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Abstract

New recursive, systematic rate-(N−1)/N convolutional encoders for 2 ≤ N ≤ 20 and memory 1 ≤ M ≤ 6
are presented. These encoders generate codes having optimal distance spectra and were obtained by performing
an efficient search. The search possibilities were limited by exploiting the struture of the encoder using various
combinatorial arguments. Many of the codes improve upon previously reported results and are attractive for
use in high data-rate applications in conjunction with iterative decoding schemes.

I. Introduction

High-rate error control codes are desirable for communications and data storage applications
requiring very high data rates. For example, data rates in today’s magnetic hard-disk drives
exceed 1 Gb/s. The need for high-rate codes is more critical in magnetic recording systems
because the channel quality deteriorates as a quadratic function of the rate. Furthermore, most
high-performance storage and communications systems employ a concatenated coding scheme
in which the component codes must have rates higher than the overall system code rate.
Concatenated coding and iterative decoding schemes are being investigated for application
to magnetic recording. Recently, the use of rate-(N −1)/N tail-biting codes in a magnetic
recording system employing iterative detection/decoding was investigated [1]. The use of soft-
in/soft-out decoding based on the rate-1/N dual code allows significant reduction in complexity
and alleviates the need for using the traditional approach of puncturing to obtain high-rate
codes.

In this report, we present the results of our search for rate-(N−1)/N convolutional codes.
Our goal has been to find codes with 2 ≤ N ≤ 20 and memory 1 ≤ M ≤ 6. Our criterion for
selecting good codes is the distance spectrum. Here, we report results based on selecting the
best first eight spectral coefficients. Significant reduction in the number of seach possibilities
was obtained by employing combinatorial arguments described in the sequel. We report codes
with improved spectrum compared with known codes at similar rates reported in the literature
[2], [3], [4], [5], [6]. Note that we have followed the popular practice of presenting and describing
the properties of a convolutional code when, in fact, they are mostly the properties of the
encoder that generates the code.

Let xt = [xt,1 xt,2 ... xt,K ], t = 0, 1, ..., xt,i ∈ F2, F2 = {0, 1}, be the sequence of information
vectors denoted by x(D) = x0 +x1D+x2D

2 + ... and let yt = [yt,1 yt,2 ... yt,N ], yt,i ∈ F2, be
the sequence of code vectors denoted by y(D) = y0 +y1D+y2D

2 + .... Considered are rate
R=(N−1)/N convolutional codes, i.e., K =N−1, which can be encoded using the (N−1)×N
matrix

G(D) =









1 0 0 ... 0 g1(D)/g0(D)
0 1 0 ... 0 g2(D)/g0(D)

. . .
...

0 0 0 ... 1 gN−1(D)/g0(D)









,

where gi(D)=gi,0+gi,1D+...+gi,MDM , gi,j ∈F2, are polynomials of maximum degree M :

M = max
i=0,1,...,N−1

deg(gi(D)).
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We will call the gi(D) generators and g0(D) in particular the recursive part, which must be
non-trivial, i.e., g0(D) 6=0. Let the set C contain all valid code sequences y(D) = x(D)G(D)
encoded from x(D). Any y(D) must fulfill the parity check equation y(D)H(D)T = 0(D),
where

H(D)=[g1(D) g2(D) ... gN−1(D) g0(D) ]

is called the parity check matrix or the syndrome former of the code. The code is completely
specified by the N generators in H(D) and we therefore favor to address a code by its syndrome
former rather than G(D).

DD
yt,3

yt,2

yt,1xt,1

xt,2

Fig. 1. Encoder of the rate-2/3 code H(D)=[1 1+D 1+D2].

The encoder G(D) of the code is minimal and basic if it is realized in observer canonical
form [2], e.g., Figure 1 depicts the encoder of the rate-2/3 code H(D)=[1 1+D 1+D2]. A trellis
for this type of encoder has a state complexity of 2M states and a branch complexity of 2N−1

branches per state [2]. For such encoders, decoding algorithms such as trellis-based symbol-
by-symbol maximum a-posteriori probability (MAP) decoding [7] cause a large computational
burden for increasing rate due to the branch complexity. This questions the use of such
encoders, since other encoders, e.g., in controller canonical form or punctured convolutional
codes [2], both with much lower branch complexity, require less computational burden given
the same state complexity. However, recent literature shows that some of the most favorable
decoding algorithms such as MAP decoding can be performed using the trellis of the rate-1/N
dual code C⊥ to C [8], including approximate versions [9]. The branch complexity of the trellis
of C⊥ is 2, which is the same as for high-rate codes punctured from rate-1/N mother codes.

We seek to find codes H(D) with optimal spectral coefficents ad, d=0, 1, ..., defined in [2].
The sequence {ad} of the ad is called spectrum and the smallest non-zero d for which ad 6= 0
is called free distance df of the code. We call a code optimal with respect to a given memory
M if its first d′ spectral coefficents ad, d=1, 2, ..., d′ are lower than that of all other codes from
the specified code class for a maximum d′, e.g., the spectrum {1, 0, 0, 4, 8, ...} is superior to
{1, 0, 0, 5, 0, ...}.

In the following we analyze in Section II the properties of the considered class of codes, in
particular the spectral coefficients a2, a3, and a4 to derive efficient search strategies for optimal
codes in Section III evolving in tables of found codes presented in the appendix. Table I lists
examples of rate-(N−1)/N encoders with improved spectrum compared with known codes at
similar rates reported in [2], [3], [5], [10]

II. Analysis of Code Properties

We begin by presenting some definitions that will help in describing the code properties and
search techniques. Code sequences y(D) of weight wy are generated by information sequences
x(D) of less or equal weight, since the encoder G(D) is systematic. A weight wx information
sequence x(D) can also be represented by

x(D)=
∑wx

j=1
utjD

pj , tj ∈ {1, ..., N−1}, pj ≥ 0,
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TABLE I

Examples of rate-(N−1)/N encoders with improved spectrum.

R M g0(D), g1(D)...gN−1(D) df adf
, adf+1

8/9 3 17, 17 15 13 11 7 5 6 2 2 1,35
9/10 3 13, 17 15 13 11 7 5 6 2 15 2 2,43
10/11 3 17, 17 15 13 11 7 5 6 2 15 13 2 3,52
11/12 3 11, 17 15 13 11 7 5 6 2 17 15 13 2 4,62
8/9 4 17, 37 35 33 31 27 25 23 21 3 1,142
9/10 4 15, 37 35 33 31 27 25 23 21 13 3 4,234
10/11 4 17, 37 35 33 31 27 25 23 21 15 13 3 9,369
11/12 4 11, 37 35 33 31 27 25 23 21 17 15 13 3 16,547
16/17 5 37, 77 75 73 71 67 65 63 61 57 3 1,1100

55 53 51 47 45 43 41

where ui is a 1×K unit vector with a one at position i and any tj = tj′ implies that pj 6= pj′ .
We require at least one pj to be zero yielding x0 6=0. Encoding x(D) to y(D) yields that

wH(y(D))=wx + wH

(

∑wx

j=1
gtj(D)/g0(D) · Dpj

)

.

To have wH(y(D)) = wy, the term
∑wx

j=1
gtj(D)/g0(D) · Dpj must be of the form

∑wy−wx

j=1 Dqj

for some integer qj being pairwise different. Multiplying with g0(D) and combining the sums
yields

∑wx

j=1
gtj(D)Dpj +

∑wy−wx

j=1
g0(D)Dqj = 0, (1)

where the addition is modulo 2.
Definition 1: Let Wwy

be a set specifying the events that the encoder generates a weight wy

code sequence y(D). The set Wwy
contains all tuples

(t1, ..., twx
; p1, ..., pwx

; q1, ..., qwy−wx
), 1 ≤ wx ≤ wy,

for which (1) subject to the constraints holds.
Lemma 1: The size |Ww| of Ww does not change if any generator gi(D) in H(D) is replaced

by gi(D)D−r, r>0, given that gi,0 = ...=gi,r =0.
Proof: If g0(D) in (1) is replaced with g0(D)D−r, the tuples (tj; pj; q1, ..., qwy−wx

) are
uniquely mapped to the new valid tuples (tj; pj; q1+r, ..., qwy−wx

+r). If gtj(D) is replaced with
gtj(D)D−r in (1), the tuples (tj; p1, ..., pj , ..., pwx

; qj) are uniquely mapped to the new valid
tuples (tj; p1, ..., pj+r, ..., pwx

; qj) unless pj was the only zero exponent. In latter case, the new
tuples are invalid but there is the same amount of extra tuples (tj; p1−r′, ..., pj+r−r′, ..., pwx

−
r′; qj), where r′ is chosen such that some pj′ , j =1, ..., wx, is zero. Hence, the overall number
of tuples, i.e., |Ww|, is invariant.

Lemma 2: The size |Ww| of Ww is equal to the spectral coefficient aw if the free distance df

of the code is at least bw/2c+1.
Proof: The spectral coefficient aw is the number of weight w code sequences encoded

from some x(D) where x0 6=0, whose paths in the code trellis depart and approach the all-zero
state only once. Latter constraint is not fulfilled by (1), which addresses all weight w code
sequences where x0 6=0, but the code path can depart and rejoin the all-zero state many times.
In such a case, the weight w code sequence addressed by (1) is the concatenation of two or
more code sequences of less weight which depart and rejoin the all-zero state only once. Hence,
this code sequence is not counted towards aw. Also, the weight of this code sequence is the
sum of the weights of the subsequences. However, if df ≥(bw/2c+1), a weight w code sequence
cannot be split into subsequences of less weight as described above, since 2(bw/2c+1) > w.
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With these two lemmas at hand, we are now ready to state the following theorem, which
plays a crucial role in limiting the search requirements.

Theorem 1: There exists a rate-(N−1)/N code C with df ≥3 if and only if R ≤ (2M−1)/2M .
Above that rate, i.e. N > 2M , the spectral coefficient a2 is at least

a2 ≥ (2M − (N mod 2M))

(

bN/2Mc

2

)

+(N mod 2M)

(

bN/2Mc+1

2

)

.

Proof: Codes for which all gi(D) are non-zero achieve df ≥ 2 and thus |W2| = a2 by
Lemma 2. Using Lemma 1 we can consider only those codes whose generators gi(D) have
gi,0 = 1, ∀i, since codes with gi(D), gi,0 = 0, for some i have the same |W2|. For such codes,
(1) holds if and only if two gi(D) are identical and pj =qj =0, i.e., W2 contains only tuples of
type (t1; 0; 0) or (t1, t2; 0, 0;−).

(⇒) A code achieving df ≥ 3 has |W2|= 0, which is possible only with distinct generators
gi(D) under the restriction that gi,0 =1. There are 2M distinct polynomials gi(D) up to degree
M with gi,0 = 1. Since we need N gi(D) to construct a code H(D) of rate (N −1)/N , the
largest possible rate to have distinct gi(D) with gi,0 =1 in H(D) is (2M−1)/2M .

(⇐) Given a rate R≤ (2M −1)/2M , there is a code H(D) with distinct gi(D), gi,0 =1, and
degree at most M yielding |W2|=0. This implies that df ≥3.

For the case where R > (2M−1)/2M , some gi(D), gi,0 =1, occur more the once. We assume
that each of the 2M distinct gi(D) occur nk = 0, 1, ..., k = 1, ..., 2M , times, such that H(D)

contains
∑2M

k=1
nk =N , N >2M , generators yielding rate-(N−1)/N . Any pair of identical gi(D)

in H(D) increases |W2| by 1. Any triple of identical gi(D) increases |W2| by 3, since there
are 3 choices to select a pair from this triple increasing |W2| by 1. In general, an n-tuple of
identical generators increases |W2| by

(

n

2

)

. It follows that the total size of |W2| and thus a2 is

given by
∑2M

k=1

(

nk

2

)

. Assume that any two gi(D) occurring nk and nk′ times in H(D) contribute

nk+nk′ =∆N to the overall number N of generators. Their contribution to a2 is
(

nk

2

)

+
(

∆N−nk

2

)

,
which is minimized by nk = b∆N/2c. Thus, a2 is minimized by pairwise “equalizing” the

nk, ∀k. This means we set all 2M nk to bN/2Mc yielding
∑2M

k=1
nk = 2MbN/2Mc. When

2MbN/2Mc<N , i.e., (N mod 2M)>0, we increase (N mod 2M) of the nk by 1 to bN/2Mc+1

yielding
∑2M

k=1
nk =N . Any code H(D) whose nk are set according to this scheme achieve the

minimal a2 stated in the Theorem.
The construction outline in the proof above is used in Section III to restrict the number of

possible codes achieving the desired optimal spectrum for rates above (2M−1)/2M .
Definition 2: Consider a set of n distinct polynomials {ai(D)}, i = 1, ..., n, where ai(D) =

1+ai,1D+...+ai,mi
Dmi , (ai,0 =1), ai,j ∈F2, and deg(ai(D))=mi. Let Pm(a1(D), ..., an(D)) be the

set of pairs (ai(D); ai′(D)Dr), i, i′ ∈ {1, ..., n}, r > 0, satisfying deg(ai(D)+ai′(D)Dr) ≤ m
and m > mi, ∀i, which implies that r = 1, 2, ...,m−mi′ . Let pi,i′,r(D) be the polynomial
ai(D)+ai′(D)Dr corresponding to the pair (ai(D); ai′(D)Dr). The size of this set is

|Pm(a1(D), ..., an(D))| = n ·
∑n

i=1
(m−mi)

and it contains n2 pairs (ai(D); ai′(D)Dr) for which pi,i′,r(D) has degree m, i.e., r=m−mi′ .
For example, P2(1, 1+D) is given by

{(1; 1·D), (1; 1·D2), (1; (1+D)·D), (1+D; 1·D), (1+D; 1·D2), (1+D; (1+D)·D)}.

Lemma 3: Among the n2 pi,i′,r(D) of degree m in Pm(a1(D), ..., an(D)), at least n are dis-
tinct.
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Proof: Assume that the polynomials bk(D), k ∈ {1, ..., x}, correspond to the x distinct
pi,i′,r(D) of degree m. Each bk(D) is occurring nk times among all pi,i′,r(D) of degree m such
that

∑x

k=1
nk =n2.

If x < n, there must exist some nk, which are larger than n, since otherwise
∑x

k=1
nk =n2

cannot hold. Given a particular ai(D) from the set Pm(a1(D), ..., an(D)), the pair (ai(D); ai′(D)Dr)
yields bk(D) only if ai′(D)=bk(D)−ai(D))Dmi′−m, since r is restricted to m−mi′ . Thus, fixing
ai(D) also fixes ai′(D) if such an ai′(D) exists at all. Since there are only n distinct ai′(D), at
most n pairs (ai(D); ai′(D)Dr) result in the same bk(D) and thus nk ≤ n which implies that
x≥n.

Theorem 2: There exists a rate-(N−1)/N code C with df ≥ 4 if and only if R ≤ (2M−1−
1)/2M−1.

Proof: We consider only those codes where all generators gi(D) have gi,0 = 1, ∀i, and
which are distinct. This implies that df ≥ 3 and |W3|= a3 due to Theorem 1 and Lemma 2.
For such codes, (1) holds only if exactly two of the pj or qj are zero and exactly one of the pj

or qj is positive, since otherwise the scalar coefficients gtj ,0 or g0,0 do not cancel out. Thus,
Ww contains only tuples of type (t1; 0; 0, q2 >0), (t1, t2; 0, 0; q1 >0), or (t1, t2, t3; 0, 0, p3 >0;−).
Equivalently, a tuple in Ww corresponds to a generator triple (gi(D), gi′(D), gi′(D)Dr), r>0,
i, i′ ∈ {0, ..., N−1}, for which gi(D)=gi′(D)+gi′(D)Dr.

(⇐) There is no generator triple yielding gi(D) = gi′(D)+gi′(D)Dr if all generators are
distinct and have exactly degree M . A rate-(N −1)/N code H(D) which contains N such
gi(D), i.e. gi,0 = gi,M = 1, achieves |W3| = 0 and thus df ≥ 4. Since there are 2M−1 distinct
polynomials gi(D) with gi,0 = 1 and degree M , for any rate up to (2M−1−1)/2M−1 we can
construct a code having df ≥4.

(⇒) Assume a code of rate above (2M−1−1)/2M−1 consisting of N > 2M−1 generators. Let n
of these have degree less than M . Since there are 2M−1 distinct gi(D) of degree M , n is lower
bounded by N−2M−1. There might exist generator triples yielding gi(D)=gi′(D)+gi′(D)Dr

where gi′(D) is one of those generators of degree less than M . In fact, if any gi(D) of degree
M is equal to a pi,i′,r(D) corresponding to a pair in the set PM({gi′}) constructed on the n
generators of degree less than M , W3 is non-empty and thus df =3. By Lemma 3, there are
at least n distinct pi,i′,r(D) of degree M . Thus, out of the N gi(D) in the code, n′, where
n′≥n, of degree M must be excluded to assure that W3 stays empty. This decreases the rate
to (N−1−n′)/(N−n′). From the lower bound n≤(N−2M−1) follows that the largest rate to
achieve df ≥4 is (2M−1−1)/2M−1, which is achieved when n=n′.

It can be shown that for rates higher than (2M−1−1)/2M−1 and up to (2M −1)/2M , i.e.
2M ≥N >2M−1, the spectral coefficient a3 is at least

a3 ≥ (N−2M−1) ·
∑N−1

i=0
(M − deg(gi(D)), (2)

where gi,0 = 1, ∀i. It can also be shown that equality can be achieved constructively similar
to Theorem 1. This significantly reduces the search space as illustrated in the next section.
Note that traditional upper bounds on df , e.g., the Heller bound [2], are not easily applicable
and do not provide constructive arguments to help limit the search.

III. Code search

The findings from Section II can be used to efficiently search codes H(D) with optimal
spectrum given N and M . We do not distinguish equivalent codes, i.e., codes with identical
spectrum. In particular, any permutation on the generators gi(D), i = 0, ..., N−1, in H(D)
yields an equivalent code, which can be encoded using an encoder of type G(D) when the
recursive part, the rightmost entry of H(D), is non-zero. Latter constraint does not affect the
search, since any zero generator would yield a poor code with df =1.
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For rates (2M−1)/2M <R yielding df =2 according to Theorem 1, the search strategy is as
follows:
(A1) The minimal a2 follows readily from Theorem 1 and only (N mod 2M) of the N gener-
ators in H(D) can be chosen by selecting some of the 2M distinct polynomials gi(D) having
gi,0 =1 up to degree M . From all possible codes we searched for those minimizing a3.
(A2) From the codes found in (A1), those optimizing the 5 spectral coefficients ad, d=4, ..., 8,
were obtained. The search included also codes derived from the ones found in (A1), where the
generators of smaller degree than M where allowed to shift to degree M . For example, besides
a code H(D)= [1 1 1+D] found in (A1), we also tested the spectrum of H′(D)= [1 D 1+D]
and H′′(D)=[D D 1+D].
(A3) From the codes found in (A2), we searched for those codes optimizing {cd}, d=df , ..., 8,
where cd is the total number of non-zero information bits generating weight d code sequences.
The search included N encoders per found code, which was to select any of the N gi(D) as
recursive part.

For rates R≤(2M−1)/2M yielding df =3 according to Theorem 1, the search strategy is as
follows:
(B1) The minimal a3 = 0 for R ≤ (2M−1 − 1)/2M−1 follows from Theorem 1. For R >
(2M−1−1)/2M−1, a3 follows from (2). We searched for codes achieving a3, where all gi(D) have
gi,0 =1.
(B2) Similar to (A2).
(B3) Similar to (A3).

Figure 2 depicts the number of tested codes for various rates and memories. The upper
curve in each plot corresponds to the case with no constraints on the search space. Using the
results from Section II, the computational requirements are significantly lowered as shown by
the lower curves in each plot. We note that there is room for improvement, which is currently
being investigated.
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Appendix

The Tables II-VII show the found codes of rates 1/2 to 19/20 for memories M = 1, 2, ..., 6
together with the free distance df and the spectral coefficients adf

, adf+1 and cdf
, cdf+1. Note

that the search for memory 6 codes was at the time of the submission of this report still in
progress.
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Fig. 2. Computational requirements in the search for rate-(N−1)/N , memory 2, 3, 4, 5 codes.

R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 1, 3 3 1,1 1,2
2/3 3, 1 3 2 1,2 1,5
3/4 1, 1 3 3 2 2,8 3,16
4/5 3, 1 3 1 3 2 4,12 6,32
5/6 1, 1 3 1 3 3 2 6,27 10,63
6/7 3, 1 3 1 3 1 3 2 9,36 15,99
7/8 1, 1 3 1 3 1 3 3 2 12,64 21,160
8/9 3, 1 3 1 3 1 3 1 3 2 16,80 28,224
9/10 1, 1 3 1 3 1 3 1 3 3 2 20,125 36,325

TABLE II

Rate-(N−1)/N , memory 1 codes with optimal spectrum.
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R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 5, 7 5 1,2 2,6
2/3 3, 7 5 3 1,4 1,10
3/4 3, 7 5 2 3 6,23 13,68
4/5 7, 7 5 3 2 2 1,9 1,24
5/6 5, 7 5 3 2 7 2 2,13 3,35
6/7 3, 7 5 3 2 7 5 2 3,24 5,59
7/8 3, 7 5 3 2 7 5 2 2 4,48 7,124
8/9 7, 7 5 3 2 7 5 3 2 2 6,60 10,168
9/10 5, 7 5 3 2 7 5 3 2 7 2 8,74 14,208

TABLE III

Rate-(N−1)/N , memory 2 codes with optimal spectrum.

R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 17, 15 7 1,3 2,12
2/3 17, 15 13 5 1,5 2,20
3/4 11, 17 15 13 4 5,36 15,128
4/5 7, 17 15 13 11 3 1,21 1,64
5/6 5, 17 15 13 11 7 3 4,53 8,174
6/7 5, 17 15 13 11 7 6 3 12,124 29,424
7/8 5, 17 15 13 11 7 6 2 3 28,274 73,956
8/9 17, 17 15 13 11 7 5 6 2 2 1,35 1,98
9/10 13, 17 15 13 11 7 5 6 2 15 2 2,43 3,121
10/11 17, 17 15 13 11 7 5 6 2 15 13 2 3,52 5,147
11/12 11, 17 15 13 11 7 5 6 2 17 15 13 2 4,62 7,176
12/13 7, 17 15 13 11 7 5 6 2 17 15 13 2 5,83 9,226

11
13/14 5, 17 15 13 11 7 5 6 2 17 15 13 2 6,109 11,299

11 7
14/15 5, 17 15 13 11 7 5 6 2 17 15 13 2 7,154 13,427

11 7 6
15/16 5, 17 15 13 11 7 5 6 2 17 15 13 2 8,224 15,628

11 7 6 2
16/17 17, 17 15 13 11 7 5 6 2 17 15 2 10,252 18,728

13 11 7 5 6 2
17/18 13, 17 15 13 11 7 5 6 2 17 15 2 12,282 22,816

13 11 7 5 6 2 15
18/19 17, 17 15 13 11 7 5 6 2 17 15 2 14,314 26,910

13 11 7 5 6 2 15 13
19/20 11, 17 15 13 11 7 5 6 2 17 15 2 16,348 30,1010

13 11 7 5 6 2 17 15 13

TABLE IV

Rate-(N−1)/N , memory 3 codes with optimal spectrum.
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R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 35, 23 7 2,3 6,12
2/3 35, 25 23 5 2,13 6,52
3/4 35, 31 27 23 4 1,16 3,60
4/5 33, 31 27 23 35 4 7,56 20,224
5/6 25, 37 35 31 27 23 4 19,160 62,660
6/7 33, 31 27 25 23 37 35 4 43,351 144,1512
7/8 21, 37 35 33 31 27 25 23 4 78,784 273,3368
8/9 17, 37 35 33 31 27 25 23 21 3 1,142 1,496
9/10 15, 37 35 33 31 27 25 23 21 13 3 4,234 8,834
10/11 17, 37 35 33 31 27 25 23 21 15 13 3 9,369 21,1328
11/12 11, 37 35 33 31 27 25 23 21 17 15 3 16,547 40,1995

13
12/13 11, 37 35 33 31 27 25 23 21 17 16 3 30,824 79,3037

15 13
13/14 17, 37 35 33 31 27 25 23 21 16 15 3 48,1195 131,4413

13 12 11
14/15 11, 37 35 33 31 27 25 23 21 17 16 3 77,1764 213,6585

15 13 12 6
15/16 11, 37 35 33 31 27 25 23 21 17 16 3 120,2644 337,9908

15 13 12 6 4
16/17 37, 37 35 33 31 27 25 23 21 17 15 2 1,135 1,390

13 11 16 12 6 4
17/18 35, 37 35 33 31 27 25 23 21 17 16 2 2,151 3,437

15 13 12 11 6 4 27
18/19 33, 37 35 33 31 27 25 23 21 17 16 2 3,168 5,487

15 13 11 12 6 4 37 25
19/20 31, 37 35 33 31 27 25 23 21 17 16 2 4,186 7,540

15 13 12 11 6 4 35 27 23

TABLE V

Rate-(N−1)/N , memory 4 codes with optimal spectrum.
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R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 53, 75 8 1,8 4,34
2/3 55, 65 43 6 6,27 24,125
3/4 43, 77 71 53 5 7,45 25,204
4/5 51, 75 47 41 33 4 1,36 3,142
5/6 41, 75 57 51 47 33 4 5,96 16,399
6/7 21, 75 73 67 55 53 47 4 13,223 44,940
7/8 43, 73 71 67 65 57 55 42 4 28,447 96,1962
8/9 65, 77 75 73 63 51 45 41 56 4 55,812 192,3612
9/10 57, 71 67 65 61 55 53 45 43 37 4 95,1394 338,6306
10/11 45, 77 75 71 67 61 55 53 43 46 4 151,2260 543,10305

51
11/12 53, 77 75 73 65 51 47 45 41 27 4 223,3553 814,16308

63 61
12/13 65, 76 63 61 55 53 51 47 45 43 4 328,5316 1201,24587

75 71 67
13/14 65, 63 61 57 55 53 51 47 45 43 4 456,7691 1687,35769

37 75 71 67
14/15 73, 71 67 65 63 61 57 55 53 51 4 621,10873 2308,50837

47 45 43 37 75
15/16 41, 77 75 73 71 67 65 63 61 57 4 844,14400 3165,67056

55 53 51 47 45 43
16/17 37, 77 75 73 71 67 65 63 61 57 3 1,1100 1,4128

55 53 51 47 45 43 41
17/18 27, 77 75 73 71 67 65 63 61 57 3 4,1408 8,5306

55 53 51 47 45 43 41 35
18/19 33, 77 75 73 71 67 65 63 61 25 3 9,1790 21,6758

57 55 53 51 47 45 43 41 37
19/20 23, 77 75 73 71 67 65 63 61 57 3 16,2237 40,8479

55 53 51 47 45 43 41 35 31 27

TABLE VI

Rate-(N−1)/N , memory 5 codes with optimal spectrum.
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R g0(D), g1(D)...gN−1(D) df adf
, adf+1 cdf

, cdf+1

1/2 171, 133 10 11,0 50,0
2/3 105, 163 145 7 17,53 78,276
3/4 155, 161 135 103 6 27,118 118,614
4/5 123, 177 155 145 107 5 11,100 43,476
5/6 135, 176 163 147 131 105 5 48,360 200,1798
6/7 145, 163 141 135 131 113 77 4 3,99 10,423
7/8 111, 176 173 151 145 135 121 103 4 9,209 29,911
8/9 141, 173 167 153 147 135 125 111 4 19,407 65,1811

43
9/10 4

10/11 4

11/12 4

12/13 4

13/14 4

14/15 4

15/16 4

16/17 4

17/18 4

18/19 4

19/20 4

TABLE VII

Rate-(N−1)/N , memory 6 codes with optimal spectrum.


