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Abstract

In the context of e-commerce, execution atomicity is an important property for mobile agents.
A mobile agent executes atomically, if either all its operations succeed, or none at all. Assume,
for instance, a mobile agent that books a flight and rents a hotel room at the destination. The
hotel room is of no use if no flight is available. Consequently, either both operations need
to succeed or none at all. Transactional mobile agents ensure execution atomicity on their
entire execution. This requires to solve an instance of the atomic commitment problem.
However, in the context of transactional mobile agent execution it is important that failures
(e.g., of machines or agents) do not lead to blocking of the mobile agent execution. Blocking
occurs, if the mobile agent execution cannot proceed because of a single failure. In this paper,
we specify non-blocking atomic commitment in the context of mobile agent execution. We
then show how transactional mobile agent execution can be built on top of earlier work on
fault-tolerant mobile agent execution. Our implementation is the first implementation of non-
blocking transactional mobile agents. Its performance evaluation shows that the overhead
introduced by the transaction mechanisms is reasonable.



1 Introduction

Mobile agents are computer programs that act autonomously on behalf of a user and travel through a
network of heterogeneous machines. So far, only few real applications rely on mobile agent technology.
We believe that the lack for transaction support for mobile agents is one reason for this. Assume, for
instance, an agent1 whose task is to buy an airline ticket, book a hotel room, and rent a car at the flight
destination. The agent owner, i.e., the person or application that has created the agent, naturally wants
all three operations to succeed or none at all. Clearly, the rental car at the destination is of no use if no
flight to the destination is available. On the other hand, the airline ticket may be useless if no rental car
is available. The mobile agent’s operations thus need to execute atomically. Execution atomicity needs to
be ensured also in the face of failures to hardware or software components. Indeed, any component in a
system is subject to failures. In this context, we distinguish between blocking and non-blocking solutions
for transactional mobile agents, i.e., mobile agents, that execute as a transaction. Blocking occurs, if
the failure of a single component prevents the agent from continuing its execution. In contrast, the non-
blocking property ensures that the mobile agent execution can make progress any time, despite of failures.
While other approaches [2, 21] block if the place running the mobile agent fails, the approach presented
in this paper is non-blocking. A non-blocking transactional mobile agent execution has the important
advantage, that it can make progress despite failures. In a blocking agent execution, progress is only
possible when the failed component has recovered. Until then, the acquired locks cannot be freed. As no
other transactional mobile agents can acquire the lock, overall system throughput is dramatically reduced.

Similar to [4], our work also reuses earlier work on fault-tolerant mobile agent execution to prevent
blocking. In contrary to [4], we encompass both transaction support and fault tolerance in a common
model of nested transactions. This allows us to specify non-blocking atomic commitment in the context of
transactional mobile agents. Moreover, our approach also supports non-compensatable transactions (i.e.,
transactions that cannot be undone any more once they are committed). In this respect, it is thus more
general than the approach in [4], which only supports compensatable transactions.

We have implemented the proposed approach and present preliminary evaluation results. To our knowl-
edge, our implementation is the first to provide non-blocking transactional mobile agent execution. Our
evaluation shows the important result that the overhead introduced by the commitment mechanisms is rea-
sonable.

The rest of the paper is structured as follows: Section 2 presents our model. In Section 3, we present an
overview on the atomicity property of mobile agent execution and specify the non-blocking atomic com-
mitment problem for transactional mobile agents in Section 4. In Section 5, we discuss our approach for
transactional mobile agent execution and show the implementation and preliminary performance results
in Section 6. Section 7 summarizes other work published in this field and relates it to our contribution.
Finally, Section 8 concludes the paper and indicates potential future work.

2 Model

2.1 Mobile Agent

A mobile agent executes on a sequence of machines. On each machine i, a place pi (0 ≤ i ≤ n) provides
the logical execution environment for the agent. Executing the agent at a place is called a stage Si of the
agent execution. We call the places where the first and last stages of an agent execute (i.e., p0 and pn) the
agent source and destination, respectively. The sequence of places between agent source and destination
is called the itinerary of the mobile agent. Whereas a static itinerary is defined in its entirety at the agent
source and does not change during the agent execution, a dynamic itinerary is subject to modifications by
the agent itself.

Logically, a mobile agent executes in a sequence of stage actions (see Figure 1). Each stage action sai

consists of potentially multiple operations op0, op1, . . . , opl, . . .. Agent ai (0 ≤ i ≤ n) at the correspond-
ing stage Si represents the agent a that has executed the stage actions on places pj (j < i) and is about to

1In the following, the term agent denotes a mobile agent unless explicitly stated otherwise.
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execute on place pi. The execution of ai results in a new internal state of the agent as well as potentially a
new state of the place (if the operations of the agent have side effects, i.e., are non-idempotent). We denote
the resulting agent ai+1. Place pi+1 forwards ai+1 to pi+1 (for i < n).
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Figure 1: Logical agent execution.

2.2 Failures

2.2.1 Infrastructure Failures

Machines, places, or agents fail by crashing (i.e., we exclude malicious processes) and can recover later. A
component that has failed but not yet recovered is called down, whereas it is up otherwise. In this paper,
we focus on crash failures; malicious failures (i.e., Byzantine failures) are not discussed. A failing place
causes the failure of all agents running on it. Similarly, a failing machine causes all places and agents on
this machine to fail as well. Failures of machines, places, and agents are called infrastructure failures.

In an asynchronous system such as the Internet, no bounds on transmission delays of messages nor on
relative process speeds exist. In such a system, reliable failure detection is impossible [7]. Consequently,
p (a machine, place, or agent) can erroneously suspect q (another machine, place, or agent), although q has
not failed.

2.2.2 Semantic Failures

A semantic failure is different from an infrastructure failure in the sense that neither machine, place, nor
agent initiating the request crash. Rather, it occurs when a requested service is not delivered because of the
application logic or because the process providing this requested service has failed. For instance, a request
for an airline ticket is declined if no seats are available on a particular flight. Nevertheless in this case, the
agent’s operation, i.e., the request for a ticket, executes in its entirety.

3 Overview

3.1 The Problem of Execution Atomicity

An atomic mobile agent execution ensures that either all stage operations succeed or none at all. Assume,
for instance, a mobile agent that books a flight to New York, books a hotel room there, and rents a car.
Clearly, the use of the hotel room and the car in New York is limited if no flight to New York is available
any more. On the other hand, the flight is not of great use if neither a hotel room nor a rental car is available.
This example illustrates that either all three operations (i.e., flight ticket purchase, hotel room booking, and
car rental) need to succeed or none at all, i.e., the operations have to be executed atomically. Execution
atomicity ensures that all operations execute as an atomic action, i.e., either in their entirety or none at all.
Note that infrastructure and semantic failures may lead to a violation of the atomicity. In the following, we
focus on semantic failures only; infrastructure failures are discussed in Section 3.3.

3.1.1 Traditional Distributed Transactional Systems: Background

In traditional distributed transactional systems, atomic commitment protocols such as 2PC and 3PC [5, 10]
address the issues of execution atomicity. In the 2PC, for instance, a designated coordinator (also called
transaction manager) queries all the participants in the execution of the distributed transaction (called the re-
source managers) on the state of the corresponding operations. The participants return either a YES-VOTE
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or a NO-VOTE, depending on whether their operations have succeeded or not. If all operations have been
successful, i.e., all returned votes are YES-VOTEs, the coordinator decides COMMIT, otherwise ABORT.
The decision is propagated to the participants, which then either commit or abort their operations.

3.1.2 Transactional Mobile Agent Execution

The operations of the participants of traditional distributed transactions can run in parallel. In a transac-
tional mobile agent execution Ta, the operations of mobile agent a are executed sequentially in a sequence
of stages Si (0 ≤ i ≤ n). The execution of a at stage Si depends on the outcome of the previous stage
Si−1 and implies that a has successfully executed on all previous stages Sj (j < i), i.e., all aj have issued
a YES-VOTE. Consequently, the vote of ai unilaterally determines whether the agent execution is contin-
ued (in case of a YES-VOTE) or aborted (NO-VOTE); the agent ai only returns a NO-VOTE if a semantic
failure has occurred2. Actually, the transaction Ta spans only over stages S1, . . . , Sn−1: the agent source
p0 and destination pn are executing the agent outside of the transaction context Ta. On these places, the
interaction with the agent owner (i.e., initialization of the agent and presentation of the results) takes place
and a transaction context is not needed. Moreover, mobile users are often disconnected from the network
and hence stage Sn may be temporarily unreachable. Consequently, executing san within the context of Ta

may lead to blocking of the mobile agent execution until the mobile user reconnects to the network. While
Ta is blocked, it maintains its locks on data items, thus reducing overall system throughput. Terminating
transaction Ta already at stage Sn−1 prevents blocking due to disconnections of mobile devices. The agent
an is then kept at place pn−1 until pn reconnects and is able to collect the result. At stage Sn−1, the agent
an−1 unilaterally decides either COMMIT (if the execution of an−1 has succeeded), or ABORT (in case of a
semantic failure).

In the case of a dynamic itinerary, any place pi may become the final place of Ta (i.e., pn−1), based
on the outcome of the execution of ai. In this case, the vote of ai immediately becomes the outcome of
the transaction Ta. In other words, ai unilaterally decides the outcome of the transaction. This is different
from traditional distributed transactions. Moreover, in traditional distributed transactions, a participant can
only unilaterally abort a transaction, namely by issuing a NO-VOTE. In contrast, ai can also unilaterally
decide to continue Ta, in addition to the abort decision.

To summarize, the outcome of Ta at Si solely depends on the result of the stage operations of ai on Si

and on the value of i:

• At {Si|i < n − 1}: the agent ai casts either a YES-VOTE or NO-VOTE. A NO-VOTE immediately
results in an abort of the transactional mobile agent execution Ta (see Figure 2). It is cast when the
stage action operations semantically fail. Successful operations lead to a YES-VOTE and allow the
agent to proceed with the transaction execution. Only the ABORT decision is communicated to all
the participants pj (0 < j < i).
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Figure 2: An agent execution that has aborted at stage S2.

• At Sn−1: the agent an−1 decides either ABORT or COMMIT, depending on whether the operations at
stage Sn−1 have failed or succeeded, respectively. A successful execution of the operations at Sn−1

implies that all operations of the agent a have successfully executed (i.e., voted YES-VOTE) and
the transaction is thus ready to commit. Figure 3 illustrates a successful transactional mobile agent
execution, where place p3 decides COMMIT.

2Remember that we are only addressing semantic failures at this point.
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Figure 3: A committing agent execution.

3.2 Generalization of the Itinerary

3.2.1 Itinerary Choices

A transactional mobile agent execution permits itinerary choices. In particular, the agent owner may specify
that the agent should sequentially visit various car rental companies such as Hertz or Avis. As soon as it
receives the desired car from any one of them, the agent terminates. Failed requests for a car rental are
ignored and the execution on this place locally aborted. The commitment only spans places that have
successfully executed the service requests. Figure 4 illustrates the example, where the agent first books a
flight from Swissair and then attempts to rent a car from Hertz. As Hertz does not have any more rental
cars available, agent a (i.e., a3) moves to the Avis server. The stage actions of a2 on p2 can be locally
aborted without aborting the entire transactional mobile agent execution. The outcome of the mobile agent
execution, i.e., the decision COMMIT or ABORT, will not be sent to p2.
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Figure 4: A committing agent execution with choices. Hertz does not have a rental car available and thus
is not part of the global commitment.

3.2.2 Generalization To Non-Linear Itineraries

So far, we have only considered mobile agent executions with linear itineraries (see (a) in Figure 5). An
agent, however, can spawn other agents, so-called child agents. Child agents lead to non-linear itineraries:
itineraries that terminate in a single place (Figure 5 (b)), and itineraries that terminate in several endpoints
(Figure 5 (c)). Case (b) contains itineraries where all parent and child agents meet again on a common
place (e.g., at p4 in Figure 5 (b)). Assume, for instance, that transaction Tb acquires clothes, while T ′

b

buys books. Both transactions can run in parallel, and their results are collected at place p4. In contrast,
parent and child agents finish the execution at different agent destinations in (c) (e.g., at p5, p

′

4, and p′′4 ).
An example for (c) is a transaction that reconfigures routers in different subnets. At the occurrence of a
subnet, a new child transaction is spawn recursively.

Compared to (a), atomicity is more difficult to ensure in cases (b) and (c). Assume, for instance, that
child transaction T ′

b aborts on p′3. Transaction Tb continues the execution until is reaches p4 and there waits
for T ′

b, which never arrives. The simplest approach is to wait for a certain time and then abort. However,
this may lead to a prematurely unnecessary abort if T ′

b is just slow but has not aborted. Another approach
is to abort the transaction T ′

b immediately, but still forward the agent to p4, where it notifies Tb of the abort.
Tb thus always waits for the agent to arrive. This has the drawback that additional communications are
required, but the transaction never prematurely aborts.

Case (c) is handled by applying the following transformation: instead of terminating the child agents
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Figure 5: Classification of mobile agent executions.

on p′4 and p′′4 , they report back to their parent agent on place p4. This transformation converts case (c) into
case (b) and allows to reuse the approach discussed before.

For simplicity, we only address linear itineraries in the rest of this paper. However, all presented
concepts can easily be extended to itineraries of classes (b) and (c).

3.3 The Problem of Failures

So far, we have not considered infrastructure failures. Any hardware and software component in a com-
puting environment is potentially subject to failures. We assume the failure model presented in [16], i.e.
either an agent, a place, or a machine may fail by crashing. A crashing machine leads to the crash of all
places and all agents running on it, whereas a failure of a place also crashes the agents running on this place
(Section 2.2.1).

Failing components in the system may lead to blocking or to a violation of the atomic execution of
the transactional mobile agent. Figure 6 illustrates a crash at stage S3. In an asynchronous system, where
no bounds on communication delays nor on relative processor speed exist, p0, p1, and p2 are left with the
uncertainty of whether p3 has actually failed or is just slow [8]. In addition, it is impossible for p0, p1, and
p2 to detect the exact point where p3 failed in its execution. More specifically, they cannot detect whether
p3 has succeeded in forwarding the agent to the next stage or not. Assume, for instance, that the agent ai

(i.e., a3 in Figure 6) issues a YES-VOTE but then crashes. If Si has not succeeded to forward the agent to
Si+1, the agent execution is blocked. During this time, all locks acquired by transaction Ta at the previous
places pj (j < i) remain with Ta and another transaction Tb has to wait. This dramatically reduces overall
system throughput.
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Figure 6: An agent execution crashes at stage S3

To prevent blocking, another place such as pi−1 could monitor place pi. If it detects the failure of pi, it
could then issue a NO-VOTE, which causes the transaction to abort. However, unreliable failure detection
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potentially leads to a violation of the atomicity property. Indeed, assume that pj detects the failure of ai.
Place pj thus assumes the responsibility for the decision and decides to abort transaction Ta. However,
because of unreliable failure detection, pj may erroneously suspect pi. Actually, even if pi has failed, it
may have succeeded in forwarding the agent to pi+1, resulting in potentially conflicting decisions on the
outcome of the transaction. Indeed, while pj decides to abort the transaction, pi+1 may decide COMMIT
if ai+1 = an−1, or cast a YES-VOTE otherwise. This conflicting outcome clearly violates the atomic
execution property of the transaction’s operations, as certain operations are aborted, whereas others are
committed or may be committed later.

The approach we advocate in this paper uses replication to prevent blocking of the transactional mobile
agent execution. At any time, the places know that the agent is still progressing and thus it is worth to
wait for the result. This alleviates the need to monitor the execution and prevents potentially conflicting
outcomes to the atomic execution of the transactional mobile agents.

4 Specification

In this section, we specify the properties of the transactional mobile agent execution Ta associated with a
mobile agent a. The entire execution Ta is specified in terms of the ACID properties [10]:

• (Atomicity) The stage executions of Ta are executed atomically, i.e., all of them or none are executed.

• (Consistency) A correct execution of Ta on a consistent state of the system (encompassing the places,
the services running on them, and the agents) must result in another consistent system state.

• (Isolation) Updates of a stage execution of Ta on a place pi are not visible to another transactional
mobile agent Tb until Ta has committed in its entirety.

• (Durability) Committed changes by Ta are reflected in the system and are not lost any more.

Specifying the transactional mobile agent Ta in terms of the ACID properties implies that the sequence
of stage actions sa1, . . . , san−1 is executed as a transaction. Every stage action is itself composed of a set
of operations op0, . . . , opl, . . ., which have to run as a transaction as well. Consequently, Ta can be mod-
eled as nested transactions [14]. A nested transaction is a transaction that is (recursively) decomposed into
subtransactions. Every subtransaction forms a logically related subtask. A successful subtransaction only
becomes permanent, i.e., commits, if all its parent transactions commit as well. In contrast, a parent trans-
action can commit (provided that its parent transactions all commit) although some of its subtransactions
may have failed. In a transactional mobile agent execution, the top-level transaction (i.e., the transaction
that has no parent) corresponds to the entire mobile agent execution. The first level of subtransactions
is composed of stage actions sai. Note that subtransactions may be aborted, but parent transactions still
commit. Indeed, if a service request fails on one place, the subtransaction sai can be aborted and retried at
another place, without aborting the top-level transaction (see Section 3.2.1).

In the context of transactional mobile agents, consistency is ensured by the application composed of the
mobile agent and the services running on the places. Isolation is discussed in Section 5.3. The properties
we are mainly concerned with are atomicity and durability3. To ensure the atomicity property, all the
places participating in the execution of the transactional mobile agent Ta need to solve an instance of the
atomic commitment (AC) problem [5]. Informally, Ta commits if all stage actions sai (0 < i < n − 1)
have executed successfully. However, blocking occurs if a place pi fails while executing the stage action
sai of a mobile agent a. Progress of the transactional mobile agent execution Ta is interrupted until pi

recovers. Deciding ABORT because of infrastructure failures is not admissible, as this potentially causes a
violation of the atomicity property. Such a violation occurs if the agent has already moved to the next stage
while the execution at the previous stages is aborted. Clearly, this could result in conflicting outcomes of

3Actually, atomicity and durability are tightly coupled. Assume a transaction that executes write[x] and write[y]. Assume
further that the transaction commits, but a crash causes the modification to y to be lost, whereas the operation to x is made permanent.
It is difficult to say whether atomicity or durability has been violated.
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the transaction (see Section 3.3). Consequently, an infrastructure failure blocks the transactional mobile
agent execution. However, blocking is undesirable, as it dramatically limits overall system throughput (see
Section 3.3).

In contrary, non-blocking atomic commitment (NB-AC) does not block if a machine, place, or agent
fails. Rather, progress of the transactional mobile agent execution is ensured by potentially executing
replicas of the mobile agent on multiple places. We give the specification of NB-AC for transactional
mobile agents in Section 4.1 4.

4.1 Non-Blocking Atomic Commitment Problem for Transactional Mobile Agents

Non-blocking adds another level of subtransactions to a transactional mobile agent execution. To prevent
blocking, the agent at stage Si is not executed on one place, but replicas of the agent are potentially executed
on multiple places p

j
i . Consequently, subtransaction sai, in turn, can be modeled by yet another level of

subtransactions saj
i , which correspond to the agent replicas a0

i , . . . , a
m
i running on places p0

i , . . . , p
m
i and

executing the set of operations op0, . . . , opl, . . . (see Figure 7). Of the subtransactions saj
i at stage Si, only

one, called saprim
i , is allowed to commit (if all its parent transactions commit): all others have to abort.

This way it is ensured that the stage action sai is not executed multiple times. We call the place that has
executed the stage action saprim

i the primary and denote it p
prim
i . We further define Mi as the set of places

p0
i , . . . , p

m
i .
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Figure 7: Scope of NB-AC specification. Compared to AC, NB-AC adds an additional layer of subtrans-
actions saj

i , that execute the operations op0 . . . opl, . . .. In AC, subtransaction sai directly executes these
operations without subtransactions saj

i .

The non-blocking atomic commitment (NB-AC) problem for transactional mobile agents consists of
two levels of agreement problems: (1) the stage agreement problem, and (2) the global agreement problem.
Agreement problem (2) ensures atomicity in the top-level transaction. On the other hand, (1) specifies the
agreement problem among the places that execute the stage actions saj

i (0 ≤ j ≤ m), where they decide
on which subtransaction may potentially commit. We begin by specifying the stage agreement problem (1)
at each stage Si:

Stage agreement problem:

• (Uniform agreement) No two places p
j
i ∈ Mi at stage Si decide on a different primary p

prim
i .

• (Validity) The decision value p
prim
i is in the set Mi and p

prim
i has executed stage action sai (more

specifically, saprim
i ).

• (Uniform integrity) Every place p
j
i of stage Si decides at most once.

• (Termination) Every correct place p
j
i of stage Si eventually decides.

4A specification for NB-AC in the context of traditional distributed systems (i.e., without mobile agents) is given for instance in
[11].
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The decision on p
prim
i in the stage level agreement causes all other places p

j
i 6= p

prim
i to abort the

subtransactions saj
i . Consequently, the decision on p

prim
i is implicitly also a decision ABORT for all places

p
j
i 6= p

prim
i . However, the agreement only occurs on the decision about the primary, not on ABORT or

COMMIT. Indeed, subtransactions saj
i 6= saprim

i abort, while saprim
i only aborts if its parent transaction

aborts. However, this decision is again part of another agreement problem that is to be solved and is only
taken by an−1 at the end of the agent execution and specified in the global agreement problem as follows:

Global agreement problem:

• (Uniform agreement) No two primaries p
prim
i and p

prim
k participating in the execution of Ta decide

differently.

• (Uniform validity) Primary p
prim
i (0 < i ≤ n− 1) can decide ABORT. Primary p

prim
n−1 decides either

ABORT or COMMIT. Decision COMMIT is a consequence of successfully executing the agent up to
stage Sn−1 and successfully executing san−1 at stage Sn−1. In all the other cases the decision is
ABORT. Place p

j
i 6= p

prim
i always decides ABORT (see stage agreement problem).

• (Uniform Integrity) Every place decides at most once.

• (Termination) Every correct place eventually decides.

It should be noted that an infrastructure failure does not allow to immediately decide ABORT. Rather,
infrastructure failures cause the agent to execute on another place at the same stage. If this place provides
the same service, the agent execution can proceed. Otherwise, a semantic failure occurs that, contrary to
infrastructure failures, immediately results in an ABORT decision. Assume, for instance, that the agent
ai at stage Si is entrusted with buying an airline ticket from Zurich to New York. Assume further that it
executes on place p

j
i , that sells such tickets. A failure of p

j
i does not immediately abort subtransaction sai.

Rather, ai can be executed on another place pk
i (k 6= j) at stage Si. If pk

i provides the same service as p
j
i ,

i.e., also sells the same airline tickets, then sai succeeds, Ta can proceed and no reason for an ABORT is
given (see Section 3.2.1). In other words, infrastructure failures are masked by the redundancy of the agent
at a stage (see the specification of the stage agreement problem).

5 Non-Blocking Transactional Mobile Agents

In this section, we show how earlier work in fault-tolerant mobile agent execution [16] can help to provide
non-blocking transactional mobile agents. Indeed, fault tolerance in the context of mobile agents prevents
that the execution of a mobile agent blocks because of the failure of a single component (e.g., an agent,
place, or machine). Hence, it solves a problem similar to the stage agreement problem of NB-AC (see Sec-
tion 4.1). However, fault-tolerant mobile agent execution generally only addresses infrastructure failures:
semantic failures (see Section 3.1) are not handled. In other words, it does not solve the global agreement
problem of NB-AC. Revisiting the example in Section 3.1, fault-tolerant mobile agent execution prevents
that the agent fails, but allows it to book a hotel room and rent a car, although no seat is available on a flight
to New York. Hence, the approach in [16] is not sufficient to ensure atomicity of a mobile agent execution.
Indeed, both infrastructure as well as semantic failures need to be covered. However, building on top of
the approach in [16] allows us to easily solve the stage agreement and the global agreement problem (see
Section 4.1) and provide non-blocking transactional mobile agent execution. We begin by summarizing the
approach presented in [16].

5.1 Fault-Tolerant Mobile Agent Execution: Background

In earlier work [16], we have presented an approach to fault-tolerant mobile agent execution, which pre-
vents blocking in the mobile agent execution and ensures that the mobile agent is executed exactly-once.
Fault tolerance is enabled by agent replication; instead of sending the agent from one place to the other,
it is sent to the set Mi of places p

j
i at stage Si (see Figure 8). This redundancy enables the mobile agent
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execution to proceed despite infrastructure failures, i.e., prevents blocking 5. As we do not assume reliable
failure detection, redundant agents potentially lead to multiple executions of the agent code. The solution
presented in [16] consists, for all agent replicas at stage Si, to agree on (1) the place p

prim
i that has executed

the agent, (2) the resulting agent ai+1, and (3) the set of places of the next stage Mi+1. In the context of
fault-tolerant mobile agent execution, (1), (2), and (3) are important to prevent multiple executions of the
agent, i.e. ensure the exactly-once property. All the places that have potentially started executing ai, except
p

prim
i , abort. Only p

prim
i commits the modifications of ai. This corresponds to the stage actions saj

i in
Figure 7. However, in fault-tolerant mobile agent execution, sai decides unilaterally which subtransac-
tion to commit. More specifically, the decision is taken independently of the parent transaction, as no such
transaction exists. As we will see later (see Section 5.2), the agreement on item (1) corresponds to the stage
agreement problem of NB-AC and is reused by NB-AC. On the other hand, (2) and (3) are not relevant for
NB-AC.
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Figure 8: Example of an agent execution with three redundant places.

Overall, the entire fault-tolerant mobile agent execution leads to a sequence of agreement problems.
Figure 9 shows an example of a mobile agent execution spanning 4 stages (S0 to S3). Note that at stage S2,
place p0

2 fails, which causes p1
2 to take over the execution. Solving an agreement problem leads all places

in M2 to agree on p1
2 as the place that has executed a2. This would be of particular importance if p0

2 had
been erroneously suspected by the other places in M2.
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Figure 9: Agent execution where p0
2 fails. An erroneously suspected place p0

2 leads to the same situation.

To reduce the communication overhead among stages, the so-called pipelined mode reuses places of
previous stages as witnesses, see Figure 10 [16]. A witness is a place that can execute the agent, but cannot
deliver the requested service to the agent: the call to the service fails (i.e., a semantic failure) and the agent
can then take corresponding actions, such as aborting the transaction.

5Note that the approach depicted in Figure 8 is different from case (b) in Figure 5. While the former uses agent replication to
provide fault tolerance, the latter starts a new child transaction T ′

b
. Child transaction T ′

b
is generally not identical to Tb; rather it

executes different operations. Sher et al. [21] use this approach. We give a more in-depth comparison with our approach in Section 7.
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Figure 10: Model of the pipelined mode.

5.2 From Fault-Tolerant to Transactional Mobile Agent Execution

5.2.1 Solving the Stage Agreement Problem

An important property of the fault tolerance algorithm summarized in Section 5.1 is non-blocking. This
property is also desired for transactional mobile agent executions. Indeed, a transactional agent execution
that blocks because of a failure on place pi has probably acquired a large amount of locks on previous places
pj (j < i). Holding these locks prevents other agents from accessing this data items and thus dramatically
reduces overall system throughput. Non-blocking transactional mobile agent execution does not suffer this
problem. Progress is assured even in case of failures. Hence, locks are released earlier and overall system
throughput improves. Consequently, we reuse our work on non-blocking fault-tolerant mobile agents to
prevent blocking in a transactional mobile agent execution. More specifically, we use the approach in [16]
to solve the stage agreement problem and thus build transactional mobile agents on top of it.

5.2.2 Solving the Global Agreement Problem

To solve NB-AC (see Section 4.1), the modifications of ai on the primary p
prim
i 6= p

prim
n−1 (i.e., the sub-

transaction saprim
i ) are not immediately committed after the stage execution. In other words, stage ac-

tion saprim
i 6= saprim

n−1 cannot unilaterally decide COMMIT. This is fundamentally different from the fault-
tolerant mobile agent execution approach in [16]. The decision to COMMIT rather depends on the outcome
of the top-level transaction (i.e., the result of the global agreement problem, see Figure 11). Here, a commit
occurs when a has successfully executed all the stage actions ai (i = 0, 1, .., n− 1). On the other hand, an
abort may occur as soon as the execution of any aj (0 < i ≤ j ≤ n − 1) semantically fails.

To terminate a pending transactional mobile agent execution, each primary place runs a stationary (i.e.,
not mobile) stage action termination (SAT) agent (see Figure 12). While agent ai+1 moves to pi+1, the SAT
agent sati waits for the outcome of the entire transactional agent execution, either (1) a commit message
from an−1 or (2) an abort message from aj (1 ≤ j ≤ n − 1). Upon reception of an abort message, sati
aborts the pending transaction saprim

i , otherwise commits it. Hence, SAT agent sati can be viewed as the
transaction manager [10] of the local transaction represented by stage action sai. While the outcome of the
transaction is undetermined, all data items accessed by ai on place p

prim
i (i.e., the place that has executed

sai) remain locked and are not accessible by other agents.
To improve the performance, the place pi itself can offer the SAT service. The agent ai registers

subtransaction saprim
i that needs to be aborted or committed, and receives an ID. Using this ID, the agent

can later contact the SAT service on pi and initiate either a commit or an abort on the transaction. This
service approach prevents the overhead of instantiating a SAT agent.

5.2.3 Terminating Ta

During its execution, agent a maintains a SAT list of all the SAT agents that it needs to contact in order to
commit or abort the transaction. At every primary place p

prim
i ready to commit, a new entry is appended

to this list. Unless the agent execution has failed on a previous stage, the execution at stage Sn−1 decides
whether to commit or abort the agent transaction. This decision is based on the outcome of the execution
of an−1 on place p

prim
n−1 . If successful, the decision is COMMIT, otherwise ABORT. It is then communicated

to sati(1 < i ≤ n − 1), based on the SAT list. It is important that this decision eventually arrives at
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Figure 11: Transactional mobile agent that commits. Aborts on non-primary places are executed immedi-
ately, while primary places p0

1 and p1
2 only commit after a2 has successfully executed on p1

2.

all destinations. Indeed, a destination sati that does not receive the decision message does not learn the
outcome of the transaction Ta and still retains all locks on the data items. Hence, the decision message is
distributed using a reliable broadcast mechanism [6] that ensures the eventual arrival of the message at all
destinations. All correct places in Mn−1 participate in the reliable broadcast to prevent that a failure of
p

prim
n−1 causes the loss of the decision message. Figure 12 depicts an example agent execution with 5 stages.
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Figure 12: Committing transactional execution of a mobile agent execution with 5 stages.

5.3 Multiple Concurrent Transactions

In our discussion so far we have focused on enforcing the atomicity property of a transactional mobile
agent execution. In a real system, however, a transactional mobile agent does not execute in an isolated
environment. Rather, it executes concurrently with other transactional mobile agents. Multiple transactions
accessing concurrently the same data items may lead to a violation of the isolation property. Isolation is
enforced locally by locking all accessed data items until the outcome of the transactional mobile agent
execution, i.e., COMMIT or ABORT, is determined. Clearly, the isolation property limits the possible level
of concurrency. As a remedy, services decide themselves whether they allow concurrent access to their
data. For this purpose, they design a so-called commutativity matrix [18], which shows potential conflicts
among operations of this service and only allow operations that do not conflict to be executed concurrently.

Isolation also needs to be ensured on a global level, i.e., among places. Here, isolation is more difficult
to achieve. One approach is to require that the stage actions on different places pi and pj(j 6= i) are
independent with respect to the execution order of stage actions. Revisiting the example agent execution
in Section 3.1, two transactional mobile agents Ta and Tb can execute the airline ticket purchase, the hotel
room booking, and the car rental in any order, i.e., not necessarily in a serializable order, without violating
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the isolation property. Consequently, because the three services are independent, no global serializibility is
required to preserve isolation. This improves the concurrency of the transactional mobile agent and hence
overall system performance. Clearly, service independence is a property of the application as well as the
services. In the Internet, independence among services of different service providers is usually given.

We use the standard approaches [10] to enforce the other ACID properties, as well as for deadlock
resolution, where we apply the timeout-based approach.

6 Implementation and Preliminary Evaluation

This section introduces TranSuMA (Transaction Support for Mobile Agents), a system that implements
the ideas developed in Sections 4 and 5. We first present the architecture of TranSuMA, before discussing
preliminary performance evaluation results.

6.1 Architecture

TranSuMA is based on an agent-based approach, where the transaction support mechanisms travel with
the mobile agent [17]. This has the important advantage, that underlying mobile agent platforms do not
need to be modified. On the other hand, the agent-based approach results in an increased communication
overhead, as the size of the agent has also increased.

Our system is based on FATOMAS [17], the fault-tolerant mobile agent system presented in Section 5.1.
This dependency is also reflected in the architecture of TranSuMA (see Figure 13). Here, a mobile agent
ai is composed of a TranSuMA user-defined agent, i.e., the agent developed by the agent owner, and
the transaction support module (TSM). The TSM provides the mechanisms for transactional mobile agent
execution. It is based on the fault tolerance enabler (FTE) of FATOMAS. Indeed, from the viewpoint of the
FTE, the TSM and the TranSuMA user-defined agent are just another FATOMAS user-defined agent. This
has the advantage that the FTE can be reused with only minor modifications to it. These modifications are
a generalization in that they allow FATOMAS user-defined agents to add user-defined state to the decision
value in the stage agreement (see Section 5.1). The TSM uses this generalization to add the SAT list to the
decision value, which enables the implementation of the reliable broadcast to terminate Ta.
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Figure 13: Architecture of TranSuMA.

The TranSuMA user-defined agent either interacts with the TSM (through the TSM-API) or with the
services local to the place. The latter act as resource managers (RM) [10] (e.g., exporting an XA inter-
face [12]). The TSM-API provides functions to begin a subtransaction, to abort the subtransaction (i.e.,
abort), and to commit (i.e., commitCurrentTransaction) or abort (i.e., abortCurrentTransaction)
the current transactional mobile agent execution. From the view point of the user-defined agent, the TSM
assumes the role of a transaction manager. However, the TSM does not really act as the transaction man-
ager; rather, it forwards the calls of the user-defined agent to sati.

Typically, a stage action sai of the user-defined agent in a
j
i consists of (1) a call to begin the transaction

and (2) potentially multiple requests to local services, and (3) the end of stage. The stage may end with
a call to abortCurrentTransaction, upon which the entire transactional mobile agent execution is
terminated. The method abortCurrentTransaction is called, for instance, if a service request has
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terminated unsuccessfully and hence the transactional mobile agent execution cannot succeed any more.
Note that the unsuccessful service request may not trigger the abort of the entire transactional mobile agent
execution (see Section 3.2.1); rather, only the service requests of this stage action are aborted. This is
achieved by calling the method abort in the TSM-API.

A call to method commitCurrentTransaction (or abortCurrentTransaction) triggers
the commit (abort) of all unterminated subtransactions of the current transactional mobile agent. As shown
in Section 5.2.3, transaction termination is achieved using reliable broadcast. We use a reliable broad-
cast with linear message cost [20], which has the advantage of a lower number of messages compared to
other strategies. Hence, the TSM first commits (aborts) the local subtransaction and then contacts sati−1.
The SAT agent sati−1 recursively does the same, i.e., commits (aborts) local subtransactions and contacts
sati−2.

6.2 Preliminary Performance Evaluation

To measure the performance of TranSuMA, we have implemented a Java-based prototype using Ob-
jectSpace’s Voyager platform [15]. Each place provides a simple counter service that offers a method
to increment the value of the counter, in addition to the standard methods to commit and abort/rollback the
modifications.

Our performance tests consist in sending a number of agents that atomically increment a set of counters,
one at each stage Si. Each agent starts at the agent source and returns to the agent source (i.e., the agent
source is identical to the agent destination). This allows to measure the round trip time of the agent.
Between two agents, the places are not restarted. Consequently, the first agent needs considerably longer
for its execution, as all classes need to be loaded into the cache of the virtual machines. Consecutive
agents benefit from already cached classes and thus execute much faster. We do not consider the first agent
execution in our measurement results. As in [17], we assume that the Java class files are locally available
on each place6.

The test environment consists of seven AIX machines (Power PC 233 MHz processor, 256MByte of
RAM). These machines are connected by either 100MBit Ethernet or 2MBit Tokenring; they are on 3
different subnets. As our evaluation results are in the area of hundreds of milliseconds, the difference in
network bandwidth and the influence of the different subnets are negligible.

Our results represent the arithmetic average of 10 runs, with the highest and lowest values discarded to
eliminate outliers. The coefficient of variations is in most cases lower than 5%. However, for few results,
it went up to 15% because of variations in the network and machine loads.

We measure the costs of TranSuMA compared to FATOMAS. Each stage Si (0 < i < n) is composed
of three places. In the experiment with two intermediate stages Sx and Sy , each intermediate stage uses
three AIX machines, while another machine hosts the agent source and destination. If the number of stages
exceeds four, Sx corresponds to all odd intermediate stages, i.e., S2k+1 (2k+1 ≤ n−1) and Sy to the even
intermediate stages S2k (2k ≤ n − 1). The results in Figure 14 show that TranSuMA adds an overhead of
6 to 20% compared to a FATOMAS agent. This overhead is caused by the transaction support mechanisms
such as the communication with the local SAT agent and the commitment when the agent has reached stage
Sn−1. Results are similar for pipelined (see Section 5.1) FATOMAS and TranSuMA agents.

Note that the costs for an abort of Ta at Sn−1 are the same as for commit. Indeed, the only difference
between abort and commit is the content of the message reliably broadcasted to all SAT agents.

Clearly, the relative overhead decreases if the execution time of the stage action increases. Indeed,
the time needed to increment the counter is negligible. If this time becomes more important, the relative
overhead of TranSuMA compared to FATOMAS decreases considerably. Moreover, an increased agent
size also decreases the relative overhead of the transaction mechanisms.

Infrastructure failures during the execution of stage action sai have a negative impact on the perfor-
mance of the transactional mobile agent. However, they only influence the performance of FATOMAS.
The overhead introduced by the transactional support mechanisms is the same. The influence of infrastruc-
ture failures on FATOMAS is shown in [17].

6Indeed, our chosen platform does not seem to properly support remote class loading in our test environment (see also [17]). We
plan to port TranSuMA to another mobile agent platform to test the performance with remote class loading enabled.
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7 Related Work

Recently, mobile agents have been a very active field of research. In particular, a large body of work
[3, 13, 16, 17, 19, 22, 23] has been published about fault-tolerant mobile agent execution, a field related to
transaction support for mobile agents. However, fault-tolerant mobile agent execution generally does not
address execution atomicity. Transactional mobile agent execution has received less attention. Exceptions
are [2, 4, 21, 24]. The approaches in [2, 21, 24] are blocking; a single failure of a place currently executing
the mobile agent may prevent progress of the transactional mobile agent execution. In contrary, [4] and our
approach suggest an approach for non-blocking transactional mobile agent execution. We first relate [4] to
our work, before briefly discussing [2, 21, 24]

7.1 Non-Blocking Transactional Mobile Agent Approach

The approach presented by Assis Silva and Popescu [4] is closest to our approach; they also build trans-
action support on top of fault-tolerant mobile agent execution. For this purpose, [4] reuses the approach
in [3]. In contrary to our model of fault-tolerant mobile agent execution, the approach in [3] is based on a
more complex model of leader election and transactions. Our model of fault-tolerant mobile agent execu-
tion [16], on the other hand, only relies on an agreement problem. This allows us to present a model for
transactional mobile agent execution that integrates fault-tolerant mobile agents into a common model of
nested transactions. We also provide a specification of non-blocking atomic commitment in the context of
transactional mobile agents.

Assis Silva and Popescu [1, 4] do not describe any implementation. In contrary, our approach has been
implemented and quantitatively evaluated.

Finally, [4] relies on compensatable transactions [9]. With compensatable transactions, stage action
sai of an agent a can be committed before the outcome of the top-level transaction Ta is known. In the
meantime, another mobile agent b can access data items modified by sai. If Ta eventually aborts, then a
compensating transaction is run, which semantically undoes the modifications performed by sai. Agent b

may have now read an inconsistent value. Consequently, Tb also needs to be aborted, leading to cascading
aborts. For this purpose, another agent or an undo message have to be sent after agent b to notify b of the
abort. Unfortunately, a slow undo message or agent may never reach a fast moving mobile agent, causing
the undo to be delayed and increasing dependencies. Hence, compensatable transactions work best in an
environment, where compensation transactions can be run without causing cascading aborts. However, this
seriously limits the applicability of [4]. To our knowledge, the use of compensatable transactions is caused
by the particular approach used for fault tolerance [3]. Indeed, the approach for fault tolerance is based
on transactions, that have to commit before the agent execution can proceed. Consequently, if the agent
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execution is aborted at a later stage, compensation transactions have to run in order to undo the effects of
the stage transactions. In contrast, TranSuMA relies on pessimistic concurrency control; subtransactions
sai are only committed or aborted once the outcome of the top-level transaction is known. However,
TranSuMA can also support compensatable transactions and thus is of more general use7.

Note that the use of compensation transactions makes an abort very expensive. Each place p
prim
i needs

to run the compensation transaction. Moreover, all the compensation transactions must eventually commit.
Consequently, failures during the compensation transactions lead to blocking. In contrary, an abort in our
approach is as expensive as a commit in the sense that the message sent to all SAT agents now contains the
directive to abort.

7.2 Blocking Transactional Mobile Agent Approaches

In their work, Strasser and Rothermel [24] do not address the problem of execution atomicity for the entire
mobile agent execution. Rather, they suggest a mechanism to partially rollback mobile agents that execute
based on the protocol given in [19]. The use of compensation transactions, as suggested in this mechanism,
leads to the isolation problems already discussed in Section 7.1. The stage actions of Ta are immediately
committed and their effects thus visible to other transactional mobile agents, such as Tb. A partial rollback
executes these compensation transactions in order to restore the state before the execution of the stage
action of Ta.

In contrast to [24], Assis and Krause [2] address execution atomicity. However, they only present a
model for transactional mobile agent execution. No algorithm or implementation is given. However, part
of this model has been reused in [4].

In [21], Sher et al. present an approach for transactional mobile agents, which ensures the ACID prop-
erties on the entire mobile agent execution. However, [21] may be subject to blocking if a stage execution
sai is executed on a single place. The probability of blocking is reduced by allowing parallel transactions
to run over different parts of the itinerary that are combined again using so-called mediators, which govern
how the parallel transactions are processed further. For instance, with the mediator ANDjoin, all parallel
transactions have to arrive, or with XORjoin, only one has to arrive. Figure 15 depicts the example of
an XORjoin mediator. The transactional mobile agent execution of a splits into two parallel transactions
represented by agents b and c. For instance, bi−1 tries to book a flight with Swissair, while ci−1 books
a flight with Delta Airlines. At stage Si, the mediator XORjoin only keeps one of the subtransactions
(represented by ci and bi), while the other is aborted. The agent a then continues to reserve a hotel room
at stage Si+1. The places that run a join mediator (i.e., pi) must be visited by the partial mobile agents
executing in parallel. This generally limits the itinerary to a (partially) static itinerary. Moreover, failures
of non-parallel transactions and mediators result in blocking of the execution. Eliminating non-parallel
transactions thus prevents blocking, i.e., a split mediator resides at the agent source and a join mediator at
the agent destination. The entire mobile agent execution then runs as parallel transactions. However, exe-
cuting parallel transactions from which only one is committed at the end, even if no failure occur, causes a
considerable overhead.
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Figure 15: Mediators (rectangles) allow to execute parallel transactions.

7In this case, however, the isolation property in Section 4 needs to be relaxed.
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8 Conclusion and Future Work

In this paper we have presented a novel approach for transactional mobile agent execution. In contrary to
the approaches [2, 21], our approach does not block although places executing the agent potentially fail.
While a mobile agent execution is blocked, it retains all locks. During this time, other transactional mobile
agents cannot access the locked data item, resulting in reduced overall system throughput.

Similar to the approach in [4], we also suggest to build transaction support on top of fault-tolerant
mobile agent execution in order to prevent blocking. For this purpose, we have introduced nested trans-
actions as a common model for integrating fault-tolerant mobile agent execution and transaction support.
This is a fundamental difference to the work in [4], where nested transactions only model the transaction
support for mobile agents; fault tolerance is modeled separately. This common model has allowed us to
formally specify the non-blocking atomic commitment (NB-AC) problem in the context of transactional
mobile agents. NB-AC is fundamental to ensure atomicity of a mobile agent execution, the most tricky of
the ACID properties [10]. In contrary to [4], our approach does not rely on compensatable transactions.
Rather, it is more generic and can also rely on pessimistic concurrency control.

We have also shown that part of NB-AC is already solved by earlier work presented in [16]. Based
on this work, we show a solution to the NB-AC problem. Our implementation, which is the first for
non-blocking transactional mobile agents, builds on top of FATOMAS [17], the system that provides fault-
tolerant mobile agent execution as modeled in [16]. Consequently, we use an agent-based approach [17],
where the transaction support mechanisms travel with the mobile agent. Our preliminary performance
results show that the overhead introduced by the transaction support mechanisms is reasonable compared
with the performance of FATOMAS. The measurements have also been performed for pipelined agents
with similar results.

In the future, we plan to improve the performance of our approach, as well as test it on a mobile agent
platform other than Voyager.
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