
RZ 3407 (# 93497) 03/04/02
Computer Science 13 pages

Research Report

Composite Profile Information

Carl Binding, Reto Hermann, Andreas Schade

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports
are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Composite Profile Information

Carl Binding, Reto Hermann, Andreas Schade

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

This paper reviews existing techniques and standards to capture and transport capability
and preference information, so-called profiles for end-user devices with special emphasis on
limited footprint, mobile, devices. It proceeds to present a model for composing profile infor-
mation based on default values and profile differences applied to end-user device originating
capability and preference profiles. An account on the implementation of a middleware soft-
ware component to handle and manage composite profile information highlights some of the
implementation issues and provides initial performance indications.

1 Introduction

The most popular information technology architecture currently is based on the
browsing model of the internet application architecture. An end-user requests
information by using his user agent, the so-called browser, which acts as a ren-
dering engine for mark-up documents containing layout directives interspersed
with the information content. Mark-up documents are generated by application
servers, typically accessed via the HTTP protocol [7].

The markup content generation process is controlled through various pa-
rameters: the name of the information resource being addressed (encoded in its
unique resource identifier (URI) [1]), the URI parameters, the application logic
associated with the URI2, and possibly additional HTTP headers transmitted
with the request.

Essentially though, the output generated by the application is a function of
parameters passed with the request and some application state.

Figure 1 illustrates the application architecture. The end-user device’s user-
agent issues a request for information (i.e. an HTTP GET request) which is
received and processed at the origin-server. The generated content is returned
to the client as an HTTP response body and rendered by the client device user
agent.

Wireless Bearer Service

Mobile Network
Access Point

Internet
Data Storage

WEB Server

(HTTP, Application Server)

Mobile Computer

Personal Computer

Phone

Personal
Digital
Assistant

Data Request: HTTP GET....
Data Response: HTTP response

Fig. 1. Internet application architecture

In the past, most internet applications were accessed through PC or com-
puter workstation based browsers which typically operate on a large screen
attached to a computer of considerable computing power (in terms of memory,
disk, CPU, etc.). With the growing capabilities of wireless wide-area networks
used for voice based telephony and data traffic to smaller, personal, and portable
devices, the mobile internet has become of increasing commercial interest as it

2 Such logic can be encoded as a scripting language such as PERL, a conventional program-
ming language such as C or Java [16] or a mix of mark-up and scripting languages such as
the Java Server Pages (JSP) formalism [15].

1

allows to support an ever increasing number of end-user terminals. The suc-
cess of the Japanese i-mode system [6], launched by NTT DoCoMo in the late
nineties, has been spectacular. Given the appropriate wireless infrastructure,
business models, and end-user devices, we thus can expect similar services to
appear in other geographies with comparable success.

Whilst the overall application architecture for an internet and a mobile
internet application does not differ fundamentally - indeed both using the same
lower layer transport protocols and similar mark-up languages - the presentation
to the end-user will have to differ because mobile end-user devices will remain
smaller and thus limited in terms of input-output capabilities compared with
traditional personal computers. (The size is driven by two factors: portability
and power consumption.) Hence, applications will benefit from the ability to
adapt the generated content to optimally fit the capabilities of the end-user
device and the preferences of the end-user himself.

As discussed above, the content generation process is driven by parameters
associated with the request for information. Hence, if we augment such requests
with additional information to describe the capabilities of the device and the
end-user’s preferences, we enable the application to exploit these and generate
better suited mark-up output to be rendered on the end-user device.

The requirements for handling of such capability and preference profile in-
formation can be summarized as follows:

1. Expressiveness: an end-user compute entity must be enabled to express its
capabilities and the user’s preferences in a concise and non-ambiguous way.

2. Transport syntax: the profile information must be transmitted to the content
generating origin-server in a space efficient and tamper proof way.

3. Handling: the origin-server must be enabled to handle the information con-
tained in a preference profile through an appropriate mechanism, i.e. through
a programmatic interface to query the profile’s values.

4. Efficiency: the transport and handling of profiles must be efficient as each
information request can be associated with a preference profile.

5. Aggregation: various processing nodes in the network between end-user de-
vice and origin-server may augment a request. For example, if a content
transforming node on the path supports additional transformations which
are beyond the capabilities of either the end-user client device or the origin-
server, this information can be of use to the origin-server. For example, the
origin server may include content which is eventually transformed by some
network node on the path between origin server and client device.

6. Manageability: the entire profile handling system must be manageable.

The purpose of this paper is to review the state-of-the-art in composite pref-
erence information (CPI) handling and to introduce a formally sound framework
for profile aggregation. Section 2 reviews existing work on capabilities and pref-
erence profile handling. A mathematical formulation of profile processing for a
specific data model is given in section 3, including a model for profile schema
unification. Our implementation, inclusive some performance indications, of a
standardized profile environment is described in section 4. A summary and
conclusion of our work closes the paper with section 5.

2

2 Client Capabilities and Preference Profiles: a Survey

Current internet technology does not use preference information on a wide-
spread scale. In part, this is due to the limited possibilities of forwarding pref-
erence profile information with an HTTP request. The HTTP/1.1 standard [7]
supports a limited set of header fields of which only the header-field User-Agent

allows to identify the end-user’s browsing environment3. Additional preference
information can be conveyed via the various Accept header fields, but the range
of capabilities which can be described through these means remains limited.

Common practice thus is to statically associate a device profile with the
device’s User-Agent information. This profile is then accessed by the origin-
server based on the HTTP request’s header value.

A more dynamic approach is advocated in the model of the client capabilities

and preference profile (CC/PP) [10]. It proposes composite preference informa-
tion grouping device capabilities and user preferences into a set of components.
For each component, a possible set of default values is indicated through the
inclusion of a URL reference to such default values.

Each component furthermore contains one or more properties. Every prop-
erty defines its name, its type, and possibly a set of values (for enumerations,
for example).

A profile’s components and their properties are specified in the profile
schema or vocabulary. Thus, for different applications distinct CC/PP vocabu-
laries can be defined.

An XML based syntax, the resource description framework (RDF) [11] is
used to externalise a CC/PP compliant profile and associated default profiles.
Proposals to augment HTTP headers to convey profile information have been
published and - with some modifications - have been adopted by at least one
standardization body (the WAP Forum) [13, 19, 22]. These transport syntaxes
propose a split of profile information between the profile and so-called profile

differences. The profile header field contains a reference to the actual profile
value, expressed as an URL. In addition, difference values to the base profile
conveyed with the HTTP request inside some profile-diff header are referenced
via indexing. A checksum over the profile difference is included in the profile
header to guarantee the integrity of the profile differences.

From an implementation point of view, the CC/PP proposal suffers from
various shortcomings:

1. RDF syntax [11] is ambiguous and thus hard to parse properly.
2. There is no formalism to specify profile schemata. The proposal lacks ex-

pressiveness regarding the definition of comparison operations applied to
properties and the introduced property types and their formats are not
mandatory. The notation also does not clearly state which properties are
mandatory, which can be omitted etc.

3. The CC/PP model leaves the determination of a property’s type, possible
relations between property values, their syntax, and their meaning to the
application. For example, there are no rules for spelling of enumeration of

3 The values of this header field are however not standardized.

3

literal values (e.g. capitalization, white-space) or the format for numeric
values. Similarly, defaulting for omitted property values is not specified.

The WAP Forum has based its User Agent Profile (UAProf) [22] work on
the CC/PP and RDF framework. These have been extended with a specific
transfer syntax for profile and profile differences, a schema definition, and reso-
lution rules for property default and difference values. In addition to the Wire-
less Application Protocol itself, the proposed m-services initiative also requires
adoption of the UAProf standard [8].

Six components are defined in the UAProf vocabulary to describe the capa-
bilities and preferences of a mobile end-user device:

1. hardware: These properties describe the hardware features of the WAP de-
vice, such as screen size, pixel dimension, keyboard features etc.

2. software: Indicates which operating environment is present on the mobile
station. For example, the version of a Java Virtual Machine (if any), the set
of accepted character sets and languages, etc.

3. user agent: Describes the mobile station’s browser environment, i.e. are
frames supported? which version of HTML is supported? are Java scripts
or applets supporte? etc.

4. network: Describes the mobile network environment, for example which
bearers are supported respectively currently enabled.

5. WAP characteristics: Reflects the WAP environment specific features of the
device. Which version of the standard? Which WMLScript [23] libraries?
Which WAP pictograms can be rendered on the device? etc.

6. push environment: Identifies WAP Push [21] related characteristics of the
device, such as the number of push messages the device can store, which
push applications it supports, what character sets and content-types for
push content the device can handle etc.

The property types comprise numerics (integer), booleans, dimensions4, and
(string) literals which are also used for enumerated values.

In addition to these base types, multi-valued types are also provided. Bags
indicate an unordered, multi-valued set, alternatives describe a choice from
multiple values, and sequences provide an ordered set of values.

The UAProf standard includes a transport syntax for transporting profiles
and profile differences. Profiles references, i.e. their URLs, are contained in an
x-wap-profile HTTP header and profile differences as RDF/XML data in x-wap-

profile-diff headers. The x-wap-profile header refers to the profile differences
through an index and includes a checksum (MD5) of the difference value to
guarantee its integrity.

Other transfer syntaxes are based on RDF/XML documents embedded in
MIME multi-part messages [20] or on a distinct set of HTTP extension headers
[21].

The UAProf property resolution rules allow to prescribe following behaviour:

1. Locked: a property value can be modified once at most, subsequent difference
values have no effect.

4 A two-dimensional metric.

4

2. Override: difference values override previously established property values
in the order of differences application.

3. Append: applies only to lists (i.e. bags, alternatives, or sequences) and im-
plies concatenation of property values to extend a list of such values.

Note that the UAProf schema – in the absence of a CC/PP defined for-
malism – uses an ad-hoc, XML based formalism in which some of the schema
definitions are simply embedded in XML comments! Further shortcomings of
the CC/PP framework and the UAProf schema in particular are:

1. No syntax rules for literal enumerations. E.g. white-space, capitalization,
syntax for numbers, hyphenation etc. are not clearly formulated.

2. No fully machine readable schema definition to allow automatic verification
of profiles against their schema.

3. Missing component type compatibility rules for profile aggregation.
4. Relation functions defining an equivalence relationship between property

values to indicate whether a given property value p1 is equivalent, inferior,
or superior to some other property value p2. For example, does a Java Virtual
Machine property value of SUN JVM 1 indicate similar, superior, or inferior
capabilities of a Java Virtual Machine MS VM J13?

The literature on usage or foundations of UAProf is still nascent [3]. Butler
reports on a Java implementation of the UAProf environment [4]. Its functional-
ity is similar to our implementation, however no formal definition of the profile
resolution process is provided. There are no performance figures and potential
extensibility of the Jena framework is not described.

Potential applications to content transcoding based on usage of profiling
information is discussed in [2]. The paper also describes profile aggregation
based on a rules-based formalism [9] to yield a unified preference value from a
set of multiple profiles. However, no formal profile composition model is given,
only static preference profiles are processed, and no performance measurements
are reported.

3 Aggregate Profile Model

In this section we formalize the handling of CC/PP based capabilities and
preferences information. We use concise mathematical notation to describe the
process of profile resolution. A further formalization allows to describe profile
schemata aggregation.

3.1 Formal Model Definition

We propose a formal model to capture composite preference information, which
we call the schema of a profile. Such schema must be machine readable for
validation of profiles.

1. A schema S is defined as a set of component types:

S = {Cj}, 1 ≤ j ≤ D(S)

5

where Cj are the component types and D(S) is the dimension of the schema
and denotes the number of component types present in the schema.

2. A component type C is defined as a set of property types:

Cj = {Pi}, 1 ≤ i ≤ D(Cj)

where Pi are the property types and D(Cj) is the dimension of the compo-
nent and denotes the number of property types present in the component.
The component type contains a special property type by which an instance
of a component type (see below) can refer to its default settings.

3. A property type defines a name, a resolution rule, and a value type for
which an ordering relationship must be specified. Property resolution rules
are defined to be one of {locked, override, append}. We write policy(P C) to
denote the resolution policy associated with property type P .
We shall define property type compatibility if the value type of Pi can be
mapped onto the values of Pj .

Based on this type system, we define profile, component, and property in-
stances as follows:

1. A property p is an instance of a property type P . The property has a value
according to the value type as defined by the property type.

2. A component c is an instance of a component type C. A component contains
a non-empty set of properties:

c = {pi}, 1 ≤ i ≤ D(C)

Optionally, a component instance c may refer to a default component in-
stance of the same type. This instance, which we denote by c̄, provides the
default properties for the referring component.

3. A profile s is an instance of a schema S. A profile contains a non-empty set
of components:

s = {cj}, 1 ≤ j ≤ D(S)

Using this formal schema definition, we introduce the following notation to
identify the value p of a property of type Pi inside a component cj (of component
type Cj) in a profile s (of schema S):

pi,j = Pi(cj) = Pi(Cj(s)), 1 ≤ j ≤ D(S), 1 ≤ i ≤ D(Cj)

i.e. the i-th property of the j-th component of s.

3.2 Profile Operations

Default Resolution Default resolution is the aggregation of all properties of
some component c and its default component c̄. As a result of this, a new com-
ponent is created in which a particular property keeps its value where provided.
Alternatively it takes the value of the default component, if present, or will not
be included in the resulting component.

6

Formally, default resolution can be denoted as follows:

p̃i = Pi(c̃) =

Pi(c) if pi ∈ c
Pi(c̄) if pi /∈ c ∧ pi ∈ c̃
φ if pi /∈ c ∧ pi /∈ c̃

As such, default resolution is an operation over components. For a particular
profile s it can be applied to all member components cj . The resulting profile
is referred to as the defaulted profile, denoted by s̃0.

Default resolution is applied to the base profile s to yield s̃0 as well as all
difference profiles sk, 1 ≤ k ≤ K which modify the property values of s̃0 in the
subsequent processing step, called difference application. The defaulted profile
differences are denoted s̃k.

Note that difference profiles are optional for a given base profile s, i.e. K
can be 0. In that case, profile resolution is complete after default resolution and
the below step of difference application is not necessary.

Difference Application Profiles can be modified further by applying profile
differences, if any. A profile difference, or profile diff for short, structurally also
is an instance of the base profile’s schema S. Default resolution, formalized
above, is also applied to profile diffs. Hence, we now have the defaulted base
profile s̃0 and a non-empty set of defaulted profile diffs s̃k, 1 ≤ k ≤ K. We
regroup these profiles into a set S̃ = {s̃k}, 0 ≤ k ≤ K.

We denote a fully resolved property value p̂, a fully resolved compoment ĉ,
and a fully resolved profile ŝ respectively. Computation of the property value
p̂j of component ĉi of ŝ can then be formalized as follows:

p̂i,j = Pi(ĉj) = Pi(Cj(ŝ)) =

Pi(Cj(s̃kmin
)) if policy(Pi) = locked

Pi(Cj(s̃kmax
)) if policy(Pi) = override

⋃K
k=0 Pi(Cj(s̃k)) if policy(Pi) = append

For the locked case, 0 ≤ kmin ≤ K selects the first component of S̃ in which
property Pi appears; the property value then becomes Pi(Cj(s̃kmin

)). Conversely
for a resolution policy of override, 0 ≤ kmax ≤ K selects the last compo-
nent of S̃ for which property Pj is evaluated and the property value becomes
Pi(Cj(s̃kmax

)). Append resolution policy indicates concatenation of multi-valued
poperty type values across all profiles in S̃

Schema Aggregation The formalisms for default resolution and difference
application introduced rely on the assumption that the operations are performed
on profiles adhering to a single schema.

In practice,however, it is the case that profile information belonging to di-
verse schemata Sk needs to be merged into a single composite preference infor-
mation profile sagg with new schema Sagg. Such a need can arise, for instance,
because existing schema definitions evolve over time, i.e., new properties are
added to a component, or new components are added to a profile. Another
case is the situation, where profile schemata that have been defined by different

7

C

C1 C2 C3 C4

p11

p21

p31

p12

p22

p32

p13

p23

p33

p14

p24

p1=p32

p2=min(p23,p24)

p3=p11+p12

p4={p22,p13}

Fig. 2. Component property aggregation

organizations (e.g., standard bodies) exhibit semantic overlap and this overlap
needs to be resolved into a unique set of components and properties.

Figure 2 illustrates this profile aggregation for four resolved component in-
stances c1, c2, c3 and c4 with component types C1, C2, C3, and C4. We assume
that these component types are defined by some schemata (not given here). A
new component type C is created with four property types P1, P2, P3, P4 and is
included in the new schema Sagg. The resulting profile sagg contains an instance
c of the (new) component type C.

The value of the properties are based on the values of the composing com-
ponent instances and, for the example of figure 2, are defined as follows:

p1 = P3(ĉ2)
p2 = min(P2(ĉ3), P2(ĉ4))
p3 = P1(ĉ1) + P1(ĉ2)
p4 = P2(ĉ2) ∪ P1(ĉ3)

(Recall that we write pi,j for the i-th property of the j-th component, i.e.
pi,j = Pi(cj).)

The above example illustrates some possibilities to combine existing prop-
erties types into new property types for Sagg. The combination functions can be

8

arbitrary; one condition is type compatibility between property types. Examples
of such combination functions can be:

– identity: the new property type is identical to an existing property of some
of the components. This is the case for p1.

– selection: the new property type is selected from one of the existing proper-
ties based on their values. Examples are the minimum, the maximum, the
first or last value from a set of property values, etc. In above example, p2 is
such a selection.

– computed values: the new property type’s value is a function of values of ex-
isting properties. The range of arithmetic operators depends on the types of
properties. For example, numeric numeric operations add, subtract, multiply

or divide can be applied to numeric property types. For string typed proper-
ties, string operators such as concatenation, sub-string, pattern match, etc.
are possible candidates. For multi-valued property types, set-operations such
as union, intersection, and difference can be defined.
p3 in our above example is the arithmetic sum of two properties, whereas
p4 is the union of property values p2,2 and p1,3.

As illustrated by above discussion, the set of possible operators is unbound.
We either introduce a set of known property types with associated operators –
thereby defining a type specific property combination arithmetic – or support
an open ended schema in which new combining functions can be defined, akin
to data manipulation languages such as SQL.

Formally, we can capture the process of property definition for Sagg as fol-
lows.

We take the set of original component types {Corig
k } and extract their prop-

erty types which we classify into sets of properties depending on their type
compatibility. (We assume a limited set of base types from which we can derive
the notion of type compatibility.) Call these sets P orig

Tj
where Tj denotes a cer-

tain property type. We can then define a new property P with type Tj in some
component of Sagg as:

P = f(P orig
Tj

)

with f an arbitrary function over the values in P orig
Tj

.

Application Interfaces Above we have introduced procedures to evaluate the
property values of a given profile and associated set of profile differnces. Once
these operations have been performed, an application may use two operations
to access and utilize preference information:

1. property query: the value of a property can be queried given the name of the
property and component. We denote this Pi(Cj(ŝ)) i.e. the value of property
type Pi after complete resolution of component type Cj in the original profile
ŝ.

2. property value relation: two property values can be compared to assert if
their values are identical or if one property is superior respectively inferior
to the other value.

9

The comparison operation can be extended to range over components and
profiles containing components.

4 Experiences with UAProf

The model defined in section 3 is a formalization of the WAP Forum defined
UAProf framework. UAProf however only requires default resolution and profile

difference resolution; aggregation of diverse profile schemas is not required5. At
the IBM Zurich Research Laboratory we have implemented middleware software
which performs default resolution and profile difference evaluation for UAProf
compliant profiles. An API exposes operations such as:

– profile resolution: input to this function is a profile and a possible set of
profile differences. The function applies profile defaults and differences to
yield an API accessible data structure of profile components and properties.

– component and property accessors: once a profile has been internalized, di-
verse accessor routines allow to traverse the profile’s set of components and
their properties to query property values and types. These values are repre-
sented through appropriate data types in the chosen programming language
(i.e. C or Java).

– profile comparison: this functionality is intended to support profile matching
as warranted by the WAP Push Access Protocol (PAP) [20] standard. It
compares a given device’s profile with constraint profile: only if the device’s
capabilities exceed the required constraints will a push message be forwarded
to the corresponding device.

– profile externalization: the API supports various external syntaxes to rep-
resent profiles and profile differences such as HTTP headers and MIME
components in RDF/XML syntax.

The implementation has been done in the C language for performance rea-
sons. On top of our base CPI library, we have implemented a Java wrapper
using Java Native Interface (JNI) [17]. Additional software was written to use
the CPI library in an Apache module [12, 14] or a Java Servlet context [16].

Several functional units can be distinguished in our UAProf/CPI implemen-
tation. An XML parser produces a DOM-like [18] representation of RDF/XML
data on which RDF syntax rules are verified. Once the syntactical verifications
for RDF/XML have succeeded, the profile data is verified against the UAProf
schema.

Since no machine readable formalism has been defined for the UAProf
schema, we have hand-crafted an extended database model to capture CC/PP
compatible schemata and applied it to the UAProf schema6. Thus, our CPI li-
bray can draw on machine accessible UAProf schema information. It is used in
validating profile and profile difference data. Our database model for schemata
captures a schema’s components, their types, and the property types. For prop-
erty types, we store its name, its type, and its resolution policy.

5 With the exception of potential backward compatibility issues.
6 In particular, the resolution policies for UAProf properties are not present in CC/PP.

10

After verification of the profile’s compliance with the schema and the RDF/-
XML syntax, default resolution is performed. For performance reasons, we have
implemented a two level cache to hold default component values. The first level
is an in-core cache; the secondary level uses a relational database. Hence, our
CPI library retrieves default components – referenced via their URLs – only
once across the internet to load the default component caches. Depending on
the lifetime of the CPI library instantiation (e.g. per HTTP request or across
multiple HTTP requests), access to a default compoment is serviced via the
database cache or the in-core cache and becomes indpendent of network latency
and throughput.

The default component cache can also be pre-loaded during initialization of
the CPI library to avoid penalizing the very first profile resolution with retrieval
of default component values.

A similar two-level cache approach is used for resolved profiles. Indeed, there
is a high likelihood that clients present identical profiles with a series of subse-
quent HTTP requests since the device’s capabilities and the user’s prefernences
are unlikely to change between subsequent HTTP requests. We detect this by
checksumming the HTTP headers related to the profile information and using
the checksum value as a look-up key into a profile cache. Thus, if subsequent
requests carry identical profile information, profile resolution is only performed
once; profiles for ulterior requests are serviced out of the profile cache.

Another implementation issue has been the handling of profile matching.
It requires evaluation of an ordering function on profile value properties as
described in section 3. For simple scalar types, such as integers or even dimen-
sions, the ordering function is simple7. However, for literal enumeration values
no simple relationship can be defined: lexicographical ordering, for example, is
not meaningful.

Our implementation therefore associates an explicit enumeration of the re-
lations between literal enumeration values. Evidently this externalized encoding
of the order relationship requires O(n2) space in the schema database, but sup-
ports convenient extensibility of the order relationship for a given enumeration
type without rebuilding the CPI library when new property values are intro-
duced.

Whilst our implementation has not yet been tuned for performance, we
have performed indicative performance measurements. Our sample profile is
modified with two profile differences. All our data is resident on local disk and
accessed via HTTP (i.e. using a TCP/IP loop-back connection). (Our figures
were measured on an IBM RISC/6000 43P Model 150 running IBM’s AIX
version 4.3.)

– profile resolution without cached default: In this case, the profile’s default
components are retrieved over HTTP and resolved before the profile resolu-
tion itself takes place. Profile resolution in this set-up takes approximatively
0.2 seconds.

7 We consider dimension d1 ≤ d2 if the width and height of d1 are less than the respective
values of d2.

11

– profile resolution with in-core cached defaults: Here, we ensure that the
needed component defauls are loaded into the in-core default cache. Profile
resolution time is reduced to 60 milli-seconds.

– profile resolution degenerating into profile lookup: Repeated resolution of
identical profiles is avoided using an in-core profile cache as described above.
The elapsed time in this case becomes 70 micro-seconds per profile resolu-
tion, which in this case degenerates into a lookup operation.

5 Conclusion

Based on the recommendations for CC/PP and the WAP UAProf standard,
we have introduced a formal notation to describe the profile resolution process
required by the underlying information model. Our notation precisely captures
default handling and profile differences application to preferences and capabil-
ities profiles.

We have also introduced a formal model for schema unification. It is open-
ended since the mapping of existing to new profile property types can be ex-
pressed using any computable function. We have, however, not created a con-
crete expression syntax for this mapping, but an SQL [5] like formalism appears
a possible candidate.

Our experiences with the implementation of the UAProf standard are de-
scribed in Section 4. We illustrate the usage of database technology to hold
CC/PP schema information, including relations on property values. Our ap-
proach enables extensions to existing vocabularies as well as the introduction
of new ones.

The necessity of profile default information and profile caching is highlighted
by our initial performance measurements. The measured performances indicate
that judicious usage of caching reduces the overhead associated with CPI pro-
cessing to a tolerable level when taking into account network and processing
latencies and delays in an HTTP request-reply based application protocol.

We have shown that CC/PP technology can be implemented efficiently,
despite some of its shortcomings. Future success of the technology will depend
on the rate of adoption of the technology by mobile device manufacturers as
well as the enabling of a wider range of middleware systems to handle capability
and profile information and take advantage of this information in generating
optimally adapted content.

6 Acknowledgements

This paper has benefitted from discussions with our colleauges François Dolivo
and Stefan G. Hild on the topic of capabilities and profile information technolo-
gies.

References

1. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. IETF, August 1998. RFC 2396.

12

2. K.H. Britton, R. Chase, A. Citron, R. Floyd, Y. Li, C. Seekamp, B.Topol, and K.Tracey.
Transcoding: Extending e-business to new environments. IBM Systems Journal,
40(1):153–177, 2001.

3. Mark H. Butler. Current technologies for device independence. Technical Report
HPL-2001-83, Hewlett Packard Laboratories Bristol, March 2001.

4. Mark H. Butler. Implementing content negotiation using CC/PP and WAP UAProf.
Technical Report HPL-2001-190, Hewlett Packard Laboratories Bristol, August 2001.

5. C.J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley Publishing
Company, third edition edition, 1993.

6. Keiichi Enoko. Concept of i-mode service. NTT DoCoMo Technical Journal, 1(1):4–9,
October 1999.

7. R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. IETF, June 1999. RFC
2616.

8. GSM Association. M-Services Guideline, May 2001. PRD AA.35.
9. IBM Corporation. The NetRexx Language. http://www2.hursley.ibm.com/nextrexx.

10. G. Klyne, F. Reynolds, C. Woodrow, and H. Ohto. Composite Capability/Preference
Profiles (CC/PP): Structure and Vocabularies. W3C, June 1999.
http://www.w3c.org/TR/NOTE-CCPPexchange.

11. Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF): Model and
Syntax Specification. W3C, 1999. http://www.w3c.org/TR/REC-rdf-syntax.

12. Ben Laurie and Peter Laurie. Apache: The Definitive Guide. O’Reilly & Associates,
1999. Second Edition.

13. H. Nielsen, P. Leach, and S. Lawrence. An HTTP Extension Framework. IETF,
February 2000. RFC 2774.

14. Lincoln Stein and Doug MacEachern. Writing Apache Modules with Perl and C.
O’Reilly & Associates, 1999.

15. Sun Microsystem, Inc. Java Server Pages, Version 1.2, September 2001.
http://java.sun.com.

16. Sun Microsystem, Inc. Java Servlet Specification, Version 2.3, September 2001.
http://java.sun.com.

17. Sun Microsystems, Inc. Java Native Interface, May 1997. http://java.sun.com.
18. W3C. Document Object Model (DOM) Level 1 Specification, October 1998.

http://www.w3.org/TR/REC-DOM-Level-1.
19. W3C. CC/PP exchange protocol based on HTTP Extension Framework, June 1999.

http://www.w3c.org/TR/NOTE-CCPPexchange.
20. WAP Forum. Wireless Application Protocol: Push Access Protocol (PAP), August 2001.

WAP-247-PAP.
21. WAP Forum. Wireless Application Protocol: Push OTA Protocol, August 2001.

WAP-235-PushOTA.
22. WAP Forum. Wireless Application Protocol: User Agent Profile Specification, August

2001. WAP-248-UAPROF.
23. WAP Forum. Wireless Application Protocol: WMLScript Specification, August 2001.

WAP-193-WMLS.

13

