ≤ θv)pΘ(θ)dθ

=

∫ ∞

0

[
∫ θv

−∞
pW (w)dw

]

pΘ(θ)dθ

=

∫ ∞

0

[
∫ θv

−∞

1√
2πσ2

e−w2/2σ2

dw

]

2θe−θ2

dθ . (27)

Differentiating Pr(V ≤ v) with respect to v gives rise to pV (v):

pV (v) =
d[Pr(V ≤ v)]

dv

=

∫ ∞

0

d

dv

[
∫ θv

−∞

1√
2πσ2

e−w2/2σ2

dw

]

· 2θe−θ2

dθ

=
2√
2πσ

∫ ∞

0

θ2e−θ2− θ
2

v
2

2σ2 dθ

=
1

σ(2 + v2

σ2 )3/2

=
σ2

(2σ2 + v2)3/2
. (28)
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